共查询到20条相似文献,搜索用时 31 毫秒
1.
Levitzki A 《Lung cancer (Amsterdam, Netherlands)》2003,42(Z1):S9-14
Surgery alone is currently still accepted "standard of care" for patients with operable NSCLC, this includes stages IA and IIB, as well as selected early subsets of IIIA disease. In more advanced and inoperable stage III disease, combinations of chemotherapy and radiotherapy remain the standard treatment approach for patients with good performance status. The role of surgery following induction therapy in these advanced stage III patients is at the moment not conclusively defined. More evidence from randomized trials is clearly needed to tailor treatment for the large number of patients that present in these locally advanced stages. Enrollment of patients into ongoing prospective clinical trials should be encouraged, whenever possible, to further define prognostic factors and improve multimodality strategies in this clinical setting. 相似文献
2.
Jonathan Sleeman Patricia S. Steeg 《European journal of cancer (Oxford, England : 1990)》2010,46(7):1177-1180
Despite many years of basic and clinical research aimed at curbing tumour growth, metastasis remains the prime reason why cancer patients succumb to their disease. Effective translational research is urgently required, yet is not always easy to achieve. Here we review reasons why metastasis as a disease process has proven difficult to control, and suggest ways in which translational research in this area can be strengthened and advanced. 相似文献
3.
4.
The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) have been implicated in transformation of a variety of malignancies. Chronic or dysregulated activation of the MET/HGF pathway may lead to increased cell growth, invasion, angiogenesis, and metastasis, reduced apoptosis, altered cytoskeletal functions and other biological changes. It has been suggested that ligand activated MET stimulation can be sufficient for a transforming phenotype. In addition, amplification and activation mutations (germline and/or somatic) within the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain have been identified for MET. MET gain-of-function mutations lead to either deregulated or prolonged tyrosine kinase activity, which are instrumental to its transforming activity. A number of therapeutic strategies targeting ligand-dependent activation or the kinase domain have been employed to inhibit MET. The different structural requirements for activation of signaling events and biological functions regulated by MET will be summarized. Therapeutic targets and current pre-clinical and clinical approaches will be described. Targeting the HGF/MET pathway, alone or in combination with standard therapies, is likely to improve present therapies in MET-dependent malignancies. 相似文献
5.
《Expert review of anticancer therapy》2013,13(2):289-302
6.
Ferrara N 《Oncology》2005,69(Z3):11-16
Tumors require nutrients and oxygen in order to grow, and new blood vessels, formed by the process of angiogenesis, provide these substrates. The key mediator of angiogenesis is vascular endothelial growth factor (VEGF), which is induced by many characteristics of tumors, most importantly hypoxia. Therefore, VEGF is an appealing target for anticancer therapeutics. In addition, VEGF is easy to access as it circulates in the blood and acts directly on endothelial cells. VEGF-mediated angiogenesis is rare in adult humans (except wound healing and female reproductive cycling), and so targeting the molecule should not affect other physiological processes. Tumor blood vessels, formed under the influence of VEGF, are disorganized, tortuous and leaky with high interstitial pressure, reducing access for chemotherapies. Inhibiting VEGF would reduce the vessel abnormality and increase the permeability of the tumor to chemotherapies. Several approaches to targeting VEGF have been investigated. The most common strategies have been receptor-targeted molecules and VEGF-targeting molecules. The disadvantage of receptor-targeted approaches is that the VEGF receptors also bind different members of the VEGF super-family and affect systems other than angiogenesis. The best-studied and most advanced approach to VEGF inhibition is the humanized monoclonal antibody bevacizumab (Avastin), which is the only anti-angiogenic agent approved for treatment of cancer. 相似文献
7.
8.
Altieri DC 《Nature reviews. Cancer》2003,3(1):46-54
Acquisition of the ability to evade cellular suicide, or apoptosis, is one of the master switches that contributes to cellular transformation and, ultimately, to invasive cancer. Much has been learned about the molecular organization of apoptotic pathways and their regulators, but the identification and validation of translational targets for apoptosis-based cancer therapy has posed a great challenge. Survivin is an attractive candidate for cancer therapy, so what is its potential applicability in the clinic? 相似文献
9.
In this review, we discuss the recent identification of ARF-BP1 (also known as Mule, UREB1, E3(histone), LASU1, and HectH9). ARF-BP1, a HECT domain-containing E3 ubiquitin ligase, interacts with ARF and p53. Its ubiquitin ligase activity is inhibited by ARF. Inactivation of ARF-BP1 stabilised p53 and induced apoptosis. Notably, inactivation of ARF-BP1 also caused cell growth repression in p53-null cells and breast cancer cells with mutant p53. Thus, ARF-BP1 emerges as a novel therapeutic target against cancer regardless of p53 status. 相似文献
10.
Autophagy as a therapeutic target in cancer 总被引:1,自引:0,他引:1
Autophagy is a self-catabolic process that maintains intracellular homeostasis and prolongs cell survival under stress via lysosomal degradation of cytoplasmic constituents and recycling of amino acids and energy. Autophagy is intricately involved in many aspects of human health and disease, including cancer. Autophagy is a double-edged sword in tumorigenesis, acting both as a tumor suppressor and a protector of cancer cell survival, and elucidation of its exact role at different stages of cancer progression and in treatment responsiveness is a complex and challenging task. Better understanding of autophagy regulation and its impact on treatment outcome will potentially allow us to identify novel therapeutic targets in cancer. In this review, we summarize current knowledge on the regulation and dual function of autophagy in tumorigenesis, as well as ongoing efforts in modulating autophagy for cancer treatment and prevention. This is a very exciting and highly promising area of cancer research, as pharmacologic modulation of autophagy appears to augment the efficacy of currently available anticancer regimens and opens the way to the development of new combinatorial therapeutic strategies that will hopefully contribute to cancer eradication. 相似文献
11.
