首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
目的考察硫代硫酸钠对0.02%呋喃西林溶液稳定性的影响.方法配制加与不加硫代硫酸钠作抗氧剂的0.02%呋喃西林溶液各2份,置同一室温采用避光与不避光条件存放半年,每隔一个月观察溶液颜色变化,测定pH值及含量.结果加硫代硫酸钠组,放置4个月后析出淡黄色沉淀,6个月后溶液颜色加深,含量降至不合格.不加硫代硫酸钠组放置半年避光者溶液颜色保持不变,含量保持在98.3%;不避光者溶液颜色稍加深,含量保持在94.1%.结论 0.02%呋喃西林溶液不宜用硫代硫酸钠作抗氧剂,同时应避光保存.  相似文献   

2.
硫代硫酸钠对呋喃西林溶液长期稳定性的考察   总被引:1,自引:0,他引:1  
目的 考察硫代硫酸钠对0.02%呋喃西林溶液稳定性的影响。方法 配制加与不加硫代硫酸钠作抗氧剂的0.02%呋喃西林溶液各2份,置同一室温采用避光与不避光条件存放半年,每隔一个月观察溶液颜色变化,测定pH值及含量。结果 加硫代硫酸钠组,放置4个月后析出淡黄色沉淀,6个月后溶液颜色加深,含量降至不合格。不加硫代硫酸钠组放置半年避光者溶液颜色保持不变,含量保持在98.3%;不避光者溶液颜色稍加深,含量保持在94.1%。结论 0.02%呋喃西林溶液不宜用硫代硫酸钠作抗氧剂,同时应避光保存。  相似文献   

3.
抗氧化剂对某些药液放存期的影响   总被引:1,自引:0,他引:1  
目的 验证抗氧剂硫代硫酸钠、亚硫酸氢钠对某些制剂放存期的影响。方法 将待验证的制剂配成加抗氧剂和不加抗氧剂两组液体,置不同条件下留样6个月,定期观察外观变化,测定pH值及含量。结果 0.02%呋喃西林溶液加了抗氧剂硫代硫酸钠组,6个月后含量下降至不合格;不加硫代硫酸钠组不避光保存的溶液外观变成黄色,但该组样品含量均保持在合格范围:0.1%依沙吖啶溶液,加了抗氧剂硫代硫酸钠组10d析出黄色沉淀;复方新霉素滴鼻液加亚硫酸氢钠组保存6个月,pH值降至2.72。不加抗氧剂组pH值保持在5.63,外观色泽稍变黄。结论 0.02%呋喃西林溶液、0.1%依沙吖啶溶液不宜加硫代硫酸钠作抗氧剂,应避光保存;复方新霉素滴鼻液不宜加亚硫酸氢钠作抗氧剂。  相似文献   

4.
目的验证抗氧剂硫代硫酸钠,亚硫酸氢钠对某些制剂放存期的影响.方法将待验证的制剂配成加抗氧剂和不加抗氧剂两组液体,置不同条件下留样6个月,定期观察外观变化,测定pH值及含量.结果 0.02%呋喃西林溶液另抗氧剂硫代硫酸钠组,6个月后含量下一降至不合格;不加硫代硫酸钠组不避光保存的溶液外观变成黄色,但该组样品含量均保持在合格范围;0.1%依沙吖啶溶液,加了抗氧剂硫代硫酸钠组成10b析出黄色沉淀;复方新霉素滴鼻液加亚硫酸氢钠组保存6个月,pH值降至此2.72,不加抗氧剂组pH值保待在家.63,外观色泽稍变黄.结论 0.02%呋喃西林溶液,0.1%依沙吖啶溶液不宜加硫代硫酸钠作抗氧剂,应避光保存;复方新霉素滴鼻液不宜加亚硫酸氢钠作抗氧剂.  相似文献   

5.
目的验证抗氧剂硫代硫酸钠,亚硫酸氢钠对某些制剂放存期的影响.方法将待验证的制剂配成加抗氧剂和不加抗氧剂两组液体,置不同条件下留样6个月,定期观察外观变化,测定pH值及含量.结果 0.02%呋喃西林溶液另抗氧剂硫代硫酸钠组,6个月后含量下一降至不合格;不加硫代硫酸钠组不避光保存的溶液外观变成黄色,但该组样品含量均保持在合格范围;0.1%依沙吖啶溶液,加了抗氧剂硫代硫酸钠组成10b析出黄色沉淀;复方新霉素滴鼻液加亚硫酸氢钠组保存6个月,pH值降至此2.72,不加抗氧剂组pH值保待在家.63,外观色泽稍变黄.结论 0.02%呋喃西林溶液,0.1%依沙吖啶溶液不宜加硫代硫酸钠作抗氧剂,应避光保存;复方新霉素滴鼻液不宜加亚硫酸氢钠作抗氧剂.  相似文献   

