首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two rhesus monkeys were trained to make saccadic eye movements from a central fixation point towards a peripheral target. Saccadic reaction times (SRTs) were measured in the gap paradigm (200 ms pause between offset of fixation point and onset of peripheral target). Target position for extensive training (SRTs of 150 to 250 saccades were collected per day) was four degrees eccentric in the lower quadrant of the visual field contralateral to the intended lesion site in area V4. For control the monkeys were also trained for target positions either in the lower quadrant ipsilateral to the intended lesion site or in the upper visual half field. After several weeks of training a bimodal distribution of saccadic reaction times, one peak at 85 ms (express saccades) and the other around 160 ms (regular saccades) was obtained for each target position. Local injection of ibotenic acid into the 4 deg representation of area V4 resulted in a unimodal distribution of saccadic reaction times (over 90% express saccades) towards the corresponding target position, leaving the distribution of reaction times for the control position unchanged. Recovery began after 5 days and was complete 8 to 10 days after the injection. From these results we conclude that V4 is involved in the generation of the longer latency peak in the distribution of saccadic reaction times by delaying the initiation of visually guided saccades.  相似文献   

2.
Latencies of eye movements to peripheral targets are reduced when there is a short delay (typically 200 ms) between the offset of a central visual fixation point and the target onset. This has been termed the gap effect. In addition, some subjects, usually with practice, exhibit a separate population of very short latency saccades, called express saccades. Both these phenomena have been attributed to disengagement of visual attention when the fixation point is extinguished. A competing theory of the gap effect attributes it to disengagement of oculomotor fixation during the temporal gap. It is known that auditory targets are effective in eliciting saccadic eye movements, and also that covert attention operates in the auditory modality. If the gap effect and express saccades are due to disengagement of spatial attention, both should persist in the auditory modality. However, fixation of gaze is largely under visual control. If the gap effect results from disengagement of fixation, then at least a reduced effect should be seen in the auditory modality. Human subjects performed the gap task and a control task in the dark, using auditory fixation points and saccadic targets, on five successive days. Despite this practice, express saccades were not observed. There was a reliable gap effect, but the reduction in saccadic latency was only 17 ms, compared with 32 ms for the same subjects in the visual modality. This suggests that about half the gap effect is due to disengagement of visual fixation. The remainder was not due to non-specific warning effects and could be attributed to offset of the auditory fixation stimulus. Received: 1 March 1996 / Accepted: 11 July 1997  相似文献   

3.
Summary The saccadic eye movements of 20 naive adults, 7 naive teenagers, 12 naive children, and 4 trained adult subjects were measured using two single target saccade tasks; the gap and the overlap task. In the gap task, the fixation point was switched off before the target occurred; in the overlap task it remained on until the end of each trial. The target position was randomly selected 4° to the left or 4° to the right of the fixation point. The subjects were instructed to look at the target when it appeared, not to react as fast as possible. They were not given any feedback about their performance. The results suggest that, in the gap task, most of the naive subjects exhibit at least two (the teenagers certainly three) clearly separated peaks in the distribution of the saccadic reaction times. The first peak occurs between 100 and 135 ms (express saccades), the second one between 140 and 180 ms (fast regular), and a third peak may follow at about 200 ms (slow regular). Other subjects did not show clear signs of two modes in the range of 100 to 180 ms, and still others did not produce any reaction times below 135 ms. In the overlap task as well three or even more peaks were obtained at about the same positions along the reaction time scale of many, but not all subjects. Group data as well as those of individual subjects were fitted by the superposition of three gaussian functions. Segregating the reaction time data into saccades that over- or undershoot the target indicated that express saccades almost never overshoot. The results are discussed in relation to the different neural processes preceding the initiation of visually-guided saccades.  相似文献   

