首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelial cells (ECs) govern smooth muscle cell (SMC) tone via the release of paracrine factors (eg, NO and metabolites of arachidonic acid). We tested the hypothesis that ECs can promote SMC relaxation or contraction via direct electrical coupling. Vessels (resting diameter, 57+/-3 microm; length, 4 mm) were isolated, cannulated, and pressurized (75 mm Hg; 37 degrees C). Two microelectrodes were used to simultaneously impale 2 cells (ECs or SMCs) in the vessel wall separated by 500 microm. Impalements of one EC and one SMC (n=26) displayed equivalent membrane potentials at rest, during spontaneous oscillations, and during hyperpolarization and vasodilation to acetylcholine. Injection of -0.8 nA into an EC caused hyperpolarization ( approximately 5 mV) and relaxation of SMCs (dilation, approximately 5 microm) along the vessel segment. In a reciprocal manner, +0.8 nA caused depolarization ( approximately 2 mV) of SMCs with constriction ( approximately 2 microm). Current injection into SMCs while recording from ECs produced similar results. We conclude that ECs and SMCs are electrically coupled to each other in these vessels, such that electrical signals conducted along the endothelium can be directly transmitted to the surrounding smooth muscle to evoke vasomotor responses.  相似文献   

2.
The excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in the growth and instability of atherosclerotic plaque. We examined the direct role of a newly developed chemical inhibitor of cholesteryl ester transfer protein, JTT-705, on SMC proliferation and angiogenesis in endothelial cells (ECs). JTT-705 inhibited human coronary artery SMC proliferation. JTT-705 induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK) in SMCs. In addition, the anti-proliferative effects of JTT-705 in SMCs were blocked by p38 MAPK inhibitor. JTT-705 induced the upregulation of p-p21(waf1), and this effect was blocked by dominant-negative Ras (N17), but not by inhibitors of p38 MAPK or ERK. In addition, JTT-705 also induced the upregulation of p27(kip1), and this effect was blocked by p38 MAPK inhibitor. Interestingly, culture medium from JTT-705-treated SMCs blocked human coronary artery EC tube formation in an in vitro model of angiogenesis indirectly via a decrease in vascular endothelial growth factor (VEGF) from SMCs and directly via an anti-proliferative effect in ECs. JTT-705 blocked the proliferation of SMCs through the activation of p38 kinase/p27(kip1) and Ras/p21(waf1) pathways, and simultaneously blocked EC tube formation associated with a decrease in VEGF production from SMCs and an anti-proliferative effect in ECs. Our results indicate that JTT-705 may induce a direct anti-atherogenic effect in addition to its inhibitory effect of CETP activity.  相似文献   

3.
Nitric oxide (NO) is a powerful angiogenic mediator acting downstream of vascular endothelial growth factor (VEGF). Both the endothelial NO synthase (eNOS) and the VEGFR-2 receptor colocalize in caveolae. Because the structural protein of these signaling platforms, caveolin, also represses eNOS activity, changes in its abundance are likely to influence the angiogenic process in various ways. In this study, we used mice deficient for the caveolin-1 gene (Cav-/-) to examine the impact of caveolae suppression in a model of adaptive angiogenesis obtained after femoral artery resection. Evaluation of the ischemic tissue perfusion and histochemical analyses revealed that contrary to Cav+/+ mice, Cav-/- mice failed to recover a functional vasculature and actually lost part of the ligated limbs, thereby recapitulating the effects of the NOS inhibitor L-NAME administered to operated Cav+/+ mice. We also isolated endothelial cells (ECs) from Cav-/- aorta and showed that on VEGF stimulation, NO production and endothelial tube formation were dramatically abrogated when compared with Cav+/+ ECs. The Ser1177 eNOS phosphorylation and Thr495 dephosphorylation but also the ERK phosphorylation were similarly altered in VEGF-treated Cav-/- ECs. Interestingly, caveolin transfection in Cav-/- ECs redirected the VEGFR-2 in caveolar membranes and restored the VEGF-induced ERK and eNOS activation. However, when high levels of recombinant caveolin were reached, VEGF exposure failed to activate ERK and eNOS. These results emphasize the critical role of caveolae in ensuring the coupling between VEGFR-2 stimulation and downstream mediators of angiogenesis. This study also provides new insights to understand the paradoxical roles of caveolin (eg, repressing basal enzyme activity but facilitating activation on agonist stimulation) in cardiovascular pathophysiology.  相似文献   