6.
硫代硫酸钠对呋喃西林溶液稳定性影响的探讨   总被引:5,自引:0,他引:5  
邢卫 《药学进展》1995,19(4):230-230
硫代硫酸钠在许多药物制剂中都作为抗氧剂使用。本实验表明,加或不加硫代硫酸的对呋啁西林溶液的稳定性显著差异,以硫代硫酸钠作抗氧剂,能防止呋喃西林溶液浓度的下降。  相似文献   

7.
目的考察苯甲酸钠对呋喃西林溶液质量的影响。方法用灭菌工艺配制加与不加苯甲酸钠的呋喃西林溶液,置同一室温下,每隔一段时间观察其溶液的澄明度和颜色,测定含量及pH值的变化,并观察其抑菌效果。结果加与不加苯甲酸钠的呋喃西林溶液(A液与B液)放置6个月后,澄明度、颜色、pH值与含量两者均无明显变化,且A液与B液的抑菌效果无明显差异。结论呋喃西林溶液处方不加苯甲酸钠,采用灭菌生产工艺,对其质量未见有影响。  相似文献   

8.
目的:筛选复方苯酚溶液的抗氧剂,以提高其稳定性。方法:采用经典恒温法和留样观察法对7份含有不同抗氧剂(0、0.1%、0.15%、0.2%浓度的硫代硫酸钠和亚硫酸钠)的复方苯酚溶液中苯酚含量、溶液pH值及外观颜色进行考察,并预测溶液的有效期,优选出有效期最长的处方;采用稀释法测定优选处方及未加抗氧剂的对照处方的最低杀菌浓度(MBC),考察抗氧剂的加入对杀菌作用的影响。结果:以0.1%硫代硫酸钠为抗氧剂的处方中苯酚含量、pH值及外观颜色的变化均较其它6份处方小,有效期为8.5个月,MBC值与对照处方相同。结论:复方苯酚溶液中加入0.1%硫代硫酸钠作为抗氧剂可提高溶液稳定性且不影响杀菌效果。  相似文献   

9.
呋喃西林溶液的制备及稳定性考察   总被引:1,自引:0,他引:1  
目的制备呋喃西林溶液,对该制剂进行稳定性考察。方法采用紫外分光光度法测定呋喃西林的含量,考察温度、光线、灭菌条件及贮存时间对呋喃西林溶液质量的影响。结果呋喃西林溶液经40℃加热10 d,溶液黄色略加深,相对含量为99.06%;60℃加热10 d,溶液黄色加深,相对含量为91.83%;经强光照射,溶液颜色逐渐变深至橙红色,5 d相对含量为80.84%。采用流通蒸汽灭菌,溶液的颜色、澄明度无明显变化,相对含量下降<3%,热压灭菌后其颜色加深,相对含量下降在10%以内。室温留样6个月,外观、含量均符合规定。结论温度、光线、灭菌条件及贮存时间对呋喃西林溶液的质量均有影响。呋喃西林溶液不宜长期受高热;应避免阳光直射、强日光灯照射;宜选用流通蒸汽灭菌法;若采用热压灭菌应严格操作。呋喃西林溶液有效期确定为6个月。  相似文献   

10.
邓军  袁祥慧 《现代医药卫生》2001,17(10):846-847
呋喃西林溶液不稳定 ,放置日久黄色变深 ,其效力下降。故常现配现用 ,目前常用的25g纸袋包装的呋喃西林原料往往要有数十次才能用完 ,致使呋喃西林的含量下降。因此 ,呋喃西林原料的包装是否正确、合理 ,是直接影响其质量的关键。现对呋喃西林原料包装剪开后 ,分别在半月左右分7次测定其含量 ,并对呋喃西林溶液的稳定性分避光组与不避光两组进行了检查 ,现将结果报道如下。1仪器和方法1 .1材料和仪器 :分光光度计 (751G上海分析仪器厂 ) ;电光天平 (上海天平仪器厂 ) ;呋喃西林原料 (1996041825g/袋武汉第二制药厂 )…  相似文献   

