首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria.OCIS codes: (220.3620) Lens system design, (170.1790) Confocal microscopy, (170.2150) Endoscopic imaging, (170.3890) Medical optics instrumentation, (170.2680) Gastrointestinal, (170.4730) Optical pathology  相似文献   

2.
Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett's esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm(2) was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular.  相似文献   

3.
Eosinophilic esophagitis (EoE) is an allergic condition that is characterized by eosinophils infiltrating the esophageal wall. The treatment of the disease may require multiple follow up sedated endoscopies and biopsies to confirm elimination of eosinophils. These procedures are expensive, time consuming, and may be difficult for patients to tolerate. Here we report on the development of a confocal microscopy capsule for diagnosis and monitoring of EoE. The swallowable capsule implements a high-speed fiber-based reflectance confocal microscopy technique termed Spectrally Encoded Confocal Microscopy (SECM). SECM scans the sample in one dimension without moving parts by using wavelength swept source illumination and a diffraction grating at the back plane of the objective lens. As the wavelength of the source is tuned, the SECM optics within the 7 x 30 mm capsule are rotated using a driveshaft enclosed in a 0.8 mm flexible tether. A single rotation of the optics covered a field of view of 22 mm x 223 µm. The lateral and axial resolutions of the device were measured to be 2.1 and 14 µm, respectively. Images of Acetic Acid stained swine esophagus obtained with the capsule ex vivo and in vivo clearly showed squamous epithelial nuclei, which are smaller and less reflective than eosinophils. Imaging of esophageal biopsies from EoE patients ex vivo demonstrated the capability of this technology to visualize individual eosinophils. Based on the results of this study, we believe that this capsule will be a simpler and more effective device for diagnosing EoE and monitoring the therapeutic response of this disease.OCIS codes: (170.1790) Confocal microscopy, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal, (170.4730) Optical pathology  相似文献   

4.
5.
We have developed a low-cost, chromatic confocal endomicroscope (CCE) that can image a cross-section of the tissue at cellular resolution. In CCE, a custom miniature objective lens was used to focus different wavelengths into different tissue depths. Therefore, each tissue depth was encoded with the wavelength. A custom miniature spectrometer was used to spectrally-disperse light reflected from the tissue and generate cross-sectional confocal images. The CCE prototype had a diameter of 9.5 mm and a length of 68 mm. Measured resolution was high, 2 µm and 4 µm for lateral and axial directions, respectively. Effective field size was 468 µm. Preliminary results showed that CCE can visualize cellular details from cross-sections of the tissue in vivo down to the tissue depth of 100 µm.  相似文献   

6.
This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo. The results indicate that reflectance confocal endomicroscopy has the potential to be used in a clinical setting and guide diagnostic evaluation of biological tissue.OCIS codes: (220.3620) Lens system design, (350.3950) Micro-optics, (170.1790) Confocal microscopy, (170.2150) Endoscopic imaging, (120.3890) Medical optics instrumentation, (170.3880) Medical and biological imaging  相似文献   

7.
This paper presents the use and characterization of an electrically focus tunable lens to perform axial scanning in a confocal microscope. Lateral and axial resolution are characterized over a >250 µm axial scan range. Confocal microscopy using optical axial scanning is demonstrated in epithelial tissue and compared to traditional stage scanning. By enabling rapid axial scanning, minimizing motion artifacts, and reducing mechanical complexity, this technique has potential to enhance in vivo three-dimensional imaging in confocal endomicroscopy.OCIS codes: (170.0110) Imaging systems, (170.1790) Confocal microscopy, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (170.6900) Three-dimensional microscopy  相似文献   

8.
An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed.OCIS codes: (110.5125) Photoacoustics, (110.2350) Fiber optics imaging, (060.2380) Fiber optics sources and detectors, (170.7170) Ultrasound, (170.0110) Imaging systems  相似文献   

9.
By mimicking the variable resolution of the human eye, a newly designed foveated endomicroscopic objective shows the potential to improve current endoscopic based techniques of identifying abnormal tissue in the esophagus and colon. The prototype miniature foveated objective is imaged with a confocal microscope to provide large field of view images combined with a high resolution central region to rapidly observe morphological structures associated with cancer development in a mouse model.OCIS codes: (170.2150) Endoscopic imaging, (350.3950) Micro-optics, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (170.1790) Confocal microscopy  相似文献   

10.
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ.OCIS codes: (060.2370) Fiber optics sensors, (170.4500) Optical coherence tomography, (170.6935) Tissue characterization, (230.3990) Micro-optical devices  相似文献   

11.
Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus.OCIS codes: (060.2340) Fiber optics components, (170.2150) Endoscopic imaging, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (170.4500) Optical coherence tomography  相似文献   

12.
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.OCIS codes: (110.0110) Imaging systems, (110.2350) Fiber optics imaging, (110.4500) Optical coherence tomography, (170.2520) Fluorescence microscopy, (170.3890) Medical optics instrumentation  相似文献   

13.
Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures.OCIS codes: (170.4500) Optical coherence tomography, (120.3890) Medical optics instrumentation  相似文献   