4.
To explore visual space, we make saccades, vergence, and, most frequently, combined saccade–vergence eye movements. The initiation of saccades is well studied, while that of vergence is less explored. Saccade latency is influenced by the fixation task: when the target appears simultaneously with the offset of the fixation point, latencies tend to be regular, whereas the introduction of a gap period before target onset causes the emergence of express latencies (80- to 120-ms). This study examines in ten normal adults whether the gap paradigm has a similar effect on the latency of vergence and combined eye movements. The second goal is to identify contextual factors that favor the emergence of short latencies, by comparing a condition in which gap and simultaneous trials were performed in separate blocks (pure blocks) with a condition in which the two types of trials were interleaved randomly (mixed blocks). The results are: (1) the gap paradigm reduced similarly (by approximately –30 ms) the mean latency of saccades, convergence, divergence, and both the saccadic and vergence components of combined eye movements; (2) the gap paradigm was responsible for the emergence of 80– to 120-ms latencies for saccades and divergence (pure or combined), but rarely for convergence; (3) inspection of the latency distributions showed that such short latencies formed a clearly distinct population, different from anticipatory responses or regular latencies, for saccades (pure or combined) but not for pure vergence; importantly, distinct express latencies were found also for the convergence and divergence components of combined eye movements; (4) no difference was found for the group of subjects between pure and mixed blocks, but the latter yielded shorter latencies for some subjects, suggesting an idiosyncratic phenomenon. We suggest that distinct express latencies are specific to saccades and could correspond to a specific mode of saccade initiation. Interestingly, the express mode of triggering can be transferred to the vergence component in the ecological condition in which saccade is combined with vergence.  相似文献   

5.
Summary Express-saccades, i.e. goal directed eye movements with extremely short saccadic reaction times (SRT) have recently been observed in rhesus monkey (70–80 ms) and human subjects (around 100 ms). In the gap task which has been used so far, a central fixation point (Fp) was turned off a short time before a new target (Tg) in the near periphery was presented. Therefore, express-saccades occurred when the goal of fixation was no longer visible. To determine whether or not the absence of the Fp is a necessary condition for the execution of an express-saccade, we used an overlap task in which the monkeys had to change the direction of gaze in the presence of the Fp. The results for this overlap task were compared to those found in the gap task. Three major observations have emerged from the present study. (a) Even though the Fp remained visible, a suddenly appearing peripheral target could be reached by an express-saccade. (b) Express-saccades persisted if the location as well as the time of the appearance of the target was randomized. It appears that for an express-saccade to occur, the process of interruption of previous active fixation must be completed at the time when a new target becomes visible. (c) The spectrum of the monkey's saccadic reaction times contains at least three different peaks: express-saccades with reaction times below 100 ms, fast regular saccades with reaction times around 130 ms, and slow regular saccades with reaction times around 180 ms.  相似文献   

6.
When a temporal gap is introduced between the offset of the central fixation point and the appearance of a new target, saccadic reaction time is reduced (gap effect) and a special population of extremely fast saccades occurs (express saccades). It has been hypothesized that the gap triggers a readiness signal, which is responsible for the reduced saccadic reaction times. Here we recorded event-related potentials during the gap to in vestigate the central processes associated with the gener ation of fast regular saccades and express saccades. Prior to the execution of fast regular saccades, subjects pro duced a slow negative shift, with a maximum at frontal and central channels that started 40 ms after fixation offset. This widespread negativity is similar to a readiness potential. Anticipatory saccades were preceded by an increased frontal and parietal negativity. Prior to express saccades, a frontal negativity was observed, which started 135 ms after the disappearance of the fixation point. It is assumed that the frontal negativity prior to express saccades corresponds to the fixation-disengagement dis charge described in the frontal eye field of monkeys. Therefore, we hypothesize that fast regular saccades are the result of an increased readiness signal, while express saccades are the result of specific preparatory processes.  相似文献   

7.
Summary The saccadic eye movements of three humans and one non-human primate (a male rhesus monkey) have been measured for target eccentricities between 0.3 and 15 deg. With a gap task (fixation point offset precedes target onset by 200 ms) and a target at 4 deg, all subjects produced reasonable amounts of express saccades as indicated by a clear peak in the distribution of their saccadic reaction times (SRT): about 100 ms in human subjects and 70 ms in the monkey. This peak disappeared with decreasing target eccentricity below 2 deg, but saccades of longer (regular) reaction times were still present. Thus it was found that there exists a dead zone for express saccades. In addition, small saccades have a much stronger tendency to overshoot the target and their velocity falls above the main sequence as defined by the least square fit of an exponential v=vo(1-exp(-a/ao)) to the maximal velocity (v) versus amplitude (a) relationship (vo and ao are constants fitted). It is concluded that for small saccades the express way is blocked functionally or does not exist anatomically.  相似文献   

