首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein, we show that the paired-related homeobox gene, Prx1, is required for lung vascularization. Initial studies revealed that Prx1 localizes to differentiating endothelial cells (ECs) within the fetal lung mesenchyme, and later within ECs forming vascular networks. To begin to determine whether Prx1 promotes EC differentiation, fetal lung mesodermal cells were transfected with full-length Prx1 cDNA, resulting in their morphological transformation to an endothelial-like phenotype. In addition, Prx1-transformed cells acquired the ability to form vascular networks on Matrigel. Thus, Prx1 might function by promoting pulmonary EC differentiation within the fetal lung mesoderm, as well as their subsequent incorporation into vascular networks. To understand how Prx1 participates in network formation, we focused on tenascin-C (TN-C), an extracellular matrix (ECM) protein induced by Prx1. Immunocytochemistry/histochemistry showed that a TN-C-rich ECM surrounds Prx1-positive pulmonary vascular networks both in vivo and in tissue culture. Furthermore, antibody-blocking studies showed that TN-C is required for Prx1-dependent vascular network formation on Matrigel. Finally, to determine whether these results were relevant in vivo, we examined newborn Prx1-wild-type (+/+) and Prx1-null (-/-) mice and showed that Prx1 is critical for expression of TN-C and lung vascularization. These studies provide a framework to understand how Prx1 controls EC differentiation and their subsequent incorporation into functional pulmonary vascular networks.  相似文献   

3.
Forebrain cholinergic neurons play important roles as striatal local circuit neurons and basal telencephalic projection neurons. The genetic mechanisms that control development of these neurons suggest that most of them are derived from the basal telencephalon where Lhx8, a LIM-homeobox gene, is expressed. Here we report that mice with a null mutation of Lhx8 are deficient in the development of forebrain cholinergic neurons. Lhx8 mutants lack the nucleus basalis, a major source of the cholinergic input to the cerebral cortex. In addition, the number of cholinergic neurons is reduced in several other areas of the subcortical forebrain in Lhx8 mutants, including the caudate-putamen, medial septal nucleus, nucleus of the diagonal band, and magnocellular preoptic nucleus. Although cholinergic neurons are not formed, initial steps in their specification appear to be preserved, as indicated by a presence of cells expressing a truncated Lhx8 mRNA and mRNA of the homeobox gene Gbx1. These results provide genetic evidence supporting an important role for Lhx8 in development of cholinergic neurons in the forebrain.  相似文献   

4.
Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy, lipodystrophy, and progeria, but mutations in B-type lamins have never been identified in humans or in experimental animals. To investigate the in vivo function of lamin B1, the major B-type lamin, we generated mice with an insertional mutation in Lmnb1. The mutation resulted in the synthesis of a mutant lamin B1 protein lacking several key functional domains, including a portion of the rod domain, the nuclear localization signal, and the CAAX motif (the carboxyl-terminal signal for farnesylation). Homozygous Lmnb1 mutant mice survived embryonic development but died at birth with defects in lung and bone. Fibroblasts from mutant embryos grew under standard cell-culture conditions but displayed grossly misshapen nuclei, impaired differentiation, increased polyploidy, and premature senescence. Thus, the lamin B1 mutant mice provide evidence for a broad and nonredundant function of lamin B1 in mammalian development. These mutant mice and cell lines derived from them will be useful models for studying the role of the nuclear lamina in various cellular processes.  相似文献   

5.
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder characterized by cutaneous fibrofolliculomas, pulmonary cysts, and kidney malignancies. Affected individuals carry germ line mutations in folliculin (FLCN), a tumor suppressor gene that becomes biallelically inactivated in kidney tumors by second-hit mutations. Similar to other factors implicated in kidney cancer, FLCN has been shown to modulate activation of mammalian target of rapamycin (mTOR). However, its precise in vivo function is largely unknown because germ line deletion of Flcn results in early embryonic lethality in animal models. Here, we describe mice deficient in the newly characterized folliculin-interacting protein 1 (Fnip1). In contrast to Flcn, Fnip1(-/-) mice develop normally, are not susceptible to kidney neoplasia, but display a striking pro-B cell block that is entirely independent of mTOR activity. We show that this developmental arrest results from rapid caspase-induced pre-B cell death, and that a Bcl2 transgene reconstitutes mature B-cell populations, respectively. We also demonstrate that conditional deletion of Flcn recapitulates the pro-B cell arrest of Fnip1(-/-) mice. Our studies thus demonstrate that the FLCN-FNIP complex deregulated in BHD syndrome is absolutely required for B-cell differentiation, and that it functions through both mTOR-dependent and independent pathways.  相似文献   

