首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mouse HER2-derived peptide, HER2p63 (A) (TYLPANASL), can induce K(d)-restricted mouse cytotoxic T lymphocytes (CTL) and also function as a tumor rejection antigen in an in vivo assay. Since the anchor motif of mouse K(d) for peptide binding has much similarity to that of human HLA-A2402, we asked if human HER2p63 (T) (TYLPTNASL) could induce HER2-specific CTL in HLA-A2402-positive individuals. Peripheral blood mononuclear cells (PBMC) of HLA-A2402-positive individuals were sensitized in vitro with HER2p63-pulsed autologous dendritic cells prepared from PBMC. CTL clone derived from these specifically lysed HER2-expressing cell lines bearing HLA-A2402. Cytotoxic activity of the CTL clone against the HER2-expressing cell line bearing HLA-A2402 was blocked by antibodies against CD3, CD8, HLA-A24 or MHC class I, and was also inhibited by the addition of excess HER2p63-pulsed C1R bearing HLA-A2402. Killer cells were generated from PBMC of seven healthy individuals and five ovarian cancer patients, all of HLA-A2402 type, by in vitro sensitization with HER2p63-pulsed autologous antigen presenting cells. These killer cells selectively lysed HER2-expressing SKOV3 transfected with HLA-A2402 cDNA, indicating high immunogenicity of HER2p63 in all 12 individuals examined.  相似文献   

2.
李树法  张敏  陈兵 《免疫学杂志》2012,(10):880-883
目的预测和初步鉴定1型糖尿病(T1DM)主要自身抗原锌转运蛋白8(ZnT8)的HLA-A*0201限制性细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTL)表位,为基于ZnT8抗原表位的特异性免疫治疗奠定基础。方法选取BIMAS预测工具预测该抗原HLA-A*0201限制性结合肽,人工合成待测表位肽,利用T2细胞株测定各肽与HLA-A*0201分子的结合力。利用酶联免疫斑点检测(enzyme-linked immunospotassay,ELISPOT)方法检测候选肽刺激T1DM患者外周血单个核细胞分泌IFN-γ和IL-2的能力,利用标准51Cr释放试验检测特异性CTL诱导活性。结果在所筛选的5个候选CTL表位中,ZnT8(107-115)、ZnT8(115-123)及ZnT8(145-153)与HLA-A*0201分子具有较高的结合荧光强度,可在体外有效诱导抗原特异性CTL的产生,刺激T1DM患者PBMC分泌IFN-γ和IL-2,并对抗原肽负载的T2细胞具有明显的杀伤效应。结论 ZnT8(107-115)、ZnT8(115-123)及ZnT8(145-153)可能是HLA-A*0201限制性CTL表位,为基于人ZnT8抗原表位的特异性免疫治疗奠定理论基础。  相似文献   

3.
Functional analysis of antigen-specific CD8(+) T cells is important for understanding the immune response in various immunological disorders. To analyze CD8(+) T cell responses to a variety of antigens with no readily defined peptides available, we developed a system using CD4(+) phytohemagglutinin (PHA) blasts transduced with mRNA for antigen molecules. CD4(+) PHA blasts express MHC class I and II, and also CD80 and CD86 and are thus expected to serve as potent antigen presenting cells. EGFP mRNA could be transduced into and the protein expressed by more than 90% of either LCL or CD4(+) PHA blasts. Its expression stably persisted for more than 2 weeks after transduction. In experiments with HLA-A*2402 restricted CD8(+) CTL clones for either EBNA3A or a cancer-testis antigen, SAGE, mRNA-transduced lymphoid cells were appropriate target cells in ELISPOT assays or (51)Cr releasing assays. Finally, using CD4(+) PHA blasts transduced with mRNA of a cancer-testis antigen MAGE-A4, we successfully generated specific CTL clones that recognized a novel HLA-B*4002 restricted epitope, MAGE-A4(223-231). Messenger RNA-transduced CD4(+) PHA blasts are thus useful antigen presenting cells for analysis of CD8(+) T cell responses and induction of specific T cells for potential immunotherapy.  相似文献   