8.
Summary When human subjects are asked to execute saccades from a fixation point to a peripheral target, if the fixation point is turned off some time (200 ms) before the target is turned on, the distribution of the saccadic reaction times is bimodal. The first peak occurs at about 100 ms and represents the population of express saccades. If the target location is kept constant the express saccades have reaction times of about 100 ms. If the target location is randomized between right and left (distance from fixation point constant at 4 deg) the reaction times of the express saccades are increased by about 15 ms. If the target location is randomized between 4 deg and 8 deg (direction constant to the right) no increase of the reaction time is observed. The proportion of express saccades increases with daily practice and their reaction times decrease slightly from 105 ms to 98 ms. If an anticipatory saccade was made after reaction times below 75 ms, it frequently undershot the target by more than 20% and was followed by a corrective saccade. The corrections could be executed at times where usually an express saccade would have occurred such that all of these corrections began at about the same time, i.e. 100 ms after target onset, implying intersaccadic intervals between 100 ms and zero (!)  相似文献   

9.
Summary Two monkeys learned to make saccadic eye movements from a central fixation point to a peripheral target, when there was a temporal gap between fixation point offset and target onset. Under these conditions the animals made saccades after extremely short reaction times (< 100 ms), so called express-saccades. With ongoing training the rate of occurrence increased (10 to 100%) and the reaction time of the express-saccades decreased (95 to 75 ms). The training effects were mediated by the amount of previously executed express-saccades and they were also spatially selective for express-saccades to that target position that had been used during training. The training effects on the express-saccades can be saturated after less than 7 days of daily training and are reversible after another 7 days of no training. The results indicate the existence of a fast-operating visuo-to-oculomotor pathway which can be quickly and reversibly modified by daily exercise.  相似文献   

10.
Summary Saslow (1967) and Fischer and Ramsperger (1984) found that saccadic reaction time (SRT) depends on the interval between the fixation point offset and the target onset. Using a continuously visible fixation point, we asked whether a similar function would be obtained if subjects attended to a peripherally viewed point extinguished at variable intervals before or after the target onset. The interval was varied between -500ms (i.e., attention stimulus offset after saccade target onset = overlap trials) and 500ms (i.e., attention stimulus offset before saccade target onset = gap trials). The results show a constant mean SRT of about 240 ms for overlap trials, and a U-shaped function with a minimum of 140 ms, at a gap duration of 200 ms, for gap trials. These findings suggest that saccadic latencies do not depend on the cessation of fixation per se, but rather on the disengagement of attention from any location in the visual field. The time required for subjects to disengage their attention is approximately 100 ms. This disengaged state of attention — during which short latency (express) saccades can be made — can be sustained only for a gap duration of 300 ms. At longer gap durations mean SRTs increase again.  相似文献   

11.
Summary Human subjects were asked to execute a saccade from a central fixation point to a peripheral target at the time of its onset. When the fixation point is turned off some time ( 200 ms) before target onset, such that there is a gap where subjects see nothing, the distribution of their saccadic reaction times is bimodal with one narrow peak around 100 ms (express saccades) and another peak around 150 ms (regular saccades) measured from the onset of the target. Express saccades have been described earlier for the monkey.  相似文献   

12.
The reaction times of saccades (SRT) to a suddenly presented visual stimulus (pro-saccade) can be decreased and a separate mode of express saccades can occur when a gap paradigm is used (i.e. fixation-point offset precedes target onset by 200 ms). A valid peripheral cue, presented briefly (100 ms) before target onset, has been found to facilitate the generation of saccades to the target, thereby increasing the frequency of express saccades and decreasing the mean latency. This facilitation occurs only for cues that correctly indicate the direction of the subsequent target presentation (valid cues). The present study investigates the effects of valid cues on SRTs and error rate in the anti-saccade task (saccades in the direction opposite to the stimulus) by systematically varying the cue lead time (CLT) and using the gap and overlap conditions, i.e. fixation point remains on throughout the trial. For a CLT of 100 ms, both reaction times and error rates were significantly increased. With increasing CLT (200–500 ms), both the reaction times of the anti-saccades and the error rates returned to approximately control level, with CLT more than 200 ms in both the gap and the overlap condition. Additional experiments using non-informative cues in the overlap task showed that the reaction times of correct anti-saccades and the error rate were decreased when cue and stimulus appeared at the same side. Analysis of the erratic pro-saccades revealed that almost all of them were corrected, i.e. they were followed by a second saccade towards the required location. It is found that the correction times were usually very short, with intersaccadic intervals between 0 and 150 ms. We suggest that the orienting mechanism, elicited by a transient peripheral cue, relates to the command and the decision to make a pro- rather than an anti-saccade. The cue elicits pro-orienting towards its position when a pro-saccade is required, and anti-orienting when an anti-saccade is required. The orienting effect is transient and decays with CLTs of more than 200 ms; this result holds for both anti-saccades and pro-saccades. Since subjects reported that they could not prevent the erratic pro-saccades or were often not aware of them, we conclude that this orienting mechanism occurs automatically, beyond voluntary control.  相似文献   