4.
Vascular smooth muscle cell (SMC) migration is a critical step in the development of neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and the extracellular matrix, facilitating SMC migration. Transfer of the endothelial nitric oxide synthase (eNOS) gene to the injury site inhibits neointima formation. Neither the signaling pathways leading to NO-mediated inhibition of SMC migration and proliferation nor the alterations in these pathways have been characterized. We hypothesize that NO inhibits SMC migration in part by regulating MMP activity. To test this hypothesis, we transfected cultured rat aortic SMCs with replication-deficient adenovirus containing bovine eNOS gene and analyzed the conditioned medium for MMP activity. We observed that eNOS gene transfer significantly (P<0.05) inhibited SMC migration and significantly (P<0.05) decreased MMP-2 and MMP-9 activities in the conditioned medium. Similarly, addition of the NO donor DETA NONOate and 8-bromo-cGMP to the culture medium significantly decreased MMP-2 and MMP-9 activities in the conditioned medium collected 24 hours after treatment. Furthermore, Western blot analysis of the conditioned medium collected from eNOS gene-transfected SMCs showed a significant increase in tissue inhibitor of metalloproteinases-2 (TIMP-2) levels. Our data suggest that NO decreases MMP-2 and MMP-9 activities and increases TIMP-2 secretion, and this shifts the balance of MMP activity, which may favor the inhibition of cell migration because of inhibition of extracellular matrix degradation.  相似文献   

5.
The phenotype of the endothelial cells (ECs) in the pseudointima of transjugular intrahepatic portasystemic shunts (TIPS) and the mechanisms of pseudointima formation after TIPS were unknown. We hypothesized that TIPS were lined by hepatic sinusoidal ECs, which stimulated the migration of smooth muscle cells (SMCs) into the pseudointima and their proliferation. Studies were done with the following specific aims: (1) isolation of ECs from TIPS pseudointima and comparison of their phenotype with human cirrhotic sinusoidal and vascular ECs derived from hepatic and portal veins as well as aorta, and (2) testing of the effects of TIPS ECs on TIPS-derived SMC migration and proliferation. ECs were isolated from eight TIPS retrieved from liver explants by immunomagnetic separation using monodispersed magnetizable polystyrene beads (Dynabeads M-450) coated with Ulex Europeus 1. EC phenotypes were examined by transmission electron microscopy, factor VIII-related antigen, CD31, CD14, and CD34 expression, uptake of acetylated LDL and secretion of type IV collagen. The effects of EC-conditioned media on SMC migration and proliferation were tested in multiwell chemotaxis chambers and by cell counting, respectively. ECs were obtained from TIPS pseudointima with >95% purity. The phenotype of TIPS-derived ECs matched that of cirrhotic sinusoidal endothelium (both expressed CD14) and differed from that of vascular endothelium (CD14 negative, Weibel-Palade positive). Conditioned media from both stenosed (n = 3) and nonstenosed (n = 3) TIPS-derived endothelial cells produced a marked (>100%) P <.001 increase in migration as well as (up to 88%) P <.01 proliferation of SMCs from both stenosed (n = 3) as well as nonstenosed TIPS (n = 3). These data indicate that TIPS pseudointima are lined by hepatic sinusoidal endothelial cells, which stimulate pseudointima formation by increasing SMC migration and proliferation.  相似文献   

6.
This study addresses the effect of sustained increased pulsatile flow on nitric oxide synthase (NOS) and cyclooxygenase (Cox) expression and activity in co-cultured endothelial cells (EC) and vascular smooth muscle cells (SMC). Using a perfused transcapillary co-culture system which permits the chronic exposure of cultured EC and SMC to physiological shear stresses, co-cultures were exposed to step-wise increases in flow up to: (i) 2 ml/min (low flow: 0.5 dyn/cm2): or (ii) 44 ml/min (high flow: 15 dyn/cm2) and maintained for 72 h before SMC and EC were harvested separately. There was no NOS activity or protein expression in co-cultured SMC under flow conditions. There was a significant increase in eNOS activity in co-cultured EC under high flow conditions, compared to low flow, which correlated with an increase in eNOS expression and mRNA levels. The flow-induced increase in eNOS activity was potentiated by indomethacin treatment, suggesting a modulatory role for a cyclooxygenase product. Prostacyclin levels in co-culture perfusate were significantly elevated under high flow conditions. While both co-cultured EC and SMC expressed cyclooxygenase (Cox-I and Cox-II), they were differentially regulated by pulsatile flow, EC Cox-I and Cox-II protein expression were both decreased. Indomethacin treatment increased the expression of both Cox-I and Cox-II in co-cultured SMC under high flow conditions. We conclude that sustained increases in pulsatile flow maintain elevated eNOS and Cox protein expression and activity in EC while decreasing Cox expression in co-cultured SMC. These data suggest that regulation of these pathways may contribute to flow-induced vascular remodeling in vivo.  相似文献   

