首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perry RJ  Hodges JR 《Neurology》2000,54(12):2277-2284
OBJECTIVE/BACKGROUND: To determine whether difficulty in the early differentiation between frontotemporal dementia (FTD) and AD may arise from a failure to discriminate between the temporal and frontal variants of FTD. METHODS: Neuropsychological profiles of patients with early dementia of Alzheimer type (DAT; n = 10), the temporal variant of FTD (tv-FTD or semantic dementia; n = 5), and the frontal variant of FTD (fv-FTD; n = 10) were compared to each other and normal controls (n = 10). Structural MRI demonstrated temporal lobe atrophy in the tv-FTD patients and frontal lobe atrophy in the fv-FTD group. RESULTS: Subjects with tv-FTD showed severe deficits in semantic memory with preservation of attention and executive function. Subjects with fv-FTD showed the reverse pattern. Attention and executive function impairment separated the fv-FTD patients from the early DAT subjects, who were densely amnesic. CONCLUSION: The double dissociation in performance on semantic memory and attention/executive function clearly separated the temporal and frontal variants of FTD and aids the early differentiation of FTD from AD. The characteristic cognitive profiles reflect the distribution of pathology within each syndrome and support the putative role of the inferolateral temporal neocortex in semantic memory, the medial temporal lobe structures of the hippocampal complex in episodic memory, and the frontal lobes in executive function.  相似文献   

2.
OBJECTIVE: To characterize and quantify the patterns of temporal lobe atrophy in AD vs semantic dementia and to relate the findings to the cognitive profiles. Medial temporal lobe atrophy is well described in AD. In temporal variant frontotemporal dementia (semantic dementia), clinical studies suggest polar and inferolateral temporal atrophy with hippocampal sparing, but quantification is largely lacking. METHODS: A volumetric method for quantifying multiple temporal structures was applied to 26 patients with probable AD, 18 patients with semantic dementia, and 21 matched control subjects. RESULTS: The authors confirmed the expected bilateral hippocampal atrophy in AD relative to controls, with involvement of the amygdala bilaterally and the right parahippocampal gyrus. Contrary to expectations, patients with semantic dementia had asymmetric hippocampal atrophy, more extensive than AD on the left. As predicted, the semantic dementia group showed more severe involvement of the temporal pole bilaterally and the left amygdala, parahippocampal gyrus (including the entorhinal cortex), fusiform gyrus, and the inferior and middle temporal gyri. Performance on semantic association tasks correlated with the size of the left fusiform gyrus, whereas naming appeared to depend upon a wider left temporal network. Episodic memory measures, with the exception of recognition memory for faces, did not correlate with temporal measures. CONCLUSIONS: Hippocampal atrophy is not specific for AD but is also seen in semantic dementia. Distinguishing the patients with semantic dementia was the severe global but asymmetric (left > right) atrophy of the amygdala, temporal pole, and fusiform and inferolateral temporal gyri. These findings have implications for diagnosis and understanding of the cognitive deficits in AD and semantic dementia.  相似文献   

3.
We studied the neural basis for confrontation naming difficulty in 29 patients with frontotemporal dementia (FTD) by correlating naming with voxel-based morphometric analyses of gray matter volume in structural MRI. We found that naming is significantly impaired in FTD, including patients with semantic dementia (SD), progressive nonfluent aphasia (PNFA), and nonaphasic patients (NON-APH) with a disorder of social and executive functioning. Significant cortical atrophy was found in the left anterior temporal cortex in all three FTD subgroups relative to healthy seniors. We also found significant cortical atrophy in unique anatomic distributions in each FTD subgroup. This included: lateral, ventral, and parahippocampal regions of the left temporal lobe in SD; inferior, orbital, dorsolateral, and premotor regions of the left frontal lobe in PNFA, and bilateral frontal regions in NON-APH. Direct correlations between confrontation naming and gray matter volume revealed distinct patterns in each FTD subgroup. SD patients showed a significant correlation in the left lateral temporal cortex, PNFA patients in several left frontal regions, and NON-APH patients in the right dorsolateral prefrontal cortex. These findings suggest that confrontation naming is supported by a large-scale neural network, and that naming is compromised in FTD due to interruption of the network in several different ways.  相似文献   