12.
13.
Protein synthesis is a vital cellular process that regulates growth and metabolism. It is controlled via signaling networks in response to environmental changes, including the presence of nutrients, mitogens, or starvation. The phosphorylation state of proteins involved in translation initiation is a limiting factor that regulates the formation or activity of translational complexes. In cancer cells, hyperactivated signaling pathways influence translation, allowing uncontrolled growth and survival. In addition, several components of translation initiation have been found to be mutated, posttranslationally modified, or differentially expressed, and some act as oncogenes in cancer cells. Translational alterations can increase the overall rate of protein synthesis as well as activate regulatory mechanisms leading to the translation of specific messenger RNAs for proteins that promote cancer progression and survival. Many recent studies investigating such mechanisms have produced ideas for therapeutic intervention. This review describes altered mechanisms of protein synthesis in human cancers and discusses therapeutic approaches based on the targeting of translation. Cancer Res; 72(16); 3891-900. ?2012 AACR. 相似文献
14.
Cyclin D as a therapeutic target in cancer 总被引:1,自引:0,他引:1
Musgrove EA Caldon CE Barraclough J Stone A Sutherland RL 《Nature reviews. Cancer》2011,11(8):558-572
Cyclin D1, and to a lesser extent the other D-type cyclins, is frequently deregulated in cancer and is a biomarker of cancer phenotype and disease progression. The ability of these cyclins to activate the cyclin-dependent kinases (CDKs) CDK4 and CDK6 is the most extensively documented mechanism for their oncogenic actions and provides an attractive therapeutic target. Is this an effective means of targeting the cyclin D oncogenes, and how might the patient subgroups that are most likely to benefit be identified? 相似文献
15.
Telomerase as a therapeutic target for malignant gliomas 总被引:31,自引:0,他引:31
16.
Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Despite continued research efforts, no targeted therapy has yet shown meaningful efficacy in PDAC; mutations in the oncogene KRAS and the tumour suppressor TP53, which are the most common genomic alterations in PDAC, have so far shown poor clinical actionability. Autophagy, a conserved process allowing cells to recycle altered or unused organelles and cellular components, has been shown to be upregulated in PDAC and is implicated in resistance to both cytotoxic chemotherapy and targeted therapy. Autophagy is thus regarded as a potential therapeutic target in PDAC and other cancers. Although the molecular mechanisms of autophagy activation in PDAC are only beginning to emerge, several groups have reported interesting results when combining inhibitors of the extracellular-signal-regulated kinase/mitogen-activated protein kinase pathway and inhibitors of autophagy in models of PDAC and other KRAS-driven cancers. In this article, we review the existing preclinical data regarding the role of autophagy in PDAC, as well as results of relevant clinical trials with agents that modulate autophagy in this cancer.Subject terms: Pancreatic cancer, Pancreatic cancer 相似文献
17.
Caspase-8 is an apical caspase which initiates programmed cell death following death receptor ligation. This central role in apoptosis has prompted significant clinical interest in regulating caspase-8 expression and proteolytic activity. However, caspase-8 has also been found to play a number of non-apoptotic roles in cells, such as promoting activation NF-κB signaling, regulating autophagy and altering endosomal trafficking, and enhancing cellular adhesion and migration. Therefore, depending upon the specific cellular context, caspase-8 may either potentiate or suppress tumor malignancy. Accordingly, a marked heterogeneity exists in the expression patterns of caspase-8 among different tumor types. Therapeutics have been developed which can increase caspase-8 expression, yet it remains unclear whether this approach will be beneficial in all cases. Care is warranted, and the role of caspase-8 should be addressed on a case by case basis. 相似文献
18.
Protein kinase C as a therapeutic target. 总被引:3,自引:0,他引:3
Beverly A Teicher 《Clinical cancer research》2006,12(18):5336-5345
19.
The AKT signalling pathway is a major regulator of protein synthesis that impinges on multiple cellular processes frequently altered in cancer, such as proliferation, cell growth, survival, and angiogenesis. AKT controls protein synthesis by regulating the multistep process of mRNA translation at every stage from ribosome biogenesis to translation initiation and elongation. Recent studies have highlighted the ability of oncogenic AKT to drive cellular transformation by altering gene expression at the translational level. Oncogenic AKT signalling leads to both global changes in protein synthesis as well as specific changes in the translation of select mRNAs. New and developing technologies are significantly advancing our ability to identify and functionally group these translationally controlled mRNAs into gene networks based on their modes of regulation. How oncogenic AKT activates ribosome biogenesis, translation initiation, and translational elongation to regulate these translational networks is an ongoing area of research. Currently, the majority of therapeutics targeting translational control are focused on blocking translation initiation through inhibition of eIF4E hyperactivity. However, it will be important to determine whether combined inhibition of ribosome biogenesis, translation initiation, and translation elongation can demonstrate improved therapeutic efficacy in tumours driven by oncogenic AKT. 相似文献