7.
BACKGROUND: Oxidized LDL (oxLDL) inhibits endothelial cell (EC) migration. Stimulating ECs with vascular endothelial growth factor (VEGF) leads to the activation of Akt/protein kinase B, which in turn activates endothelial nitric oxide synthase (eNOS) by phosphorylation on serine 1177. VEGF-induced cell migration is dependent on the generation of nitric oxide (NO). Therefore, we investigated whether oxLDL affects EC migration by an inhibitory effect on the Akt/eNOS pathway. METHODS AND RESULTS: During an in vitro "scratched wound assay," oxLDL dose-dependently inhibited the VEGF-induced migration of human umbilical vein endothelial cells. Western blot analysis revealed that oxLDL dose- and time-dependently led to dephosphorylation and thus deactivation of Akt. Moreover, oxLDL inhibited the VEGF-induced generation of NO, as detected and quantified using a fluorescent NO indicator, 4,5-diaminofluorescein diacetate. Overexpression of a constitutively active Akt construct (Akt T308D/S473D) or a phosphomimetic eNOS construct (eNOS S1177D) almost completely reversed the inhibitory effect of oxLDL on VEGF-induced EC migration and NO generation. CONCLUSIONS: Our data indicate that oxLDL-induced dephosphorylation of Akt, followed by impaired eNOS activation, reduces the intracellular level of NO and thereby inhibits VEGF-induced EC migration.  相似文献   

8.
BACKGROUND: Previous studies have shown that mesenchymal stem cells (MSCs) transplantation can promote neovascularization and regenerate damaged myocardium. However, it remains unknown whether MSCs seeding can be used to repair injured cellular components in vascular diseases. In this study we explored the feasibility of applying MSCs to endothelium repair in endothelial damage and vasoproliferative disorders. METHODS: Ex vivo model of endothelium repair was developed in which rabbit vascular smooth muscle cells (SMCs) were inoculated into the upper chamber and rabbit endothelial cells (ECs)/human MSCs into the lower chamber of a co-culture system. 3H-TdR incorporation and PCNA protein expression were assayed and migrated number of SMCs was calculated to evaluate the effect of MSCs seeding on SMCs growth. Flk-1 and vWF protein expressions were observed to analyze the plasticity of the seeded MSCs along endothelial lineage. RESULTS: In this co-culture system, no vWF protein but Flk-1 protein was observed in the 25.71% of MSCs after having been co-cultured with mature rabbit ECs for 5 days. Compared with the control group, the proliferation and migration of SMCs was significantly increased by proliferative ECs but decreased by confluent ECs (n=6, P<0.01). MSCs seeding decreased the proliferation and migration of SMCs compatible with the effect of proliferative ECs (n=6, P<0.001). However, no inhibition on SMCs growth was observed with MSCs seeding in comparison to the effect of confluent ECs. CONCLUSIONS: MSCs seeding can inhibit the proliferation and migration of SMCs. MSCs co-cultured with mature ECs have the ability to undergo milieu-dependent differentiation toward ECs.  相似文献   