4.
For the development of peptide-based cancer immunotherapies, we aimed to identify specific HLA-A*0201-restricted CTL epitopes in hepatocellular carcinoma (HCC) associated antigen HCA587, which has been identified as a member of the cancer/testis (CT) antigens highly expressed in HCC. We first combined the use of an HLA-A*0201/peptide binding algorithm and T2 binding assays with the induction of specific CD8(+) T cell lines from normal donors by in vitro priming with high-affinity peptides, then IFN-gamma release and cytotoxicity assays were employed to identify the specific HLA-A*0201 CD8(+) T cell epitope using peptide-loaded T2 cells or the HCA587 protein(+) HCC cell line HepG2. In the six candidate synthesized peptides, two peptides showed higher binding ability in T2 binding assays. No. 2 peptide, encompassing amino acid residues FLAKLNNTV (HCA587(317-325)), was able to activate a HCA587-specific CD8(+) T-cell response in human lymphocyte cultures from two normal donors and two HCC patients, and these HCA587-specific CD8(+) T cells recognized peptide-pulsed T2 cells as well as the HCA587 protein(+) HCC cell line HepG2 in IFN-gamma release and cytotoxicity assays. The results indicate that no. 2 peptide is a new HLA-A*0201-restricted CTL epitope capable of inducing HCA587-specific CTLs. Our data suggest that identification of this new HCA587/HLA-A*0201 peptide FLAKLNNTV may facilitate the design of peptide-based immunotherapies for the treatment of HCA587-bearing HCC patients.  相似文献   

5.
Developing precise and efficient methods of monitoring immune responses against cytomegalovirus (CMV) infection in immunocompromised transplantation patients is important. With the aim of optimizing the monitoring strategy, an HLA-A24-CMVpp65 tetramer-based analysis of CMVpp65 peptide-specific CTL lines was performed. Previously, the HLA-A24-restricted CTL epitope of CMVpp65 matrix protein was identified (QYDPVAALF aa 341-349). In the present study, CMVpp65 (aa 341-349) peptide-specific CTL lines were obtained from PBLs of 12 HLA-A24+ healthy donors by two stimulations with peptide-pulsed dendritic cells (DC). Among 12 CTL lines, 9 showed HLA-A*2402-CMVpp65 tetramer staining, which was found to be strongly co-related to the amount of IFN-gamma produced by CMVpp65 peptide-restimulated CTL lines (r=0.943, P<0.001). These results suggested that HLA-A*2402-CMVpp65 tetramer staining was an efficient way to monitor immune responses against CMV infection in HLA-A24+ immunocompromised hosts.  相似文献   

6.
The activation of a specific cellular immune response against human cytomegalovirus (CMV) is an important key factor to solving CMV infection after bone marrow transplantation (BMT). In the present study, our purpose was to identify the HLA-A24-restricted cytotoxic T cell (CTL) epitope from the CMV immunogenic matrix protein pp65. We selected five CMV pp65 peptides with HLA-A24 binding motif from the HLA peptide binding predictions web site. Peptide binding assay was performed using biotinylated HLA-A24-restricted MAGE-1 peptide as a reference peptide and transporter associated with antigen processing (TAP)-deficient T2-A24 cells expressing high level of HLA-A24 protein as target cells. After co-incubation of biotinylated MAGE-1 and titrated amounts of competitor peptides with T2-A24 cells, the binding of each peptide was analyzed on a flow cytometer. Peptide binding assay showed that three out of five peptides derived from CMV pp65 bound to T2-A24 cells with various affinity levels. CTL induction assay using peptide-pulsed DC derived from eight HLA-A24(+) donors revealed that the peptide (QYDPVAALF) with the highest affinity was able to elicit potent CTLs which killed peptide-pulsed TISI cells. These CTLs were found to show the killing activity against human fibroblast cells transduced with both HLA-A*2402 and CMV pp65 cDNAs, and CMV-infected HLA-A24(+) fibroblast cells. These results suggested that the peptide (QYDPVAALF) is one of HLA-A24-restricted CTL epitope derived from CMV pp65 protein and may be of therapeutic value in peptide-based vaccines against CMV infection in BMT patients.  相似文献   

7.
In an attempt to induce cytotoxic T lymphocytes (CTLs) that react to ovarian cancer cells, we isolated a CTL clone that specifically recognizes claudin-1 in an HLA-A*24:02-restricted manner. Naïve CD8+ T lymphocytes were obtained from a healthy adult donor and stimulated twice in vitro with HLA-modified TOV21G cells that were originally derived from an ovarian clear-cell carcinoma line. The TOV21G modification involved RNAi-mediated gene silencing of intrinsic HLA molecules and lentiviral transduction of a synonymously mutated HLA-A*24:02. Then, cDNA library construction using mRNA extracted from the parental TOV21G cells and subsequent expression cloning were conducted. These experiments revealed that a CTL clone obtained from the bulk culture recognized a minimal epitope peptide RYEFGQALF, which was derived from an autoantigen claudin-1 presented by HLA-A*24:02 molecules. This clone exhibited cytolytic activities against three ovarian cancer cell lines and normal bronchial epithelial cells in an HLA-A*24:02-restricted manner. Our data indicate that HLA-modified cancer cells can be used as an artificial antigen-presenting cell to generate antigen-specific CTLs in a manner restricted by an HLA allele of interest.  相似文献   