13.
Summary Saccadic latencies measured in response to a step-wise displacement of the target may be substantially reduced if a gap separates the offset of the initial fixation point and the onset of the peripheral target. According to Fischer and Ramsperger (1984) this paradigm provokes a bimodal latency distribution which consists of a peak of very fast saccadic responses (express saccades) at about 110 ms and another peak arising from somewhat slower saccades (regular saccades). Using again the gap paradigm, we investigated the effect of an additional go/no-go (i.e. target trial/catch trial) decision on saccadic latencies. The experiments yielded the following results: (i) the distribution between the peaks of express and regular saccades strongly depends on the proportion of catch trials introduced into the trial sequence, which suggests the existence of different modes of operation of the decision processes for express and regular saccades. (ii) The catch trial effect on saccadic latency proved to be a local phenomenon in time: saccades which follow catch trials tend to be slower than those following target trials.  相似文献   

14.
When a gap period is inserted between the fixation point extinction and the target presentation, the distribution of saccadic reaction times has two distinct peaks: one at 150-250 ms (ordinary saccades) and another at approximately 100 ms (express saccades). The distribution of saccadic reaction times can be explained by the linear approach to threshold with ergodic rate (LATER) model, in which the value of a decision signal increases linearly from a start level to initiate a saccade when the signal value reaches a threshold. We hypothesized that a gap period and/or an instruction signal can modulate the parameters of the model to determine when a saccade is initiated. Two reciprobit plots of reaction times, one for ordinary and the other for express saccades, for a task with both a gap period and visuospatial instruction, were constrained by a common infinite-time intercept, although no such constraint was observed during task performance without a visuospatial instruction. We interpreted the results that either the threshold, the start level, or the rate of increase of the decision signal of the model was switched in a bistable manner by both the visuospatial instruction and a gap period, but not by the gap period alone.  相似文献   

15.
The latency of eye movements is influenced by the fixation task; when the fixation stimulus is switched off before the target presentation (gap paradigm) the latency becomes short and express movements occur. In contrast, when the fixation stimulus remains on when the target appears (overlap paradigm), eye movement latency is longer. Several previous studies have shown increased rates of express saccades in children; however the presence of an express type of latency for vergence and combined movements in children has never been explored. The present study examines the effects of the gap and the overlap paradigms on horizontal saccades at far (150 cm) and at close (20 cm) viewing distances, on vergence along the median plane, and on saccades combined with convergence or divergence in 15 normal seven-year-old children. The results show that the gap paradigm produced shorter latency for all eye movements than the overlap paradigm, but the difference was only significant for saccades at close viewing distances, for divergence (pure and combined), and for saccades combined with vergence. The gap paradigm produced significantly higher rates of express latencies for saccades at close viewing distances, for divergence, and for saccades combined with divergence; in contrast, the frequencies of express latencies for saccades at far viewing distances and for convergence (pure or combined) were similar in the gap and the overlap paradigms. Interestingly, the rate of anticipatory latencies (<80 ms) was particularly high for divergence in the gap paradigm. Our collective findings suggest that the initiation of saccades at close viewing distances and of divergence is more reflexive, particularly in the gap paradigm. The finding of frequent anticipatory divergence that occurs at similar rates for seven-year-old children (this study) and for adults (Coubard et al., 2004, Exp Brain Res 154:368–381) indicates that predictive initiation of divergence is dominant.  相似文献   