9.
10.
Endothelial cell (EC) injury and the response of EC and smooth muscle cells (SMCs) to injury contribute to the pathophysiology in patients with vascular disease and atherosclerosis. Since platelets have been suggested to play an important role in modulating vascular injury, the present study was undertaken to examine the influence and mechanism of action of individual platelet factors on bovine aortic EC and SMC migration using an in vitro wound assay system. Serotonin decreased EC proliferation and reduced EC migration 21 +/- 1% (p less than 0.005), which was attenuated by imipramine. Transforming growth factor-beta reduced EC proliferation and decreased EC migration 52 +/- 3% (p less than 0.005). Norepinephrine increased EC proliferation but decreased EC migration 26 +/- 2% (p less than 0.005), which was abolished by phenoxybenzamine. Histamine increased EC proliferation but reduced EC migration 29 +/- 2% (p less than 0.005), which was attenuated by diphenhydramine. Platelet-derived growth factor decreased EC proliferation and decreased EC migration 40 +/- 2% (p less than 0.005). In contrast, serotonin increased SMC proliferation and increased SMC migration 31 +/- 2% (p less than 0.005), which was abolished by ketanserin. Transforming growth factor-beta increased SMC migration 35 +/- 5% (p less than 0.005). Norepinephrine increased SMC proliferation and increased SMC migration 43 +/- 4% (p less than 0.005), which was abolished by propranolol. Histamine increased SMC proliferation and increased SMC migration 38 +/- 3% (p less than 0.005), which was abolished by cimetidine. Platelet-derived growth factor increased SMC proliferation and increased SMC migration 40 +/- 3% (p less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVES: This study examined effects of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitor cerivastatin on human saphenous vein (SV), endothelial cells (EC) and smooth muscle cells (SMC). BACKGROUND: Venous bypass graft failure involves EC dysfunction and SMC proliferation. Substances that improve EC function and inhibit SMC proliferation would be of clinical relevance. METHODS: Both EC and SMC were isolated from SV. Endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production were analyzed by immunoblotting and porphyrinic microsensor. The SMC proliferation was assayed by 3H-thymidine incorporation. Protein kinases and cell cycle regulators were analyzed by immunoblotting. RESULTS: Cerivastatin (10(-9) to 10(-6) mol/liter) enhanced eNOS protein expression and NO release (about two-fold) in EC in response to Ca2+ ionophore (10(-6) mol/liter). This was fully abrogated by the HMG-CoA product mevanolate (2 x 10(-4) mol/liter). In SMC, platelet-derived growth factor (5 ng/ml) enhanced 3H-thymidine incorporation (298 +/- 23%, n = 4), activated cyclin-dependent kinase (Cdk2), phosphorylated Rb and down-regulated p27Kip1 (but not p21CiP1). Cerivastatin reduced the 3H-thymidine incorporation (164 +/- 11%, p < 0.01), inhibited Cdk2 activation and Rb phosphorylation, but did not prevent p27Kip1 down-regulation, nor p42mapk and p70S6K activation. Mevalonate abrogated the effects of cerivastatin on Cdk2 and Rb but only partially rescued the 3H-thymidine incorporation (from 164 +/- 11% to 211 +/- 13%, n = 4, p < 0.01). CONCLUSIONS: In humans, SVEC inhibition of HMG-CoA/mevalonate pathway contributes to the enhanced eNOS expression and NO release by cerivastatin, whereas in SMC, inhibition of this pathway only partially explains cerivastatin-induced cell growth arrest. Inhibition of mechanisms other than p42mapk and p70S6K or Cdk2 are also involved. These effects of cerivastatin could be important in treating venous bypass graft disease.  相似文献   

12.
OBJECTIVE: Vascular endothelial growth factor (VEGF) induces the release of nitric oxide (NO) from endothelial cells. There is also limited data suggesting that NO may enhance VEGF generation. METHODS: To further investigate this interaction, we examined the effect of exogenous and endogenous NO on the synthesis of VEGF by rat and human vascular smooth muscle cells (VSMC) by exposing cells to exogenous NO donors, or to genetic augmentation of eNOS or iNOS. RESULTS: NO-donors potentiated by 2-fold the generation of VEGF protein by rat or human VSMC. Similarly, rat or human VSMC transiently transfected with plasmid DNA encoding eNOS or iNOS, synthesized up to 3-fold more VEGF than those transfected with control plasmid DNA, an effect which was reversed after treatment with the NOS antagonist L-NAME. Rat VSMC stably transfected with pKeNOS plasmid, constitutively produced NO and released high concentrations of VEGF. In these cells, L-NAME significantly reduced NO synthesis and decreased VEGF generation. The VEGF protein produced by NOS-transfected VSMC was biologically active, as conditioned media harvested from these cells increased endothelial cell proliferation. CONCLUSION: These studies reveal that NO derived from NO-donors or generated by NOS within the cells, upregulates the synthesis of VEGF in vascular smooth muscle cells. Administration of NO donors, or augmentation of endogenous NO synthesis, may be an alternative approach in therapeutic angiogenesis.  相似文献   