8.
ELISPOT assays are increasingly used for a direct detection and quantification of single antigen-specific T cells in freshly isolated peripheral blood mononuclear cells (PBMC). They are particularly attractive for the monitoring of specific T lymphocyte responses in clinical trials assessing antigen-specific immunizations in patients with cancer or chronic viral infections. However, one major limitation for the broad clinical implementation of ELISPOT assays is the lack of an inexhaustible source of suitable HLA-matched antigen-presenting cells (APC). Currently available allogeneic or xenogeneic APC (such as the human lymphoid hybrid T2 or HLA-transfected insect cells) can either lead to strong background spot production by APC-reactive T lymphocytes or have a low antigen presentation capability. Both phenomena can prevent the detection of low frequency T cell responses in PBMC. In search of alternative APC for ELISPOT assays, the human chronic myelogenous leukemia cell line K562 that per se does not express HLA class I and class II molecules on the cell surface was transfected with the HLA-A*0201 gene. Clonal HLA-A*0201-expressing K562 (K562/A*0201) cells were able to process and present endogenously expressed and exogenously loaded melanoma peptide antigens to HLA-A*0201-restricted cytolytic T lymphocyte clones in cytotoxicity and IFN-gamma ELISPOT assays. K562/A*0201 cells were then used as APC in IFN-gamma spot assays to detect ex vivo CD8(+) T lymphocytes responsive to known HLA-A*0201-binding peptide epitopes derived from cytomegalovirus, Epstein-Barr virus, influenza virus and melanoma in PBMC from HLA-A*0201-positive donors. In the majority of cases, peptide-pulsed K562/A*0201 cells were similarly efficient in the ability to visualize single antigen-specific CD8(+) T lymphocytes when compared to T2 cells. However, in contrast to T2, background reactivity of CD8(+) T cells responsive to unpulsed K562/A*0201 was regularly found to be negligible, thereby enhancing the sensitivity of the ELISPOT assay, particularly in donors with strong anti-T2 reactivity. K562 cells transfected with HLA-A*0201 or other HLA genes can serve as standard APC for monitoring T lymphocyte responses against tumor and viral peptide antigens.  相似文献   

9.
目的:预测并初步鉴定HLA-A3超型限制性MAGEC2抗原特异性细胞毒性T细胞(CTL)表位肽,为基于超型表位的MAGEC2治疗提供实验基础及新的候选靶标。方法:通过BIMAS、SYFPEITHI和IEDB软件预测打分来选取MAGEC2的HLA-A3限制性表位;结合力实验用于检测候选表位与T2A3细胞表面HLA-A3分子的结合能力,ELISPOT实验检测候选表位肽诱导的CTL分泌IFN-γ的能力,体外细胞毒实验检测侯选表位肽诱导的CTL杀伤靶细胞的能力。结果 :表位肽P147、P167、P196、P229和P251具有较好的HLA-A3结合力。ELISPOT实验结果显示表位肽P167、P196和P251诱导的CTL具有分泌IFN-γ的能力。细胞毒实验结果显示表位肽P196和P251诱导的CTL对靶细胞有一定的杀伤作用(P0.05或P0.01)。结论 :P196和P251有更高的HLA-A3分子亲和力,保留了原有的免疫原性,是优秀的MAGEC2抗原的HLA-A3限制性CTL候选表位,可以成为新的抗肿瘤多肽免疫治疗疫苗的候选表位。  相似文献   

10.
11.
12.
The ELISPOT assay has been established for the direct ex vivo quantification of peptide-reactive T lymphocytes from peripheral blood mononuclear cells (PBMC). In this report we studied the ELISPOT assay conditions for the detection of T cell responses against protein antigens including Tetanus toxoid (TT), purified-protein-derivative (PPD) and a synthetic 30 mer peptide derived from influenza matrix protein (IMP) containing the HLA-A*0201-restricted 9 mer peptide epitope GILGFVFTL as a model for a viral protein. We found several aspects to be crucial for a sensitive detection of T cell responses against proteins including a pellet preincubation step and the monocyte concentration. Using optimized assay conditions specific CD4+ T cell responses against TT and PPD as well as CD8+ T cell responses against IMP can be quantified directly ex vivo from peripheral blood mononuclear cells.  相似文献   