4.
BACKGROUND/AIMS: Fronto-temporal dementia (FTD) designates a group of relatively common neurodegenerative disorders. The aim of this study was to characterize the patterns of brain atrophy in FTD compared to Alzheimer's disease (AD). METHODS: A novel semiautomatic volumetric MRI analysis method was applied to measure regional brain volumes in FTD (n = 15; behavioural variant n = 9, language variant n = 6) in contrast with AD patients (n = 15) and age-matched controls (NC) (n = 15). FTD and AD patients were matched on demographic measures and Mini Mental State Examination scores. RESULTS: Significant atrophy was present in the frontal and anterior temporal lobes of subjects with FTD compared to AD (p = 0.02; effect size = 1.11) and compared to NC (p < 0.001; effect size = 1.86). Severe atrophy of the left anterior temporal region distinguished the language variant. AD patients, by contrast, did not differ from NC for frontal lobe volume but had smaller anterior temporal lobes (p = 0.03). Both dementia groups had medial temporal lobe atrophy of similar magnitude. A logistic regression model including 4 regional measures correctly classified 100% of subjects. CONCLUSION: FTD can be reliably differentiated from AD by virtue of a topographical pattern of atrophy involving the frontal lobes and anterior temporal regions. Medial temporal lobe volumes do not distinguish FTD from AD.  相似文献   

5.
OBJECTIVE: To examine the contribution of the Addenbrooke's Cognitive Examination (ACE), neuropsychological assessment, and a magnetic resonance imaging (MRI)-based temporal lobe rating scale to the prediction of which patients with questionable dementia will progress to Alzheimer's disease (AD). METHODS: Fifty subjects (19 early AD, 31 questionable dementia [QD]) underwent the ACE, a neuropsychological evaluation, and a volumetric MRI. The degree of atrophy of hippocampal, parahippocampal, and other temporal lobe structures was assessed using a validated visual rating scale. Subjects were followed 8 monthly for an average of 19.1 months. RESULTS: Of the 31 QD subjects, 11 converted to AD within 24 months of follow-up (another 2 developed dementia with Lewy bodies) and 18 were nonconverters. Converters were impaired relative to nonconverters at baseline on measures of episodic and semantic memory (category fluency and naming) and the ACE. Converters also had a greater degree of hippocampal and parahippocampal atrophy. Discriminant analysis demonstrated that the best single test for distinguishing converters was the ACE. In combination, the hippocampal rating and category fluency were also contributory. CONCLUSIONS: Progression to AD in patients with QD is best predicted by neuropsychological measures, particularly those that assess episodic and semantic memory, although simple rating methods based on MRI may have an adjunctive role.  相似文献   

6.
OBJECTIVES: To compare medial and lateral temporal lobe atrophy on magnetic resonance imaging (MRI) in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), and to examine the relationship between volumetric indices and cognitive and non-cognitive symptoms. METHODS: T(1)-weighted 1.0-tesla MRI scans were acquired in elderly subjects with DLB (n = 26; mean age = 75.8 years) and AD (n = 22; 77.3 years) and normal controls (n = 26; 76.2 years). MRI-based volume measurements of the hippocampus, parahippocampus, fusiform gyrus, combined inferior and middle temporal gyri, and superior temporal gyrus were acquired. RESULTS: Hippocampal and parahippocampal volumes were significantly larger in subjects with DLB compared to AD. Differences in hippocampal volumes between DLB and AD were observed across the entire length, and in all subjects with dementia there was a loss of hippocampal asymmetry compared to normal controls. Atrophy of temporal lobe structures correlated with memory impairment in both groups, and with age in DLB. There was no association between atrophy and psychotic symptoms in either group. CONCLUSIONS: Subjects with DLB and AD have a different pattern of temporal lobe atrophy with the most striking differences relating to medial rather than lateral temporal lobe structures. These structural differences could explain the relative preservation of memory function in DLB compared to AD.  相似文献   

