首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both H9N2 subtype avian influenza and 2009 pandemic H1N1 viruses (pH1N1) can infect humans and pigs, which provides the opportunity for virus reassortment, leading to the genesis of new strains with potential pandemic risk. In this study, we generated six reassortant H9 viruses in the background of three pH1N1 strains from different hosts (A/California/04/2009 [CA04], A/Swine/Jiangsu/48/2010 [JS48] and A/Swine/Jiangsu/285/2010 [JS285]) by replacing either the HA (H9N1-pH1N1) or both the HA and NA genes (H9N2-pH1N1) from an h9.4.2.5-lineage H9N2 subtype influenza virus, A/Swine/Taizhou/5/08 (TZ5). The reassortant H9 viruses replicated to higher titers in vitro and in vivo and gained both efficient transmissibility in guinea pigs and increased pathogenicity in mice compared with the parental H9N2 virus. In addition, differences in transmissibility and pathogenicity were observed among these reassortant H9 viruses. The H9N2-pH1N1viruses were transmitted more efficiently than the corresponding H9N1-pH1N1 viruses but showed significantly decreased pathogenicity. One of the reassortant H9 viruses that were generated, H9N-JS48, showed the highest virulence in mice and acquired respiratory droplet transmissibility between guinea pigs. These results indicate that coinfection of swine with H9N2 and pH1N1viruses may pose a threat for humans if reassortment occurs, emphasizing the importance of surveillance of these viruses in their natural hosts.  相似文献   

2.
我国猪群中H9N2亚型毒株HA和NA基因特性的研究   总被引:3,自引:2,他引:3  
目的 了解我国内地从猪中分离到H9N2亚型毒株HA和NA基因来源及它们使猪致病的原因。方法 用PCR扩增目的基因,与P^GEM-T Easy Vector4℃过夜连接,重组质粒转化DH-10β细菌,筛选阳性菌落,酶切鉴定,测序。然后,进行进化树分析。结果 两株猪H9N2毒株HA蛋白分子上第226位上氨基酸为L,这与从人和猪所分离出的H9N2毒株相同,其连接肽属对禽致病的毒株,但它们的序列为R-L-S-R,而不是R-S-S-R;其NA蛋白茎区第62~64位存在掉失,这与A/Shaoguarn/408/98,A/Swine/Hong Kong/9/98及A/Duck/Hong Kong/y280/97(H9N2)毒株相同;HA与NA基因进化树分析表明,两株猪H9N2毒株的HA基因接近于A/Chicken/Hong Kong/G23/97和A/Chicken/Hong Kong/G9/97.而NA基因接近于A/Shaoguan/408/98毒株。结论 两株猪H9N2亚型毒株的HA和NA基因可能性最大来自禽H9N2毒株。由于其HA蛋白分子上连接肽氨基酸序列发生替换,可能造成了它们对猪具有致病性。禽H9N2毒株NA蛋白茎区氨基酸掉失,造成了它们能直接感染猪。  相似文献   

3.
Genetic analysis of H9N2 avian influenza viruses isolated from India   总被引:1,自引:0,他引:1  
H9N2 avian influenza viruses are endemic in domestic poultry in Asia and are grouped into three major sublineages represented by their prototype strains A/Duck/Hong Kong/Y280/97 (Y280-like), A/Quail/Hong Kong/G1/97 (G1-like) and A/Chicken/Korea/38349-p96323/96 (Korean-like). To understand the genetic relationship of Indian viruses, we determined the partial nucleotide sequence of five H9N2 avian influenza viruses isolated from chicken in India during 2003-2004 and compared them with H9N2 sequences available in GenBank. Deduced amino acid sequence analysis revealed that four isolates shared an R-S-S-R/G motif at the cleavage site of HA, representing low pathogenicity in chickens, while one virus harbors an R-S-N-R/G motif at the same position. All the viruses maintained the human-like motif 226Lysine (H3 numbering) at the HA receptor binding site. Phylogenetic analysis showed that 50% of the genes (HA, NA, NP and M) were similar to G1-like viruses, whereas the remaining genes of the Indian isolates formed a separate, not yet defined, sublineage in the Eurasian lineage. Our finding provides evidence of a novel reassortant H9N2 genotype of G1-like viruses circulating in India.  相似文献   