6.
7.
Tropomodulin (Tmod)1 caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at embryonic day 9.5. The Tmod1-null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1-null mice under the control of the alpha-myosin heavy chain promoter Tg(alphaMHC-Tmod1). In contrast to Tmod1-null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos are normal at embryonic day 9.5. Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1-null embryonic defects. Thus, although loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1(-/-) primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1(-/-) fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.  相似文献   

8.
9.
The ISWI ATPase Snf2h is required for early mouse development   总被引:1,自引:0,他引:1       下载免费PDF全文
Chromatin assembly and remodeling complexes alter histone-DNA interactions by using the energy of ATP hydrolysis catalyzed by nucleosome-dependent ATPase subunits. Several classes of ATP-dependent chromatin remodeling complexes exist, including the ISWI family. ISWI complexes disrupt histone-DNA interactions in vitro by facilitating nucleosome sliding. Snf2h is a widely expressed ISWI ATPase. We investigated the role of the Snf2h gene in mammalian development by generating a null mutation in mice. Snf2h heterozygous mutant mice are born at the expected frequency and appear normal. Snf2h-/- embryos die during the periimplantation stage. Blastocyst outgrowth experiments indicate that loss of Snf2h results in growth arrest and cell death of both the trophectoderm and inner cell mass. To investigate the effect of decreased Snf2h levels in adult cells, we performed antisense inhibition of Snf2h in human hematopoietic progenitors. Reducing Snf2h levels inhibited CD34+ progenitors from undergoing cytokine-induced erythropoiesis in vitro. Our results indicate that Snf2h is required for proliferation of early blastocyst-derived stem cells and adult human hematopoietic progenitors. Cells lacking Snf2h are thus prevented from further embryonic development and differentiation.  相似文献   

10.
11.
12.
13.
The maintenance of genome integrity and the generation of biological diversity are important biological processes, and both involve homologous recombination. In yeast and animals, homologous recombination requires the function of the RAD51 recombinase. In vertebrates, RAD51 seems to have acquired additional functions in the maintenance of genome integrity, and rad51 mutations cause lethality, but it is not clear how widely these functions are conserved among eukaryotes. We report here a loss-of-function mutant in the Arabidopsis homolog of RAD51, AtRAD51. The atrad51-1 mutant exhibits normal vegetative and flower development and has no detectable abnormality in mitosis. Therefore, AtRAD51 is not necessary under normal conditions for genome integrity. In contrast, atrad51-1 is completely sterile and defective in male and female meioses. During mutant prophase I, chromosomes fail to synapse and become extensively fragmented. Chromosome fragmentation is suppressed by atspo11-1, indicating that AtRAD51 functions downstream of AtSPO11-1. Therefore, AtRAD51 likely plays a crucial role in the repair of DNA double-stranded breaks generated by AtSPO11-1. These results suggest that RAD51 function is essential for chromosome pairing and synapsis at early stages in meiosis in Arabidopsis. Furthermore, major aspects of meiotic recombination seem to be conserved between yeast and plants, especially the fact that chromosome pairing and synapsis depend on the function of SPO11 and RAD51.  相似文献   

14.
gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects.  相似文献   

15.
Formation of the mammalian secondary palate is a highly regulated and complex process whose impairment often results in cleft palate, a common birth defect in both humans and animals. Loss-of-function analysis has linked a growing number of genes to this process. Here we report that Lhx8, a recently identified LIM homeobox gene, is expressed in the mesenchyme of the mouse palatal structures throughout their development. To test the function of Lhx8 in vivo, we generated a mutant mouse with a targeted deletion of the Lhx8 gene. Our analysis of the mutant animals revealed a crucial role for Lhx8 in palatogenesis. In Lhx8 homozygous mutant embryos, the bilateral primordial palatal shelves formed and elevated normally, but they often failed to make contact and to fuse properly, resulting in a cleft secondary palate. Because development of other craniofacial structures appeared normal, the impaired palatal formation in Lhx8-mutant mice was most likely caused by an intrinsic primary defect in the mesenchyme of the palatal shelves. The cleft palate phenotype observed in Lhx8-mutant mice suggests that Lhx8 is a candidate gene for the isolated nonsyndromic form of cleft palate in humans.  相似文献   