13.
BACKGROUND: The tissue specificity of a cytolytic T lymphocyte is determined by the MHC class I bound peptide it recognizes. We have developed an allorestricted human CTL clone, DBS 1.5, that recognizes an epitope found on HLA-A3+ kidney epithelial cells but not on HLA identical B-lymphoblastoid cells. The peptide recognized by this clone has been isolated from HPLC separated, acid eluted peptides from purified HLA class I molecules from HLA-A3+ kidney tissue. This peptide shares no sequence homology with any known protein. METHODS: To confirm the tissue specificity of the HLA-A3 restricted clone and the peptide it recognizes we have transfected the gene for HLA-A3 into a number of tumor cell lines both human and murine not expressing this antigen. The resulting transfected lines, confirmed by immunofluorescent staining, were used as targets to determine if expression of HLA-A3 alone was sufficient to allow recognition and lysis by the HLA-A3 restricted T cell clone. RESULTS: The HLA-A3 restricted T cell clone recognized HLA-A3 when expressed on human kidney epithelial cells and to a lesser extent on human lung epithelium and human epidermal cells. Of the tumor lines transfected with HLA-A3 only the human kidney tumor cell line was lysed at a level equal to the original kidney epithelial cell used to develop the clone. CONCLUSION: These results confirm that this allorestricted human CTL clone is tissue specific recognizing a peptide found in human epithelial tissue that must be presented in the context of HLA-A3 for recognition.  相似文献   

14.
Among cytomegalovirus (CMV) tegument proteins, phosphoprotein 65 (pp65) has been identified as the important target antigen of the cytotoxic T lymphocyte (CTL) response against the virus. We synthesized seven CMV-pp65-derived peptides carrying an HLA-A24-binding motif, and investigated the ability of these peptides to induce CMV-specific CTL. We identified one nonamer peptide (pp65113-121; VYALPLKML) able to bind HLA-A24 and induce CTL responses in vitro in peripheral blood mononuclear cells (PBMC) from CMV-seropositive individuals. The peptide-specific CTLs generated were capable of recognizing pp65 expressed on CMV-infected fibroblasts as well as pp65113-121 peptide bound to the surface of C1R-A*2402 cells in an HLA-A24-restricted manner. The pp65113-121 peptide thus might be considered a synthetic peptide vaccine in HLA-A24-positive individuals.  相似文献   

15.
Parenteral injection of a lipopeptide containing a human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope from the human cytomegalovirus (HCMV) immunodominant matrix protein pp65 efficiently induces systemic CTL responses in HLA-A*0201 transgenic mice. In this study, we demonstrate that intranasal (i.n.) administration of this lipopeptide, covalently linked to a universal T helper (Th) epitope (PADRE), also induces potent systemic CTL responses. Immune responses were substantially reduced when the unlipidated peptide analogue was used (P<0.01). The induced CTL were CD8+, major histocompatibility complex (MHC) class I-restricted and CMV specific. Moreover, i.n. administration of this lipidated peptide elicited both systemic and local mucosal CD4+ T-cell proliferative responses, as well as antigen-specific delayed type hypersensitivity (DTH) immune responses. In contrast, mice receiving the unlipidated peptide analogue developed substantially reduced Th or DTH responses (P<0.05). These results highlight the usefulness and potential of lipopeptides delivered via mucosal routes as painless, safe, and non-invasive vaccines.  相似文献   

16.
Although it is known that a single peptide can be recognized by CTL restricted to two MHC class I alleles, there is no direct evidence for presentation of a single peptide by two MHC class I molecules. Furthermore, it is unclear whether such peptides are presented to the same T cell or to different T cells. Our previous study suggested that CTL recognition of the human immunodeficiency virus-1 (HIV-1) Pol HIV-B35-SF2-24 epitope (IPLTEEAEL) occurs via both HLA-B35 and HLA-B51 restriction. Here we provide the first direct evidence that a single CTL clone can recognize this peptide presented by both HLA-B35 and HLA-B51. Furthermore, we directly purified this peptide eluted from both HLA-B*3501 and HLA-B*5101 molecules isolated from target cells infected with HIV-1 recombinant vaccinia virus. These results demonstrate that HIV-B35-SF2-24 is a naturally processed peptide which is presented by both HLA-B*3501 and HLA-B*5101. TCR analysis of one CTL clone suggested that it is a single clone. B*3501-SF2-24-tetrameric complexes inhibited both HLA-B*3501- and HLA-B*5101-restricted recognition of this clone, suggesting that the TCR of this clone cross-recognize the structure of both HLA class I-peptide complexes.  相似文献   