4.
Pigs are susceptible to both human and avian influenza viruses and have been proposed to be intermediate hosts, or mixing vessels, for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we summarize and report for the first time the coexistence of wholly human-like H3N2 viruses, double-reassortant H3N2 viruses, and triple-reassortant H3N2 viruses in pigs in China by analyzing the eight genes of swine influenza A (H3N2) viruses found in China from 1970 to 2006. In 1970, the first wholly human-like H3N2 (Hong Kong/68-like) viruses were isolated from pigs in Taiwan, and then in the next years Victoria/75-like, Sydney/97-like, New York/99-like, and Moscow/99-like swine H3N2 viruses were regularly isolated in China. In the 1980s, two triple-reassortant viruses were isolated from pigs. Recently, the double-reassortant viruses containing genes from the human (HA and NA) and avian (PB2, PB1, PA, NP, M, and NS) lineages and the triple-reassortant viruses containing genes from the human (HA and NA), classical swine (NP), and avian (PB2, PB1, PA, M, and NS) lineages emerged in pigs in China. The coexistence of wholly human-like and reassortant viruses provides further evidence that pigs serve as intermediate hosts, or mixing vessels, and emphasizes the importance of reinforcing swine influenza virus surveillance in China.  相似文献   

5.
Twenty-four H1N2 influenza A viruses were newly isolated from pigs in the United States. These isolates originated from 19 farms in 9 different swine producing states between 1999 and 2001. All farms had clinical histories of respiratory problem and/or abortion. The viral isolates were characterized genetically to determine the origin of all eight gene segments. The results showed that all H1N2 isolates were reassortants of classical swine H1N1 and triple reassortant H3N2 viruses. The neuraminidase (NA) and PB1 genes of the H1N2 isolates were of human origin, while the hemagglutinin (HA), nucleoprotein (NP), matrix (M), non-structural (NS), PA and PB2 polymerase genes were of avian or swine origin. Fifteen of the 24 H1N2 isolates were shown to have a close phylogenic relationship and high amino acid homology with the first US isolate of H1N2 (A/SW/IN/9K035/99). The remaining nine isolates had a close phylogenic relationship with classical swine influenza H1N1 in the HA gene. All other genes including NA, M, NP, NS, PA, PB1 and PB2 showed a close phylogenic relationship with the H1N2 (A/SW/IN/9K035/99) strain and triple reassortant H3N2 viruses. However, PB1 genes of two isolates (A/SW/KS/13481-S/00, A/SW/KS/13481-T/00) were originated from avian influenza A virus lineage. These results suggest that although there are some variations in the HA genes, the H1N2 viruses prevalent in the US swine population are of a similar genetic lineage.  相似文献   

6.
Song DS  Lee CS  Jung K  Kang BK  Oh JS  Yoon YD  Lee JH  Park BK 《Virus research》2007,125(1):98-103
A swine influenza H1N1 virus was isolated from a pig during a severe outbreak of respiratory disease in Korea. All genes of the H1N1 isolate, including hemagglutinin (HA), neuraminidase (NA), matrix (M), nucleoprotein (NP), non-structural (NS), PA, PB1 and PB2, were of swine origin. Also, all these genes showed a close phylogenic relationship with those of H1N1 viruses previously isolated from pigs in the United States. These results suggest that North American swine influenza virus has actually been transmitted to pigs in Korea.  相似文献   

7.
In 2007, a total of eight H9N2 influenza viruses were isolated from the water and fowl feces in Dongting Lake wetland, China. The genomes of the eight viruses were sequenced, and all eight gene segments were subjected to phylogenetic analysis. The results showed that all the isolates belonged to the same genotype, in which the HA, NA and NS gene segments were Chicken/Beijing/94-like; the PB2, PB1, PA and NP gene segments were Chicken/Shanghai/F/98-like; and the M gene was Quail/Hong Kong/G1/97-like. Animal experiments showed low pathogenicity of the selected viruses for chickens, although some chickens died after inoculation. The viruses showed no overt clinical signs in mice, but they could replicate in murine lungs prior to adaptation.  相似文献   