16.
同源盒基因分为HOX基因和Para-HOX基因两大类。作为一类高度保守的基因家族,其在胚胎发育过程中发挥了重要作用;近年来它与肿瘤的关系也受到越来越多的关注。此文对同源盒基因在胃肠道发育及胃肠道肿瘤发生中的作用作一综述。  相似文献   

17.
In mice, approximately 1,000 odorant receptor (OR) genes are expressed in olfactory sensory neurons (OSNs). Homeodomain sites can be recognized in the promoter and upstream regions of several OR genes. Here, using the yeast one-hybrid system and electrophoretic mobility shift assay, we report that Lhx2, a LIM-homeodomain protein, binds to the homeodomain site in the mouse M71 OR promoter region. In Lhx2-deficient mice, the morphology of the olfactory epithelium is grossly normal. However, expression of OMP is abolished and that of GAP43 is severely reduced, indicating that no mature and few immature OSNs are produced. M71 and other OR genes also are not expressed. OSN development appears to be arrested between the terminal differentiation into neurons and the transition to immature neurons. Thus, Lhx2 is required for complete development of OSNs in mice.  相似文献   

18.
19.
Within the mammalian inner ear there are six separate sensory regions that subserve the functions of hearing and balance, although how these sensory regions become specified remains unknown. Each sensory region is populated by two cell types, the mechanosensory hair cell and the supporting cell, which are arranged in a mosaic in which each hair cell is surrounded by supporting cells. The proposed mechanism for creating the sensory mosaic is lateral inhibition mediated by the Notch signaling pathway. However, one of the Notch ligands, Jagged1 (Jag1), does not show an expression pattern wholly consistent with a role in lateral inhibition, as it marks the sensory patches from very early in their development--presumably long before cells make their final fate decisions. It has been proposed that Jag1 has a role in specifying sensory versus nonsensory epithelium within the ear [Adam, J., Myat, A., Roux, I. L., Eddison, M., Henrique, D., Ish-Horowicz, D. & Lewis, J. (1998) Development (Cambridge, U.K.) 125, 4645--4654]. Here we provide experimental evidence that Notch signaling may be involved in specifying sensory regions by showing that a dominant mouse mutant headturner (Htu) contains a missense mutation in the Jag1 gene and displays missing posterior and sometimes anterior ampullae, structures that house the sensory cristae. Htu/+ mutants also demonstrate a significant reduction in the numbers of outer hair cells in the organ of Corti. Because lateral inhibition mediated by Notch predicts that disruptions in this pathway would lead to an increase in hair cells, we believe these data indicate an earlier role for Notch within the inner ear.  相似文献   

20.
BACKGROUND: Endogenous cyclooxygenase (COX) activity is required to maintain a relatively alkaline surface pH at the gastric luminal surface. AIMS: The purpose of this study was to determine which COX isoform, COX-1 or COX-2, is responsible for regulating the protective surface pH gradient and to test if COX inhibitors also had non-COX mediated effects in vivo. METHODS: Immunofluorescence and western blot analysis showed constitutive expression of both COX isoforms in the normal mouse stomach. We used in vivo confocal microscopy to measure pH near the mucosal surface of anaesthetised COX-1 (-/-), COX-2 (-/-), or wild-type mice of the same genetic background. RESULTS: When the gastric mucosal surface was exposed and superfused (0.2 ml/min) with a weakly buffered saline solution (pH 3) containing the pH indicator Cl-NERF, the pH directly at the gastric surface and thickness of the pH gradient were similar in wild-type and COX-2 (-/-) mice, but COX-1 (-/-) mice had a significantly thinner pH gradient. Addition of indomethacin had minimal effects on the residual surface pH gradient in COX-1 (-/-) mice, suggesting no role for COX-2 in surface pH regulation. Whole stomach perfusion studies demonstrated diminished net alkali secretion in COX-1 (-/-) mice, and application of SC-560 or rofecoxib to wild-type mice and mutant mice confirmed that only COX-1 inhibition reduced alkali secretion. CONCLUSION: COX-1 is the dominant isoform regulating the normal thickness of the protective surface pH gradient in mouse stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号