11.
目的分析复方间苯二酚洗剂变色的原因并找出解决办法。方法根据复方间苯二酚洗剂处方的性质,参照抗氧剂和金属络合剂的常用浓度,在复方间苯二酚洗剂中分别加入0.2%焦亚硫酸钠、0.2%亚硫酸氢钠、0.2%焦亚硫酸钠+0.2%亚硫酸氢钠、0.2%焦亚硫酸钠+0.15%硫代硫酸钠、0.2%焦亚硫酸钠+0.02%乙二胺四乙酸二钠、0.2%焦亚硫酸钠+0.1%维生素C,分组放置180 d,于不同光照条件下,观察其颜色变化和含量情况。结果加0.2%焦亚硫酸钠+0.2%亚硫酸氢钠组放置90 d、120 d、180 d后,其颜色和含量测定均符合规定,且显著优于其他各组(P〈0.01)。结论选用0.2%焦亚硫酸钠+0.2%亚硫酸氢钠为复方间苯二酚洗剂的抗氧剂,能有效解决该洗剂的变色问题。  相似文献   

12.
目的改进醋酸阿托西班注射液处方并优化生产工艺,以增加醋酸阿托西班注射液的稳定性。方法以市售处方工艺为基础,在其中分别加入不同种类的抗氧剂,得到醋酸阿托西班注射液样品,将注射液样品分别置于以下条件下:温度(40±2)℃、相对湿度(75±5)%和温度(25±2)℃、相对湿度(60±5)%,进行加速试验,分别在0、1、2、3、6个月取样检验,通过测量外观色泽、pH值、溶液澄清度、有关物质、含量等指标和局部安全性考察,从而优选出稳定性较市售产品更好、使用安全的醋酸阿托西班注射液。结果经加速试验考察6个月,抗氧剂为0.1 g/100 ml亚硫酸氢钠时,制备的醋酸阿托西班注射液与已上市的醋酸阿托西班注射液比较,外观色泽、酸度、溶液澄清度指标相当,有关物质与含量明显优于已上市产品,可于室温下保存,稳定性明显增加。通过局部安全性试验表明此注射剂无刺激性、致敏性和溶解性。结论该注射剂处方合理,制备工艺可行,产品安全,稳定性高。  相似文献   

13.
目的:探讨注射用头孢呋辛钠的稳定性。方法:通过加速、温度、光照、充氮影响实验,以含量(%)、聚合物(%)、溶液的颜色和澄清度为指标,考察不同原料厂家注射用头孢呋辛钠的稳定性。结果:样品A的含量变化最小,其溶液的澄清度和颜色最好,3个样品的聚合物(%)则相差不大。结论:头孢呋辛钠原料质量是影响产品稳定性的主要因素。  相似文献   

14.
OBJECTIVE: To evaluate the physical compatibility and chemical stability of linezolid (Zyvox-Pharmacia) 200 mg/100 mL admixed with cefazolin sodium 1 gram, ceftazidime 2 grams, and ceftriaxone sodium 1 gram for 7 days at 4 degrees C and 23 degrees C. DESIGN: Controlled experimental trial. SETTING: Laboratory. INTERVENTIONS: The test samples were prepared by adding the required amount of the cephalosporin antibiotic to bags of linezolid injection 200 mg/100 mL. MAIN OUTCOME MEASURES: Physical stability and chemical stability based on drug concentrations initially and after 1, 3, 5, and 7 days of storage at 4 degrees C and 23 degrees C protected from light. RESULTS: All of the linezolid admixtures with cephalosporins were clear when viewed in normal fluorescent room light and with a Tyndall beam. Measured turbidity and particulate content were low and exhibited little change. The cefazolin sodium-containing samples were colorless throughout the study. The admixtures with ceftazidime and ceftriaxone sodium had a slight yellow tinge initially, and the room temperature samples became a frank yellow color after 5 days. The refrigerated samples did not change color. High-performance liquid chromatography analysis found little or no loss of linezolid in any sample stored at either temperature throughout the study. Cefazolin sodium and ceftazidime in the linezolid admixtures at 4 degrees C remained stable for 7 days, but at 23 degrees C cefazolin sodium was stable for 3 days and ceftazidime for only 24 hours before cephalosporin decomposition exceeded 10%. Ceftriaxone sodium was less stable in the admixtures; 10% loss occurred in 3 days at 4 degrees C and more than 20% loss occurred in 24 hours at 23 degrees C. CONCLUSION: Admixtures of linezolid 200 mg/100 mL with cefazolin sodium 1 gram and ceftazidime 2 grams were physically compatible and chemically stable for at least 7 days stored at 4 degrees C protected from light and for 3 days and 1 day, respectively, at 23 degrees C protected from light. Admixtures of linezolid with ceftriaxone sodium 1 gram exhibited a rapid rate of cephalosporin loss at 23 degrees C, which precludes admixture of the two drugs.  相似文献   