7.
BACKGROUND: Hippocampal atrophy on magnetic resonance imaging (MRI) is an early characteristic of Alzheimer's disease. However, hippocampal atrophy may also occur in other dementias, such as frontotemporal lobar degeneration (FTLD). OBJECTIVE: To investigate hippocampal atrophy on MRI in FTLD and its three clinical subtypes, in comparison with Alzheimer's disease, using volumetry and a visual rating scale. METHODS: 42 patients with FTLD (17 frontotemporal dementia, 13 semantic dementia, and 12 progressive non-fluent aphasia), 103 patients with Alzheimer's disease, and 73 controls were included. Hippocampal volumetry and the easily applicable medial temporal lobe atrophy (MTA) rating scale were applied to assess hippocampal atrophy. RESULTS: Multivariate analysis of variance for repeated measures showed an effect of diagnostic group on hippocampal volume. There was a significant diagnosis by side (left v right) interaction. Both FTLD and Alzheimer's disease showed hippocampal atrophy compared with controls. Results of the visual MTA rating scale confirmed these findings. Within the FTLD subtypes there were marked differences in hippocampal atrophy. Frontotemporal dementia and semantic dementia showed bilateral hippocampal atrophy, and in semantic dementia the left hippocampus was smaller than in Alzheimer's disease. No significant hippocampal atrophy was detected in non-fluent progressive aphasia. CONCLUSIONS: Hippocampal atrophy is not only a characteristic of Alzheimer's disease but also occurs in FTLD. The three clinical subtypes of FTLD show different patterns of hippocampal atrophy.  相似文献   

8.
OBJECTIVES: To investigate the prevalence of changes in mood, personality, and behaviour in frontotemporal dementia (FTD) and Alzheimer's disease (AD) and hence, which features reliably distinguish between them. To establish whether the frontal and temporal variants of FTD are characterised by different behavioural changes. METHODS: A questionnaire was designed to assess a wide range of neuropsychiatric changes; it incorporated features reported in previous studies of FTD and components of the neuropsychiatric inventory.(1) This was completed by 37 carers of patients with Alzheimer's disease (AD) and 33 patients with frontotemporal dementia (FTD), comprising 20 with temporal variant FTD (tv FTD) or semantic dementia and 13 with frontal variant FTD (fv FTD). An exploratory principal components factor analysis and discriminant function analysis was applied. RESULTS: Factor analysis showed four robust and meaningful symptom clusters: factor 1-stereotypic and eating behaviour; factor 2-executive dysfunction and self care; factor 3-mood changes; factor 4-loss of social awareness. Only stereotypic and altered eating behaviour and loss of social awareness reliably differentiated AD from FTD with no effect of disease severity. By contrast, executive dysfunction, poor self care, and restlessness showed a significant effect of disease severity only, with the more impaired patients scoring more highly. Changes in mood were found to be equally prevalent in the three patient groups. Analysis of individual symptoms showed increased rates of mental rigidity and depression in the patients with semantic dementia compared with those with fv FTD. Conversely, the latter group showed greater disinhibition. Discriminant function analysis correctly classified 71.4% overall and 86.5% of the patients with AD. CONCLUSIONS: This questionnaire disclosed striking differences between patients with FTD and AD, but only stereotypic behaviour, changes in eating preference, disinhibition, and features of poor social awareness reliably separated the groups. The patients with fv FTD and semantic dementia were behaviourally very similar, reflecting the involvement of a common network, the ventral frontal lobe, temporal pole, and amygdala. Dysexecutive symptoms and poor self care were found to be affected by the severity of the disease, reflecting perhaps spread to dorsolateral prefrontal areas relatively late in the course of both FTD and AD. This questionnaire may be of value in the diagnosis and the monitoring of therapies.  相似文献   