13.
AIM: The excessive proliferation and migration of vascular smooth muscle cells (SMCs) and angiogenesis of endothelial cells (ECs) participate in the growth and instability of atherosclerotic plaques. It is unclear whether Jun N-terminal kinase (JNK) is pro-or anti-atherogenic. METHODS: We examined the direct effect of JNK inhibitor (JNK-I) on the proliferation and formation of tubes by human coronary SMCs and human coronary ECs. RESULTS: Culture medium from JNK-I-treated SMCs prevented ECs from forming tubes in an in vitro model of angiogenesis indirectly by reducing the amount of vascular endothelial growth factor (VEGF) released from SMCs. In addition, JNK-I attenuated the expression of pro-matrix metalloproteinase-2 in ECs. When added back to the medium of SMCs treated with JNK-I, VEGF blocked the inhibitory effect on the formation of tubes. CONCLUSION: Our results indicate JNK-I to have a direct anti-atherogenic effect in SMCs and ECs.  相似文献   

14.
Our objective was to determine the precise role of endothelial nitric oxide synthase (eNOS) as a modulator of cardiac O2 consumption and to further examine the role of nitric oxide (NO) in the control of mitochondrial respiration. Left ventricle O2 consumption in mice with defects in the expression of eNOS [eNOS (-/-)] and inducible NOS [iNOS (-/-)] was measured with a Clark-type O2 electrode. The rate of decreases in O2 concentration was expressed as a percentage of the baseline. Baseline O2 consumption was not significantly different between groups of mice. Bradykinin (10(-4) mol/L) induced significant decreases in O2 consumption in tissues taken from iNOS (-/-) (-28+/-4%), wild-type eNOS (+/+) (-22+/-4%), and heterozygous eNOS(+/-) (-22+/-5%) but not homozygous eNOS (-/-) (-3+/-4%) mice. Responses to bradykinin in iNOS (-/-) and both wild-type and heterozygous eNOS mice were attenuated after NOS blockade with N-nitro-L-arginine methyl ester (L-NAME) (-2+/-5%, -3+/-2%, and -6+/-5%, respectively, P<0.05). In contrast, S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4) mol/L), which releases NO spontaneously, induced decreases in myocardial O2 consumption in all groups of mice, and such responses were not affected by L-NAME. In addition, pretreatment with bacterial endotoxin elicited a reduction in basal O2 consumption in tissues taken from normal but not iNOS (-/-)-deficient mice. Our results indicate that the pivotal role of eNOS in the control of myocardial O2 consumption and modulation of mitochondrial respiration by NO may have an important role in pathological conditions such as endotoxemia in which the production of NO is altered.  相似文献   

15.
Li L  Ma KT  Zhao L  Li XZ  Zhang ZS  Shi WY  Zhu H  Wei LL  Si JQ 《Microvascular research》2012,84(2):211-217
Gap junctions (GJs) facilitate communication and promote transfer of signaling molecules or current between adjacent cells in various organs to coordinate cellular activity. In arteries, homocellular GJs are present between adjacent smooth muscle cells (SMCs) and between adjacent endothelial cells (ECs), whilst many arteries also exhibit heterocellular GJs between SMCs and ECs. To test the hypothesis that there is differential cell coupling in guinea pig spiral modiolar arteries (SMA), we used intracellular recording technique to record cellular activities simultaneously in ECs or SMCs in acutely isolated guinea pig SMA preparations. Cell types were identified by injection of a fluorescent dye, propidium iodide (PI), through recording microelectrodes. Stable intracellular recordings were made in 120 cells among which 61 were identified as SMCs and 28 as ECs. Dual intracellular recordings were conducted to detect the coexistence of the two distinct levels of resting potential (RP) and to estimate the intensity of electrical coupling between two cells by a current pulse of up to 0.5-1.5 nA. The electrotonic potential was detected not only in the current-injected cell, but also in the majority of non-injected cells. The electrical coupling ratios (ECRs) of homocellular cells were not significant (P>0.05) (0.084±0.032 (n=6) and 0.069±0.031 (n=7) for EC-EC and SMC-SMC pairs, respectively). By contrast, the ECRs of heterocellular cells were significantly different when a current pulse (1.5 nA, 2s) was injected into EC and SMC respectively (0.072±0.025 for EC; 0.003±0.001 for SMC, n=5, P<0.01). The putative gap junction blocker 18β-glycyrrhetinic acid significantly attenuated electrical coupling in both homocellular and heterocellular forms. The results suggest that homocellular GJs within SMCs or ECs are well coordinated but myoendothelial couplings between ECs and SMCs are unidirectional.  相似文献   

16.
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2-associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases.  相似文献   