16.
Rhesus monkeys were trained to make saccadic eye movements to visual targets using detection and discrimination paradigms in which they were required to make a saccade either to a solitary stimulus (detection) or to that same stimulus when it appeared simultaneously with several other stimuli (discrimination). The detection paradigm yielded a bimodal distribution of saccadic latencies with the faster mode peaking around 100 ms (express saccades); the introduction of a pause between the termination of the fixation spot and the onset of the target (gap) increased the frequency of express saccades. The discrimination paradigm, on the other hand, yielded only a unimodal distribution of latencies even when a gap was introduced, and there was no evidence for short-latency "express" saccades. In three monkeys either the frontal eye field or the superior colliculus was ablated unilaterally. Frontal eye field ablation had no discernible long-term effects on the distribution of saccadic latencies in either the detection or discrimination tasks. After unilateral collicular ablation, on the other hand, express saccades obtained in the detection paradigm were eliminated for eye movements contralateral to the lesion, leaving only a unimodal distribution of latencies. This deficit persisted throughout testing, which in one monkey continued for 9 mo. Express saccades were not observed again for saccades contralateral to the lesion, and the mean latency of the contralateral saccades was longer than the mean latency of the second peak for the ipsiversive saccades. The latency distribution of saccades ipsiversive to the collicular lesion was unaffected except for a few days after surgery, during which time an increase in the proportion of express saccades was evident. Saccades obtained with the discrimination paradigm yielded a small but reliable increase in saccadic latencies following collicular lesions, without altering the shape of the distribution. Unilateral muscimol injections into the superior colliculus produced results similar to those obtained immediately after collicular lesions: saccades contralateral to the injection site were strongly inhibited and showed increased saccadic latencies. This was accompanied by a decrease of ipsilateral saccadic latencies and an increase in the number of saccades falling into the express range. The results suggest that the superior colliculus is essential for the generation of short-latency (express) saccades and that the frontal eye fields do not play a significant role in shaping the distribution of saccadic latencies in the paradigms used in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
To examine the neural correlates of contextually differing control mechanisms in saccade initiation, we studied 18 subjects who performed two saccade paradigms in a pseudo-random order, while their eye movements were recorded in the MRI scanner (1.5 T). In the gap task the fixation point was extinguished 200 ms before target onset, and in the overlap task the fixation point vanished 500 ms after target onset. Subjects were asked to maintain stable fixation in the fixation period and to quickly saccade to peripherally presented targets. Inter-individual activation differences were assessed using regression analyses at the second level, with mean saccadic reaction time (SRT) of subjects as a covariate. To identify brain regions varying with trial-by-trial changes in SRTs, we included SRTs as a parametric modulation regressor in the general linear model. All analyses were regions of interest based and were performed separately for the gap and overlap conditions. For the gap paradigm, we did not obtain activation in regions previously shown to be involved in preparatory processes with much longer gap periods. Interestingly, both inter- and intra-individual variability analyses revealed a positive correlation of activation in frontal and parietal eye-movement regions with SRTs, indicating that slower saccade performance is possibly associated with higher cortical control. For the overlap paradigm, the trial-by-trial variability analysis revealed a positive correlation of activation in the right opercular inferior frontal gyrus with SRTs, possibly linked to fixation-related processes that have to be overcome to perform a speeded saccade in presence of a fixation point.  相似文献   

18.
Saccadic eye movements to visual, auditory, and bimodal targets were measured in four adult cats. Bimodal targets were visual and auditory stimuli presented simultaneously at the same location. Three behavioral tasks were used: a fixation task and two saccadic tracking tasks (gap and overlap task). In the fixation task, a sensory stimulus was presented at a randomly selected location, and the saccade to fixate that stimulus was measured. In the gap and overlap tasks, a second target (hereafter called the saccade target) was presented after the cat had fixated the first target. In the gap task, the fixation target was switched off before the saccade target was turned on; in the overlap task, the saccade target was presented before the fixation target was switched off. All tasks required the cats to redirect their gaze toward the target (within a specified degree of accuracy) within 500 ms of target onset, and in all tasks target positions were varied randomly over five possible locations along the horizontal meridian within the cat's oculomotor range. In the gap task, a significantly greater proportion of saccadic reaction times (SRTs) were less than 125 ms, and mean SRTs were significantly shorter than in the fixation task. With visual targets, saccade latencies were significantly shorter in the gap task than in the overlap task, while, with bimodal targets, saccade latencies were similar in the gap and overlap tasks. On the fixation task, SRTs to auditory targets were longer than those to either visual or bimodal targets, but on the gap task, SRTs to auditory targets were shorter than those to visual or bimodal targets. Thus, SRTs reflected an interaction between target modality and task. Because target locations were unpredictable, these results demonstrate that cats, as well as primates, can produce very short latency goal-directed saccades.  相似文献   