9.
Patterns of atrophy in frontotemporal dementia (FTD) correlate with the clinical subtypes of behavioral variant FTD (bvFTD), semantic dementia, progressive non-fluent aphasia (PNFA) and FTD with motor neuron disease (FTD-MND). Right temporal variant FTD is associated with behavioral dyscontrol and semantic impairment, with tau abnormalities more common in right temporal bvFTD and TDP-43 accumulation in right temporal semantic dementia. However, no clinical and anatomical correlation has been described for patients with predominant right temporal atrophy and FTD-MND. Therefore, we performed a database screen for all patients diagnosed with FTD-MND at Mayo Clinic and reviewed their MRI scans to identify those with striking, dominant, right temporal lobe atrophy. For cases with volumetric MRI we performed voxel based morphometry and for those with brain tissue we performed pathological examination. Of three such patients identified, each patient had different presenting behavioral and/or aphasic characteristics. MRI, including diffusion tensor imaging in one patient, and FDG positron emission tomography revealed striking and dominant right temporal lobe atrophy, right corticospinal tract degeneration, and right temporal hypometabolism. Archived brain tissue was available in two patients; both demonstrating TDP-43 type 3 pathology (Mackenzie scheme) with predominant neuronal cytoplasmic inclusions. In one case, neurofibrillary tangles (Braak V) and neuritic plaques were also present in keeping with a diagnosis of Alzheimer’s disease. There appears to be an association between FTD-MND and severe right temporal lobe atrophy. Until further characterization of such cases are determined, they may be best classified as right temporal variant FTD-MND.  相似文献   

10.
BACKGROUND: Magnetic resonance imaging (MRI) of hippocampal atrophy is a sensitive but not specific method to support the clinical diagnosis of early Alzheimer's disease (AD). We recently described our findings that atrophy of the entorhinal cortex (ERC) in frontotemporal dementia (FTD) is equal to that found in AD but that hippocampal atrophy in FTD is less than that found in AD. The MRI volumes of these structures provide a topographic representation of the region of interest. We hypothesized that two different dementias with distinct histopathologic and clinical features might, in addition to quantitative patterns, display topographically different patterns of atrophy. METHODS: We adopted a morphometric approach to monitor the pattern of atrophy of the hippocampus and the ERC by computing two-dimensional profiles from MRI volumes of the structures in control subjects and patients with FTD and AD. RESULTS: Compared with control subjects, atrophy of the hippocampus in patients with AD was diffuse. In patients with FTD, atrophy of the hippocampus was localized predominantly in the anterior hippocampus, suggesting a different pattern of hippocampal atrophy in FTD compared with AD. The amount and pattern of atrophy of the entorhinal cortex was virtually equal in both demented groups. CONCLUSIONS: This study provides novel data on the nature of medial temporal lobe atrophy in FTD. Morphometric MRI may be a useful technique for characterizing different patterns of atrophy in primary degenerative dementias in vivo.  相似文献   

11.
The cortical anatomy of 6 patients with semantic dementia (the temporal lobe variant of frontotemporal dementia) was contrasted with that of a group of age-matched normal subjects by using voxel-based morphometry, a technique that identifies changes in gray matter volume on a voxel-by-voxel basis. Among the circumscribed regions of neuronal loss, the left temporal pole (Brodmann area 38) was the most significantly and consistently affected region. Cortical atrophy in the left hemisphere also involved the inferolateral temporal lobe (Brodmann area 20/21) and fusiform gyrus. In addition, the right temporal pole (Brodmann area 38), the ventromedial frontal cortex (Brodmann area 11/32) bilaterally, and the amygdaloid complex were affected, but no significant atrophy was measured in the hippocampus, entorhinal, or caudal perirhinal cortex. The degree of semantic memory impairment across the 6 cases correlated significantly with the extent of atrophy of the left anterior temporal lobe but not with atrophy in the adjacent ventromedial frontal cortex. These results confirm that the anterior temporal lobe is critically involved in semantic processing, and dissociate its function from that of the adjacent frontal region.  相似文献   

12.
Patterns of brain atrophy in frontotemporal dementia and semantic dementia.   总被引:24,自引:0,他引:24  
OBJECTIVE: To identify and compare the patterns of cerebral atrophy associated with two clinical variants of frontotemporal lobar degeneration (FTLD): frontotemporal dementia (FTD) and semantic dementia (SemD). METHODS: Twenty patients with FTLD were classified as having FTD (N = 8) or SemD (N = 12) based on current clinical criteria. Both groups showed a similar spectrum of behavioral abnormalities, as indicated by the neuropsychiatric inventory. T1-weighted MRI was obtained for each patient and 20 control subjects. The regions of focal gray matter tissue loss associated with both FTD and SemD, as well as those differing between the two groups were examined using voxel-based morphometry. RESULTS: Regions of significant atrophy seen in both groups were located in the ventromedial frontal cortex, the posterior orbital frontal regions bilaterally, the insula bilaterally, and the left anterior cingulate cortex. The FTD, but not the SemD, group showed atrophy in the right dorsolateral frontal cortex and the left premotor cortex. The SemD, but not the FTD, group showed tissue loss in the anterior temporal cortex and the amygdala/anterior hippocampal region bilaterally. CONCLUSIONS: Although FTD and SemD are associated with different overall patterns of brain atrophy, regions of gray matter tissue loss in the orbital frontal, insular, and anterior cingulate regions are present in both groups. The authors suggest that pathology in the areas of atrophy associated with both FTD and SemD may underlie some the behavioral symptoms seen in the two disorders.  相似文献   