8.
Virulence factors of influenza A (H5N1) viruses collected in 1997 from mammalian hosts were examined using a BALB/c mouse model. Fifteen amino acid (aa) residues in four influenza virus genes which correlated with high- and low-pathogenic phenotypes in mice were identified by analyzing sequence alignments. In addition to these specific residues, the effects of aa residue 627 of the PB2 gene, and the hemagglutinin (HA) and neuraminidase (NA) genes were also investigated using a reverse genetics system established with representative viruses of low (A/Hong Kong/486/97) and high (A/Hong Kong/483/97) pathogenicity for mice. None of 15 aa residues alone had any effect on virulence. The HA and NA genes had a synergistic effect on virulence and the absence of a glycosylation site at aa154 in the HA gene also increased virulence of virus. Multiple genes are involved in virulence of Hong Kong H5N1 influenza A viruses for mice with the presence of lysine at aa627 in the PB2 gene exhibiting a significantly larger effect than the HA and NA genes.  相似文献   

9.
Swine influenza is an acute respiratory disease caused by type A influenza viruses. Before 1998, swine influenza virus isolates in the United States were mainly of the classical H1N1 lineage. Since then, phylogenetically distinct reassortant H3N2 viruses have been identified as respiratory pathogens in pigs on U.S. farms. The H3N2 viruses presently circulating in the U.S. swine population are triple reassortants containing avian-like (PA and PB2), swine-like (M, NP, and NS), and human-like (HA, NA, and PB1) gene segments. Recent sequence data show that the triple reassortants have acquired at least three distinct H3 molecules from human influenza viruses and thus form three distinct phylogenetic clusters (I to III). In this study we analyzed the antigenic and pathogenic properties of viruses belonging to each of these clusters. Hemagglutination inhibition and neutralization assays that used hyperimmune sera obtained from caesarian-derived, colostrum-deprived pigs revealed that H3N2 cluster I and cluster III viruses share common epitopes, whereas a cluster II virus showed only limited cross-reactivity. H3N2 viruses from each of the three clusters were able to induce clinical signs of disease and associated lesions upon intratracheal inoculation into seronegative pigs. There were, however, differences in the severity of lesions between individual strains even within one antigenic cluster. A correlation between the severity of disease and pig age was observed. These data highlight the increased diversity of swine influenza viruses in the United States and would indicate that surveillance should be intensified to determine the most suitable vaccine components.  相似文献   

10.
猪型(H1N1)流感病毒血凝素和神经氨酸酶基因来源的研究   总被引:1,自引:2,他引:1  
目的 研究2002年我国内地从猪群中分离的猪型(H1N1)毒株HA和NA基因来源。及其使猪致病的原因。方法 用PCR扩增目的基因,用P^GEM-T Easy Vector,4℃过夜连接,重组质粒转入DH-10B细菌,筛选阳性菌落,酶切鉴定,送六合通公司自动测序,并作进化树分析。结果 3株猪型(H1N1)病毒的HA和NA基因属猪型(H1N1)流感病毒,而不同于其他禽或人的H1N1亚型流感病毒。2002年猪型毒株由1991年猪型毒株演变而来。近来我国内地猪群中猪型毒株活动增强,其对猪能致病是由于病毒粒HA和NA蛋白抗原性发生变异所造成。结论 3株猪型病毒的HA和NA基因来源于猪型(H1N1)毒株。近来猪型毒株对猪具有致病性和活动增强是由于其HA和NA蛋白分子上氨基酸序列发生替换所造成。  相似文献   

11.
H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.  相似文献   

12.
流感病毒A/广州/333/99(H9N2)毒株基因组特性的研究   总被引:23,自引:3,他引:23  
目的 了解一株再次从流感患儿中分离出禽H9N2流感毒株的基因组特性,并弄清它的来源。方法 病毒在鸡胚中传代,从收获的尿囊液中提取RNA,通过逆转录合成cDNA,cDNA用PCR扩增。PCR产物用纯化试剂盒纯化,接着做核苷酸序列测定,然后用Meg Align(Version 1.03)和Editseg(Version 3.69)软件进行基因进化树分析。结果 A/广州/333/99(H9N2)毒株的基因组属于禽流感病毒,但它明显不同于A/Duck/Hong Kong/Y439/97毒株。同时不含有任何人流感病毒基因节段,其基因组中有4个基因节段(分别编码HA、NA、NP和NS蛋白)来自G9毒株基因系,而其余4个基因节段(分别编码PB2、PB1、PA和M蛋白)来自G1毒株基因系。结论 A/广州/333/99(H9N2)病毒是G9和G1毒株通过基因重配而来的重配株,它最大可能性直接来自禽。进一步证实了禽H9N2毒株能感染人,同时首次证实了H9N2不同基因系毒株间,在自然界中也能发生基因重配。  相似文献   