15.
目的:建立同时测定呋喃西林拉氏糊中水杨酸和呋喃西林含量的方法。方法:采用双波长分光光度法,以水为溶剂,296.6nm为测定波长,314.4nm为参比波长测定其中水杨酸的含量;以375.0nm为测定波长直接测定其中呋喃西林的含量。结果:水杨酸、呋喃西林检测浓度的线性范围分别为10.77~43.08(r=0.999 0)、2.58~10.32μg·mL-1(r=1.000 0);平均回收率分别为99.55%(RSD=0.47%)、100.03%(RSD=0.80%)。结论:本方法操作简便、快速、结果准确,可用于该制剂的质量控制。  相似文献   

16.
The stability of milrinone in 0.45% and 0.9% sodium chloride injections and in 5% dextrose injection in glass and plastic containers was studied. Admixtures containing milrinone 0.2 mg/mL were prepared in three 500-mL glass containers, three 500-mL polyethylpolypropyl copolymer plastic containers, and three 1-L flexible plastic containers of each solution. Milrinone content was determined by high-performance liquid chromatography at intervals during 72 hours of storage at room temperature; one sample of each solution and container type was protected from light. Duplicate assays of each sample were performed, and samples were observed for visual and pH changes. In all samples milrinone concentrations were more than 97% of the initial concentration. No changes in pH or appearance occurred. Milrinone at a concentration of 0.2 mg/mL is stable for 72 hours at room temperature in 0.45% and 0.9% sodium chloride injections and in 5% dextrose injection in glass or plastic containers.  相似文献   

17.
The stability of ranitidine hydrochloride in various total parenteral nutrient (TPN) solutions was studied, as well as the effect of ranitidine on the stability of lipid emulsion and amino acids in these solutions. Ranitidine hydrochloride 25 mg/mL was added to each of the following mixtures to make final concentrations of approximately 50 and 100 mg/L: (1) TPN solution containing 4.5% amino acids, 22.7% dextrose, and electrolytes; (2) 10% lipid emulsion; (3) TPN solution containing 3.7% amino acids, 18.5% dextrose, 3.7% lipid emulsion, and electrolytes (all-in-one mixture); and (4) 0.9% sodium chloride injection. Mixtures were tested at room temperature and at 4 degrees C and were either protected from or exposed to fluorescent light. Sampling was done at 0, 12, 24, 36, and 48 hours, and the ranitidine concentration was determined by high-performance liquid chromatography. Samples were also analyzed for lipid particle size distribution and for amino acid content. At 48 hours, the all-in-one mixtures retained 86.0% to 91.4% of the initial ranitidine concentration. With one exception (ranitidine 50 mg/L in 0.9% sodium chloride injection, stored at room temperature and not protected from light), all other solutions retained at least 90% of the initial concentration at 48 hours. No visible changes in color and minimal changes in pH values were noted. There were no important changes in lipid particle-size distribution; 96% of all particles counted from any mixture were smaller than 1.44 microns in diameter at 48 hours. Ranitidine did not have an effect on amino acid concentrations in these mixtures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
目的考察注射用头孢拉定在25℃时的稳定性,为其贮存条件的选择提供依据。方法选择3个厂家3个批号的注射用头孢拉定样品在25℃下贮存3个月,依据《中国药典》2010年版二部注射用头孢拉定项下规定,考察其性状、溶液澄清度和颜色、水分、pH值、有关物质和含量的变化情况。结果注射用头孢拉定在25℃下贮存3个月,性状、水分、pH值、有关物质和含量均符合《中国药典》2010年版的规定;其中,一个厂家一个批次的样品溶液颜色在放置2个月后,颜色超过规定的黄绿色8号标准比色液。结论不同厂家生产的注射用头孢拉定其稳定性不同,大部分厂家的药品可在25℃下贮存3个月。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号