13.
BACKGROUND: Structural magnetic resonance imaging (MRI) has been used to investigate the in vivo pathology of frontotemporal lobar degeneration. However, few neuroimaging studies have focused on white matter (WM) alterations in this disease. OBJECTIVES: To use volumetric MRI techniques to identify the patterns of WM atrophy in vivo in 2 clinical variants of frontotemporal lobar degeneration-frontotemporal dementia (FTD) and semantic dementia-and to compare the patterns of WM atrophy with those of gray matter (GM) atrophy in these diseases. DESIGN: Structural MRIs were obtained from patients with FTD (n = 12) and semantic dementia (n = 13) and in cognitively healthy age-matched controls (n = 24). Regional GM and WM were classified automatically from high-resolution T1-, T2-, and proton density-weighted MRIs with Expectation-Maximization Segmentation and compared between the groups using a multivariate analysis of covariance model that included age and WM lesion volumes as covariates. RESULTS: Patients with FTD had frontal WM atrophy and frontal, parietal, and temporal GM atrophy compared with controls, who had none. Patients with semantic dementia had temporal WM and GM atrophy and patients with FTD had frontal GM atrophy. Adding temporal WM volume to temporal GM volume significantly improved the discrimination between semantic dementia and FTD. CONCLUSIONS: These results show that patients with frontotemporal lobar degeneration who are in relatively early stages of the disease (Clinical Dementia Rating score, 1.0-1.2) have WM atrophy that largely parallels the pattern of GM atrophy typically associated with these disorders.  相似文献   

14.
Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease   总被引:11,自引:0,他引:11  
Volumetric magnetic resonance imaging analyses of 30 subjects were undertaken to quantify the global and temporal lobe atrophy in semantic dementia and Alzheimer's disease. Three groups of 10 subjects were studied: semantic dementia patients, Alzheimer's disease patients, and control subjects. The temporal lobe structures measured were the amygdala, hippocampus, entorhinal cortex, parahippocampal gyrus, fusiform gyrus, and superior, middle, and inferior temporal gyri. Semantic dementia and Alzheimer's disease groups did not differ significantly on global atrophy measures. In semantic dementia, there was asymmetrical temporal lobe atrophy, with greater left-sided damage. There was an anteroposterior gradient in the distribution of temporal lobe atrophy, with more marked atrophy anteriorly. All left anterior temporal lobe structures were affected in semantic dementia, with the entorhinal cortex, amygdala, middle and inferior temporal gyri, and fusiform gyrus the most severely damaged. Asymmetrical, predominantly anterior hippocampal atrophy was also present. In Alzheimer's disease, there was symmetrical atrophy of the entorhinal cortex, hippocampus, and amygdala, with no evidence of an anteroposterior gradient in the distribution of temporal lobe or hippocampal atrophy. These data demonstrate that there is a marked difference in the distribution of temporal lobe atrophy in semantic dementia and Alzheimer's disease. In addition, the pattern of atrophy in semantic dementia suggests that semantic memory is subserved by anterior temporal lobe structures, within which the middle and inferior temporal gyri may play a key role.  相似文献   