14.
We demonstrate an ultrathin flexible cone-scanning forward-viewing OCT probe which can fit through the working channel of a flexible ureteroscope for renal pelvis imaging. The probe is fabricated by splicing a 200 µm section of core-less fiber and a 150 µm section of gradient-index (GRIN) fiber to the end of a single mode (SM) fiber. The probe is designed for common-path OCT imaging where the back-reflection of the GRIN fiber/air interface is used as the reference signal. Optimum sensitivity was achieved with a 2 degree polished probe tip. A correlation algorithm was used to correct image distortion caused by non-uniform rotation of the probe. The probe is demonstrated by imaging human skin in vivo and porcine renal pelvis ex vivo and is suitable for imaging the renal pelvis in vivo for cancer staging.OCIS codes: (110.4500) Optical coherence tomography, (170.2150) Endoscopic imaging, (170.3890) Medical optics instrumentation  相似文献   

15.
We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.OCIS codes: (110.2350) Fiber optics imaging, (120.3890) Medical optics instrumentation, (120.5800) Scanners, (110.6880) Three-dimensional image acquisition, (140.7260) Vertical cavity surface emitting lasers, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal, (170.3880) Medical and biological imaging, (170.4500) Optical coherence tomography  相似文献   

16.
A motion-compensated, hand-held, common-path, Fourier-domain optical coherence tomography imaging probe has been developed for image-guided intervention during microsurgery. A hand-held prototype instrument was achieved by integrating an imaging fiber probe inside a stainless steel needle and attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Real-time data acquisition, processing, motion compensation, and image visualization and saving were implemented on a custom CPU-GPU hybrid architecture. We performed 10× zero padding to the raw spectrum to obtain 0.16 µm position accuracy with a compensation rate of 460 Hz. The root-mean-square error of hand-held distance variation from target position was measured to be 2.93 µm. We used a cross-correlation maximization-based shift correction algorithm for topology correction. To validate the system, we performed free-hand OCT M-scan imaging using various samples.OCIS codes: (100.2000) Digital image processing, (110.4500) Optical coherence tomography, (170.3890) Medical optics instrumentation  相似文献   

17.
We describe the first handheld, swept source optical coherence tomography (SSOCT) system capable of imaging both the anterior and posterior segments of the eye in rapid succession. A single 2D microelectromechanical systems (MEMS) scanner was utilized for both imaging modes, and the optical paths for each imaging mode were optimized for their respective application using a combination of commercial and custom optics. The system has a working distance of 26.1 mm and a measured axial resolution of 8 μm (in air). In posterior segment mode, the design has a lateral resolution of 9 μm, 7.4 mm imaging depth range (in air), 4.9 mm 6dB fall-off range (in air), and peak sensitivity of 103 dB over a 22° field of view (FOV). In anterior segment mode, the design has a lateral resolution of 24 μm, imaging depth range of 7.4 mm (in air), 6dB fall-off range of 4.5 mm (in air), depth-of-focus of 3.6 mm, and a peak sensitivity of 99 dB over a 17.5 mm FOV. In addition, the probe includes a wide-field iris imaging system to simplify alignment. A fold mirror assembly actuated by a bi-stable rotary solenoid was used to switch between anterior and posterior segment imaging modes, and a miniature motorized translation stage was used to adjust the objective lens position to correct for patient refraction between −12.6 and + 9.9 D. The entire probe weighs less than 630 g with a form factor of 20.3 x 9.5 x 8.8 cm. Healthy volunteers were imaged to illustrate imaging performance.OCIS codes: (110.4500) Optical coherence tomography, (170.4460) Ophthalmic optics and devices, (080.3620) Lens system design, (170.0110) Imaging systems, (170.5755) Retina scanning, (170.4470) Ophthalmology  相似文献   

18.
Spectrally encoded endoscopy (SEE) is an ultra-miniature endoscopy technology that encodes each spatial location on the sample with a different wavelength. One challenge in SEE is achieving color imaging with a small probe. We present a novel SEE probe that is capable of conducting real-time RGB imaging using three diffraction orders (6th order diffraction of the blue spectrum, 5th of green, and 4th of red). The probe was comprised of rotating 0.5 mm-diameter illumination optics inside a static, 1.2 mm-diameter flexible sheath with a rigid distal length of 5 mm containing detection fibers. A color chart, resolution target, and swine tissue were imaged. The device achieved 44k/59k/23k effective pixels per R/G/B channels over a 58° angular field and differentiated a wide gamut of colors.  相似文献   

19.
We evaluate strategies to maximize the field of view (FOV) of in vivo retinal OCT imaging of human eyes. Three imaging modes are tested: Single volume imaging with 85° FOV as well as with 100° and stitching of five 60° images to a 100° mosaic (measured from the nodal point). We employ a MHz-OCT system based on a 1060nm Fourier domain mode locked (FDML) laser with a depth scan rate of 1.68MHz. The high speed is essential for dense isotropic sampling of the large areas. Challenges caused by the wide FOV are discussed and solutions to most issues are presented. Detailed information on the design and characterization of our sample arm optics is given. We investigate the origin of an angle dependent signal fall-off which we observe towards larger imaging angles. It is present in our 85° and 100° single volume images, but not in the mosaic. Our results suggest that 100° FOV OCT is possible with current swept source OCT technology.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.4460) Ophthalmic optics and devices, (120.3890) Medical optics instrumentation, (140.3510) Lasers, fiber  相似文献   

20.
We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 kHz axial scan rate. Using a high-speed data acquisition system, endoscopic OCT imaging of the rabbit esophagus and colon in vivo and human colon specimens ex vivo is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号