19.
Ocular gaze is anchored to the target of an ongoing pointing movement   总被引:13,自引:0,他引:13  
It is well known that, typically, saccadic eye movements precede goal-directed hand movements to a visual target stimulus. Also pointing in general is more accurate when the pointing target is gazed at. In this study, it is hypothesized that saccades are not only preceding pointing but that gaze also is stabilized during pointing in humans. Subjects, whose eye and pointing movements were recorded, had to make a hand movement and a saccade to a first target. At arm movement peak velocity, when the eyes are usually already fixating the first target, a new target appeared, and subjects had to make a saccade toward it (dynamical trial type). In the statical trial type, a new target was offered when pointing was just completed. In a control experiment, a sequence of two saccades had to be made, with two different interstimulus intervals (ISI), comparable with the ISIs found in the first experiment for dynamic and static trial types. In a third experiment, ocular fixation position and pointing target were dissociated, subjects pointed at not fixated targets. The results showed that latencies of saccades toward the second target were on average 155 ms longer in the dynamic trial types, compared with the static trial types. Saccades evoked during pointing appeared to be delayed with approximately the remaining deceleration time of the pointing movement, resulting in "normal" residual saccadic reaction times (RTs), measured from pointing movement offset to saccade movement onset. In the control experiment, the latency of the second saccade was on average only 29 ms larger when the two targets appeared with a short ISI compared with trials with long ISIs. Therefore the saccadic refractory period cannot be responsible for the substantially bigger delays that were found in the first experiment. The observed saccadic delay during pointing is modulated by the distance between ocular fixation position and pointing target. The largest delays were found when the targets coincided, the smallest delays when they were dissociated. In sum, our results provide evidence for an active saccadic inhibition process, presumably to keep steady ocular fixation at a pointing target and its surroundings. Possible neurophysiological substrates that might underlie the reported phenomena are discussed.  相似文献   

20.
Blinks executed during eye movements affect kinetic eye movement parameters, e.g., peak velocity of saccades is decreased, their duration is increased, but their amplitude is not altered. This effect is mainly explained by the decreased activity of premotor neurons in the brainstem: omni-pause neurons (OPN) in the nucleus raphe interpositus. Previous studies examined the immediate effect of blinks directly on eye movements but not their effect when they are elicited several hundred milliseconds before the eye movements. In order to address this question we tested blinks elicited before the target onset of saccades and pursuit and compared the results to the gap effect: if a fixation light is extinguished for several hundred milliseconds, the reaction time (latency) for subsequent saccades or smooth pursuit eye movements is decreased. Monocular eye and lid movements were recorded in nine healthy subjects using the scleral search-coil system. Laser stimuli were front-projected onto a tangent screen in front of the subjects. Horizontal step-ramp smooth pursuit of 20 deg/s was elicited in one session, or 5 deg horizontal visually guided saccades in another experimental session. In one-third of the trials (smooth pursuit or saccades) the fixation light was extinguished for 200 ms before stimulus onset (gap condition), and in another third of the trials reflexive blinks were elicited by a short airpuff before the stimulus onset (blink condition). The last third of the trials served as controls (control condition). Stimulus direction and the three conditions were randomized for saccades and smooth pursuit separately. The latency of the step-ramp smooth pursuit in the blink condition was found to be decreased by 10 ms, which was less than in the gap condition (38 ms). However, the initial acceleration and steady-state velocity of smooth pursuit did not differ in the three conditions. In contrast, the latency of the saccades in the gap condition was decreased by 39 ms, but not in the blink condition. Saccade amplitude, peak velocity, and duration were not different in the three conditions. There was also no difference in blink amplitude and duration of pupil occlusion in the blink condition, neither in saccades nor in smooth pursuit. The latency reduction of smooth pursuit, but not of saccades, may neither be explained by the brief pupil occlusion nor by visual suppression, warning signals, or the startle response. Whether the effects are caused by the influence of blinks on OPNs or other premotor structures remains to be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号