15.
Hippocampal pathology is central to Alzheimer's disease (AD) and other forms of dementia such as frontotemporal lobar degeneration (FTLD). Autopsy studies have shown that certain hippocampal subfields are more vulnerable than others to AD and FTLD pathology, in particular the subiculum and cornu ammonis 1 (CA1). We conducted shape analysis of hippocampi segmented from structural T1 MRI images on clinically diagnosed dementia patients and controls. The subjects included 19 AD and 35 FTLD patients [13 frontotemporal dementia (FTD), 13 semantic dementia (SD), and 9 progressive nonfluent aphasia (PNFA)] and 21 controls. Compared to controls, SD displayed severe atrophy of the whole left hippocampus. PNFA and FTD also displayed atrophy on the left side, restricted to the hippocampal head in FTD. Finally, AD displayed most atrophy in left hippocampal body with relative sparing of the hippocampal head. Consistent with neuropathological studies, most atrophic deformation was found in CA1 and subiculum areas in FTLD and AD.  相似文献   

16.
Frontotemporal dementia (FTD) is a subtype of frontotemporal lobar degeneration, which also includes semantic dementia (SD) and progressive non‐fluent aphasia. Frontotemporal dementia is characterized by changes in personality and behavioral abnormalities, generally associated with predominant frontal lobe atrophy. Conversely, SD is typically characterized by Gogi (word meaning) aphasia based on semantic memory impairment and is associated with predominant temporal lobe atrophy. However, in the present cases, we diagnosed FTD on the basis of clinical symptoms, such as disinhibition, indifference, and stereotypy, without semantic memory impairment, even though neuroimaging showed predominant temporal lobe atrophy. We suggest that clinical symptoms are the most important cues for an accurate clinical diagnosis and there is no exclusive relationship between the syndrome and atrophy of the temporal lobes.  相似文献   

17.
D Chan  N C Fox  R Jenkins  R I Scahill  W R Crum  M N Rossor 《Neurology》2001,57(10):1756-1763
OBJECTIVE: Serial registered MRI provides a reproducible technique for detecting progressive cerebral atrophy in vivo and was used to determine if there were differences between the rates of cerebral atrophy in AD and frontotemporal dementia (FTD). METHODS: Eighty-four patients with dementia (54 AD and 30 FTD) and 27 age-matched control subjects each had at least two volumetric MR scans. Serial scans were positionally matched (registered), and brain volume loss was determined by calculation of the brain boundary shift integral. RESULTS: There was a difference between the rates of whole-brain atrophy in patients (mean annual volume loss 2.7% of total brain volume) and in control subjects (mean annual volume loss 0.5%). AD and FTD were associated with different rates of atrophy (mean annual losses 2.4 and 3.2%). The range of atrophy rates in the FTD group (0.3 to 8.0%) greatly exceeded that in the AD group (0.5 to 4.7%). Frontal-variant FTD was associated with a wider range of atrophy rates than temporal-variant FTD. Analysis of regional brain atrophy rates revealed that there was widespread symmetrically distributed cerebral volume loss in AD, whereas in frontal FTD there was greater atrophy anteriorly and in temporal FTD the atrophy rate was greatest in the left anterior cerebral cortex. CONCLUSIONS: Both AD and FTD patients had increased rates of brain atrophy. Whereas the patients with AD were associated with a relatively restricted spread of atrophy rates, the greater spread of rates observed in the patients with FTD may reflect the heterogeneity of disease in FTD, with differences observed between frontal and temporal FTD. Increased rates of whole-brain atrophy did not discriminate AD from FTD, but analysis of regional atrophy rates revealed marked differences between patient groups.  相似文献   

18.
Cortical thickness analysis has been proposed as a potential diagnostic measure in memory disorders. In this retrospective study, we compared the cortical thickness values of 24 patients with frontotemporal dementia (FTD) to those of 25 healthy controls, 45 symptomatic subjects with stable mild cognitive impairment (S-MCI), 15 subjects with progressive mild cognitive impairment (P-MCI), and 36 patients with Alzheimer's disease (AD). The patterns of regions of thinning in FTD when compared to controls and also S-MCI patients showed similar trends; thinning of the bilateral frontal poles and bilateral medial temporal lobe structures, especially the anterior part of the gingulum, the uncus, and parahippocampal gyri. Cortical thinning in FTD was also found on the boundary regions of parietal and occipital lobes. In the P-MCI group compared to FTD, the trend of thinning in small distinct areas of the parietal and occipital lobes was observed. The FTD and AD groups did not differ statistically, but we found trends toward thinning in FTD of the left cingulate gyrus, and the left occipitotemporal gyri, and in AD of the inferior parietal, occipitoparietal, and the pericalcarine regions, more in the right hemisphere. In FTD, increased slowness in the executive test (Trail-Making A) correlated with the thinner cortex, whereas the language tests showed the lower scores, the thinner cortex in the left hemisphere. Cortical thickness might be a tool for detecting subtle changes in brain atrophy in screening of dementia prior to the development of diffuse or lobar atrophies.  相似文献   