13.
Influenza A virus has the ability to overcome immunity from previous infections through the acquisition of genetic changes. Thus, understanding the evolution of the viruses in humans is important for the surveillance and the selection of vaccine strains. A total of 30 influenza A/H3N2 viruses and 35 influenza A/H1N1 viruses that were collected in Vietnam from 2001 to 2006 were used to analyze the evolution of the hemagglutinin (HA), neuraminidase (NA), and matrix protein (M) genes. Phylogenetic analysis of individual gene segments revealed that the HA and the NA genes of the influenza A viruses evolved in a sequential way. However, the evolutionary pattern of the M gene proved to be nonlinear and was not linked with that of the HA and NA genes. Genetic drift in HA1 segments, especially in the antigenic sites of A/H3N2 viruses, occurred more frequently in A/H3N2 viruses than it did in A/H1N1 viruses. Two reassortants, one influenza A/H3N2 strain and one A/H1N1 strain, were found on the basis of the phylogenetic analysis of the three genes. While both genetic mutation and reassortment contributed to their evolution, the frequency of genetic changes and reassortment events differs between the two subtypes. As influenza viruses circulate throughout the year, we emphasize the importance of surveillance in tropical and subtropical zones, where the emergence of new strains may be detected earlier than it is in temperate zones.  相似文献   

14.
Influenza A viruses cause pandemics at sporadic intervals. Pandemic viruses can potentially be introduced into the human population through in toto transfer of an avian influenza virus or through reassortment between avian and human strains. Pigs are believed to play a central role in the creation of pandemic viruses through reassortment because of their susceptibility to infection with both avian and human influenza viruses. However, we recently found that a human-lineage H3N2 influenza virus was highly restricted in its ability to infect pigs after intranasal inoculation. We hypothesized that this restricted infectivity phenotype was controlled by the hemagglutinin (HA) and neuraminidase (NA). To test this, we infected pigs with reverse genetics-created HA plus NA reassortant viruses. Specifically, introduction of the HA and NA genes of a contemporary H3N2 swine virus into the genetic background of the wholly human virus resulted in a significant increase in virus shedding and pathogenicity. These data indicate that the HA/NA can play important roles in controlling human influenza virus infectivity in pigs. The results further support the premise that a barrier exists to human influenza virus infection in pigs, which may limit the role of pigs in pandemic virus creation through reassortment of human and avian influenza viruses.  相似文献   

15.
Acute respiratory distress syndrome induced by H9N2 virus in mice   总被引:1,自引:0,他引:1  
H9N2 avian influenza viruses have repeatedly caused infections in swine and humans in some countries. The purpose of the present study was to evaluate the pulmonary pathology caused by H9N2 viral infection in mice. Six- to eight-week-old BALB/c mice were infected intranasally with 1 × 104 MID50 of A/Chicken/Hebei/4/2008(H9N2) virus. Clinical signs, pathological changes and viral replication in lungs, arterial blood gas, and cytokines in bronchoalveolar lavage fluid (BALF) were observed at different time points after infection. A control group was infected intranasally with noninfectious allantoic fluid. H9N2-infected mice exhibited severe respiratory syndrome, with a mortality rate of 60%. Gross observations showed that infected lungs were highly edematous. Major histopathological changes in infected lungs included diffuse pneumonia and alveolar damage, with neutrophil-dominant inflammatory cellular infiltration, interstitial and alveolar edema, hemorrhage, and severe bronchiolitis/peribronchiolitis. In addition, H9N2 viral infection resulted in severe progressive hypoxemia, lymphopenia, and a significant increase in neutrophils, tumor necrosis factor-α and interleukin-6 in BALF. The features described above satisfy the criteria for acute respiratory distress syndrome (ARDS). Our data show that H9N2 viral infection resulted in ARDS in mice, and this may facilitate studies of the pathogenesis of future potential H9N2 disease in humans.  相似文献   