17.
Wu X  Xu X  Gu R  Wang Z  Chen H  Xu K  Zhang M  Hutton J  Yang T 《Autoimmunity》2012,45(2):176-185
Identification of cognate peptides recognized by human leucocyte antigen (HLA)/T cell receptor (TCR) complex provides insight into the pathogenic process of type 1 diabetes (T1D). We hypothesize that HLA-binding assays alone are inadequate metrics for the affinity of peptides. Zinc transporter-8 (ZnT8) has emerged in recent years as a novel, major, human autoantigen. Therefore, we aim to identify the HLA-A2-restricted ZnT8 epitopes using both binding and dissociation assays. HLA class I peptide affinity algorithms were used to predict candidate ZnT8 peptides that bind to HLA-A2. We analyzed 15 reported epitopes of seven β-cell candidate autoantigens and eight predicted candidate ZnT8 peptides using binding and dissociation assays. Using IFN-γ ELISpot assay, we tested peripheral blood mononuclear cells (PBMCs) from recent-onset T1D patients and healthy controls for reactivity to seven reported epitopes and eight candidate ZnT8 peptides directly ex vivo. We found five of seven recently reported epitopes in Chinese T1D patients. Of the eight predicted ZnT8 peptides, ZnT8(153-161) had a strong binding affinity and the lowest dissociation rate to HLA-A*0201. We identified it as a novel HLA-A*0201-restricted T-cell epitope in three of eight T1D patients. We conclude that ZnT8(153-161) is a novel HLA-A*0201-restricted T-cell epitope. We did not observe a significant correlation (P = 0.3, R = - 0.5) between cytotoxic T cell (CTL) response and peptide/HLA*0201 complex stability. However, selection of peptides based on affinity and their dissociation rate may be helpful for the identification of candidate CTL epitopes. Thus, we can minimize the number of experiments for the identification of T-cell epitopes from interesting antigens.  相似文献   

18.
Wild-type sequence (wt) p53 peptides are attractive candidates for broadly applicable cancer vaccines. Six HLA-A2 or HLA-A24-restricted wt p53 peptides were evaluated for their ex vivo immunogenicity and their potential for use in cancer vaccines. Peripheral blood mononuclear cells (PBMC) obtained from HLA-A*0201(+) and/or HLA-A*2402(+) normal donors and subjects with squamous cell carcinoma of the head and neck (SCCHN) were analyzed for p53 peptide-specific reactivity in ELISPOT IFN-gamma assays. CD8(+) T cells in 7/10 normal donors (HD) and 11/23 subjects with SCCHN responded to at least one of the wt p53 peptides. CD8(+) T cell precursors responsive to wt p53 epitopes were detected in the circulation of most subjects with early disease, and an elevated blood Tc(1)/Tc(2) ratio distinguished wt p53 peptide responders from non-responders. The identification of multiple wt p53 peptides able to induce cytolytic T lymphocytes in most subjects with cancer promotes the development of multi-epitope p53 vaccines.  相似文献   

19.
20.
Major histocompatibility complex (MHC)/peptide association and stability are determined by specific amino acid interactions between peptide antigens and the MHC groove, and are regarded as a critical feature in ensuring efficient monitoring by T cells. In this investigation we examined the relationship between MHC/peptide stability and the immunostimulatory capacity of MHC/peptide complexes. For this purpose we compared synthetic peptide analogues derived from the immunodominant HLA-A11-presented IVTDFSVIK (IVT) epitope, for their capacity to reactivate IVT-specific memory cytotoxic T-lymphocyte (CTL) responses. The analogues differentiated from the wild-type epitope by single amino acid substitution at position 2. All peptides showed similar affinity for HLA-A11 molecules and were recognized by IVT-specific CTL clones, but induced HLA-A11 complexes at the cell surface with different lifespan. This model offered the possibility of comparing the capacity of an immunogenic epitope to stimulate a unique population of T-cell precursors depending on the lifespan of its presentation at the cell surface. We demonstrated that stable HLA-A11/peptide complexes efficiently stimulate IVT-specific CTL responses, while HLA-A11/peptide complexes with short lifespan do not. The precise identification of the role of amino acid residues in the formation of stable MHC/peptide complexes may be relevant for the design of wild-type-derived epitopes with high immunogenicity. These analogues may have important applications in the immunotherapy of infectious diseases and immunogenic tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号