19.
OBJECTIVES: To investigate whether medial temporal lobe atrophy predicted outcome in patients with minor cognitive impairment and whether assessment of the medial temporal lobe could increase the predictive accuracy of age and delayed recall for outcome. Quantitative and qualitative methods of assessing the medial temporal lobe were also compared. METHODS: Patients with minor cognitive impairment older than 50 years (n=31) were selected from a memory clinic and were followed up for on average 1.9 years. The medial temporal lobe was assessed in three different ways: volumetry of the hippocampus, volumetry of the parahippocampal gyrus, and qualitative rating of medial temporal lobe atrophy (MTA). Outcome measures were Alzheimer type dementia or cognitive decline at follow up. Delayed recall was tested with a verbal learning test. RESULTS: Ten patients had experienced cognitive decline at follow up, of whom seven had probable Alzheimer type dementia. All medial temporal lobe measurements were associated with cognitive decline at follow up (p trend analysis between 0.001 (hippocampus) and 0.05 (parahippocampal gyrus)). Only the hippocampal volume and MTA score were associated with Alzheimer type dementia at follow up (p trend analysis respectively 0.003 and 0.01). All medial temporal lobe measurements increased the predictive accuracy of age and the delayed recall score for cognitive decline (p increase in predictive accuracy varied between <0.001 (hippocampus) and 0.02 (parahippocampal gyrus and MTA score)) and the hippocampal volume and the MTA score increased the predictive accuracy of age and the delayed recall score for Alzheimer type dementia (p= 0.02). CONCLUSIONS: The ability to detect patients at high risk for Alzheimer type dementia among those with minor cognitive impairment increases when data on age and memory function are combined with measures of medial temporal lobe atrophy. Volumetry of the hippocampus is preferred, but qualitative rating of medial temporal lobe atrophy is a good alternative.  相似文献   

20.
OBJECTIVES: Frontotemporal dementia (FTD), the second commonest degenerative cause of dementia under the age of 65, often presents with striking changes in behaviour and personality in association with frontal lobe atrophy. Based on the behavioural changes observed in FTD, it is commonly assumed that the orbitofrontal cortex is the earliest and most severely affected frontal sub-region. However, evidence to support this assumption has to date been largely lacking. METHODS: Using a novel volumetric MRI method, we performed a detailed volumetric analysis of six frontal regions in 12 subjects with the frontal or behavioural variant of FTD (fvFTD) and 12 age-, education- and sex-matched normal controls. The regions studied were: the orbitofrontal and insula regions (representing the orbitobasal cortex); the inferior and middle frontal regions (representing the dorsolateral prefrontal areas); and the superior frontal and anterior cingulate regions (representing the medial prefrontal areas). RESULTS: As a group, the fvFTD patients showed atrophy involving all six regions. We then segregated the 12 patients into three sub-groups according to their overall degree of atrophy. In the mildest group (n = 3) all regions fell within 2 standard deviations of normal. In the intermediate group (n = 6) only the orbitofrontal region (bilaterally) fell clearly outside the control range (>2 z scores below the control mean); the next most atrophic region in this group was the right insular region. The severe group (n = 3) had generalized atrophy throughout the frontal regions measured. CONCLUSIONS: In conclusion, patients with the earliest stages of fvFTD show no significant loss of volume in any frontal lobe area as measured by a novel MRI volumetric technique. When volume loss does occur, changes are initially seen in the orbitofrontal cortex before atrophy becomes more widespread. These results provide some partial support for the often-quoted assumption that the orbitofrontal cortex is the locus of earliest pathology in fvFTD, although these findings must be regarded as preliminary in view of the small numbers of patients involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号