17.
Receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is emerging as an important regulator of vascular pathophysiology. Here, we demonstrate a novel role of RANKL as a vascular permeability factor and a critical role of endothelial nitric oxide synthase (eNOS) in RANKL-induced endothelial function. RANKL increased the vascular permeability and leukocyte infiltration in vivo and caused the breakdown of the blood-retinal barrier in wild-type mice but not in eNOS-deficient mice. In vitro, it increased endothelial permeability and reduced VE-cadherin-facilitated endothelial cell-cell junctions in a NO-dependent manner. RANKL also led to the activation of Akt and eNOS and to NO production in endothelial cells (ECs). These effects were suppressed by the inhibition of TRAF6, phosphoinositide 3'-kinase (PI3K), Akt, or NOS by genetic or pharmacologic means. Inhibition of the TRAF6-mediated NO pathway reduced EC migration and capillary-like tube formation in response to RANKL. Moreover, the effects of RANKL on ECs sprouting from the aorta, and neovessel formation in both the mouse Matrigel plug assay and corneal micropocket assay, were impaired in eNOS-deficient mice. These results demonstrate that RANKL promotes vascular permeability and angiogenesis by stimulating eNOS by a TRAF6-PI3K-Akt-dependent mechanism. These properties may be relevant to the pathogenesis of angiogenesis-dependent and inflammatory vascular diseases.  相似文献   

18.
Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr(530) dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser(473)) and eNOS (p-Ser(1177)), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr(686) phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation.  相似文献   

19.
This study tests the hypothesis that alpha(v)beta(3) integrin receptors play a critical role in smooth muscle cell (SMC) migration after arterial injury and facilitate migration through the upregulation of matrix metalloproteinase (MMP) activity. We showed that beta(3) integrin mRNA was upregulated by SMCs in the balloon-injured rat carotid artery in coincidence with MMP-1 expression and early SMC migration. Treatment with the beta(3) integrin-blocking antibody F11 significantly decreased SMC migration into the intima at 4 days after injury, from 110.8+/-30.8 cells/mm(2) in control rats to 10.29+/-7.03 cells/mm(2) in F11-treated rats (P=0.008). By contrast, there was no effect on medial SMC proliferation or on medial SMC number in the carotid artery at 4 days. In vitro, we found that human newborn SMCs produced MMP-1 but that adult SMCs did not. This was possibly due to the fact that newborn SMCs expressed alpha(v)beta(3) integrin receptors, whereas adult SMCs did not. Stimulation of newborn (alpha(v)beta(3)+) SMCs with osteopontin, a matrix ligand for alpha(v)beta(3), increased MMP-1 production from 114.4+/-35.8 ng/mL at 0 nmol/L osteopontin to 232.5+/-57.5 ng/mL at 100 nmol/L osteopontin. Finally, we showed that stimulation of newborn SMCs with platelet-derived growth factor-BB and osteopontin together increased the SMC production of MMP-9. Thus, our results support the hypothesis that SMC alpha(v)beta(3) integrin receptors play an important role in regulating migration by stimulating SMC MMP production.  相似文献   

20.
We examined effects of pharmacological inhibition of nitric oxide synthase (NOS) and genetic deficiency of the endothelial isoform of NOS (eNOS) on structure and mechanics of cerebral arterioles. We measured pressure, diameter, and cross-sectional area (CSA) of the vessel wall (histologically) in maximally dilated cerebral arterioles in mice that were untreated or treated for 3 months with the NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg per day in drinking water). Treatment with L-NAME increased systemic arterial mean pressure (SAP; 143+/-4 versus 121+/-4 mm Hg, P<0.05) and CSA (437+/-27 versus 310+/-34 microm2, P<0.05). These findings suggest that hypertension induced in mice by NOS inhibition is accompanied by hypertrophy of cerebral arterioles. To determine the role of the eNOS isoform in regulation of cerebral vascular growth, we examined mice with targeted disruption of one (heterozygous) or both (homozygous) genes encoding eNOS. Wild-type littermates served as controls. SAP and CSA were significantly increased in homozygous (SAP, 141+/-5 versus 122+/-3 mm Hg in wild-type mice, P<0.05; CSA, 410+/-18 versus 306+/-15 microm2 in wild-type mice, P<0.05), but not in heterozygous (SAP, 135+/-4 mm Hg; CSA, 316+/-32 microm2) eNOS-deficient mice. Carotid ligation normalized cerebral arteriolar pulse pressure did not prevent increases in CSA in homozygous eNOS-deficient mice. Thus, cerebral arterioles undergo hypertrophy in homozygous eNOS-deficient mice, even in the absence of increases in arteriolar pulse pressure. These findings suggest that eNOS plays a major role in regulation of cerebral vascular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号