16.
Zhou JP  Ge FF  Liu J  Ju HB  Yang DQ  Wang J  Zhang WY  Liu PH 《Archives of virology》2012,157(6):1193-1198
The H9N2 influenza virus is endemic in poultry. We report its occurrence in live-poultry markets, fair-trade markets and poultry farms in the Shanghai region between September 2006 and December 2010. An analysis of partial sequences of the HA, NA, PB1, PB2 and NP genes of eleven distinct H9N2 isolates revealed that all carried an RSSR motif at the cleavage site of HA, diagnostic of low pathogenicity in chickens. A phylogenetic analysis indicated that these isolates are derived from the lineage represented by Duck/HK/Y280/97, but they have evolved a range of reassortments. Their PB1 and NP sequences resembled those of H5N1 strains, indicating a hybrid origin involving both H9 and H5 strains. The HA and NA sequences present in all eleven isolates resembled those of the Duck/HK/Y280/97-like lineage. Infection by H9N2 is commonplace in Shanghai live-poultry markets, allowing the viruses to have evolved rapidly.  相似文献   

17.
Swine infection with H9N2 influenza viruses in China in 2004   总被引:2,自引:0,他引:2  
Cong YL  Wang CF  Yan CM  Peng JS  Jiang ZL  Liu JH 《Virus genes》2008,36(3):461-469
In 2004, H9N2 influenza A viruses were isolated from pigs with respiratory syndrome in commercial swine farms in Henan province, China. Antigenic and genetic characterization were performed for seven swine H9N2 influenza viruses. The hemagglutinin antigenicity of swine H9N2 viruses was similar to those of avian H9N2 viruses of A/duck/Hong Kong/Y280/1997 (Dk/HK/Y280/97)-like sublineage prevalent in China. It is noteworthy that the neuraminidase of these isolates had no deletions in the stalk, which was seldom observed in those viruses of Dk/HK/Y280/97-like sublineage. Genetic analysis revealed that all seven isolates had an -R-S-S-R- motif at the HA cleavage site, which was the same as those of Dk/HK/Y280/97-like viruses established in avian population in China. Phylogenetic analyses showed that the seven swine H9N2 viruses were completely derived from avian influenza viruses of Dk/HK/Y280/97-like sublineage. The present results indicated that avian-to-pig interspecies transmission of H9N2 viruses continued to exist in China through 2004; therefore, surveillance of swine influenza should be given a high priority. Yan-Long Cong, Chun-Feng Wang and Chun-Mei Yan have contributed equally to this work. (i) All the authors have agreed to its submission and are responsible for its contents and (ii) all the authors have agreed that Yanlong Cong may act on their behalf regarding any subsequent processing of the paper.  相似文献   

18.
A swine H3N2 (swH3N2) and pandemic (H1N1) 2009 (pH1N1) influenza A virus reassortant (swH3N2/pH1N1) was detected in Canadian swine at the end of 2010. Simultaneously, a similar virus was also detected in Canadian mink based on partial viral genome sequencing. The origin of the new swH3N2/pH1N1 viral genes was related to the North American swH3N2 triple-reassortant cluster IV (for hemagglutinin [HA] and neuraminidase [NA] genes) and to pH1N1 for all the other genes (M, NP, NS, PB1, PB2, and PA). Data indicate that the swH3N2/pH1N1 virus can be found in several pigs that are housed at different locations.  相似文献   

19.
In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007–2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.  相似文献   

20.
Xu XJ  Xu GY  Zhou HB  Yu ZJ  Zhang AD  Song YF  Jin ML  Chen HC 《Virus genes》2008,36(1):79-83
Full-length eight gene segments of avian influenza virus A/duck/Hubei/W1/2004(H9N2) (Dk/Hub/W1/04) were amplified by RT-PCR and completely sequenced. Phylogenetic analysis revealed that Dk/Hub/W1/04 was derived from A/Duck/HongKong/Y280/97, not displaying direct evolutional relationship with A/Quail/HongKong/G1/97 or Hubei H5N1 viruses. Meanwhile, Dk/Hub/W1/04 was found highly related to recent three chicken isolates. The connecting peptide of HA and the deletion in NA stalk were consistent with three chicken isolates, and the number of potential glycosylation site on the HA and NA also was similar or identical to the three chicken isolates. These findings suggested that Dk/Hub/W1/04 is likely to transmit back to ducks from chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号