首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To study the effects of topical nipradilol, a non-selective beta blocker with alpha blocking and nitroglycerin-like activities, on intraocular pressure (IOP) and aqueous humour dynamics in normal humans and in patients with ocular hypertension. METHODS: Nipradilol (0.06%, 0.125%, 0.25%, 0.5%) was applied to normal volunteers (n = 12) to test for IOP lowering effects. In a second group of normal volunteers (n = 11), nipradilol (0.125% and 0.25%) and timolol (0. 5%) were compared for IOP lowering effects. After a single administration of 0.25% nipradilol, IOP, flare intensity in the anterior chamber, aqueous flow, uveoscleral outflow, tonographic outflow facility, and episcleral venous pressure were either directly measured or mathematically calculated. Topical nipradilol (0.25%) was administered to 24 patients with ocular hypertension twice daily for 8 weeks. RESULTS: Administration of 0.25% nipradilol decreased IOP with a maximum reduction of 4.2 mm Hg lasting 12 hours. A single instillation of both 0.25% nipradilol and 0.5% timolol reduced the IOP in normotensive human subjects to the same degree. A single instillation of 0.25% nipradilol decreased the aqueous flow rate in the treated eye by 20%. Nipradilol produced no significant effect in tonographic outflow facility or episcleral venous pressure, but uveoscleral outflow was increased. In patients with ocular hypertension, twice daily instillation of 0.25% nipradilol decreased IOP without tachyphylaxis for the 8 week test period. CONCLUSION: Topical nipradilol (0.25%) reduced IOP by decreasing the aqueous flow rate and probably also by increasing uveoscleral outflow. Nipradilol should be further investigated as a new antiglaucoma drug.  相似文献   

2.
This study examines the mechanisms by which brinzolamide reduces intraocular pressure (IOP) in healthy rabbits and in monkeys with unilateral ocular hypertension. Intraocular pressures were measured by pneumatonometry and aqueous flow was determined by fluorophotometry before and after three twice-daily drops of 1% brinzolamide to both eyes per monkey and after similar treatment to one eye per rabbit. In monkeys, outflow facility was determined by fluorophotometry and uveoscleral outflow was calculated. In rabbits, outflow facility was determined by two-level constant pressure infusion and uveoscleral outflow was measured by an intracameral tracer technique. Compared with contralateral vehicle-treated rabbit eyes, IOP was reduced in brinzolamide-treated eyes by 2.5 +/- 1.9 mmHg (mean +/- standard deviation; p =.006) at four hours after the second dose. Aqueous flow was reduced by 0.50 +/- 0.65 microl/min (p =.02). This effect was found in rabbits previously treated with brinzolamide but not in naive rabbits. Treated hypertensive eyes of monkeys had a reduction in IOP of 7.3 +/- 8.8 mmHg (p = 0.01) and aqueous flow of 0.69 +/- 1.10 microL/min (p = 0.05) when compared with baseline. Brinzolamide did not affect outflow facility or uveoscleral outflow in either rabbits or monkeys. It is concluded that, in normotensive eyes of rabbits and hypertensive eyes of monkeys, brinzolamide reduces IOP by reducing aqueous flow and not by affecting aqueous humor drainage.  相似文献   

3.
PURPOSE: To evaluate the ocular hypotensive effect of topical CS-088, an angiotensin AT1 receptor antagonist, and the effect of CS-088 on aqueous humor dynamics. METHODS: The effects of CS-088 on intraocular pressure (IOP) were studied in 2 models of rabbit ocular hypertension. Experimental ocular hypertension was induced in albino rabbits by injecting alpha-chymotrypsin into the anterior chamber (alpha-chymotrypsin rabbit). The effects of the single application of CS-088 were examined. Additionally, CS-088 was repeatedly administered over a period of 3 weeks to hereditary ocular hypertensive rabbits (buphthalmic rabbits, JWHR bu/bu) and the IOPs were monitored throughout the experiment. The effects of CS-088 on aqueous humor dynamics were also examined in normal rabbits. In this study, the methods of IOP recovery rate, two-level constant pressure perfusion and fluorescein-dextran perfusion were used respectively to determine the aqueous inflow, outflow facility and uveoscleral outflow (USF). RESULTS: CS-088 at 1% and 2% significantly lowered the IOP in the alpha-chymotrypsin rabbits with a maximum IOP reduction of 10.1 mmHg. The maximum effect obtained with 2% CS-088 was no greater than that with 1% CS-088. In the buphthalmic rabbits, 2% CS-088 also lowered IOP significantly. Timolol was effective in both models. In the study on aqueous humor dynamics, a slight increase in USF (17%) was seen after a topical application of CS-088 whereas changes in aqueous inflow or outflow facility were not observed. CONCLUSIONS: Topical CS-088 can decrease IOP in rabbits. Despite the USF change, the ocular hypotensive mechanism by CS-088 was not fully determined.  相似文献   

4.

Purpose

To compare the ocular hypotensive effect of nipradilol and timolol in combination with bunazosin in rabbits.

Methods

The intraocular pressure (IOP) in normal rabbits was measured using an applanation pneumatonograph. Nipradilol, timolol, and bunazosin were instilled, individually or in combination, into the inferior conjunctival sac.

Results

Nipradilol (0.25%), timolol (0.5%), and bunazosin (0.01%) individually lowered IOP. The IOP-lowering effects of both nipradilol and timolol were significantly enhanced by the combined application of bunazosin (0.01%). In the presence of 5% timolol or 0.1% bunazosin, IOP was further lowered by the addition of nipradilol. The IOP-lowering effect of nipradilol was partly inhibited by pretreatment with c-PTIO (10?mM), a nitric oxide (NO)-trapping agent.

Conclusions

The present study demonstrated that the IOP-lowering effects of nipradilol are due to β- and α1-blocking and NO-donating actions, and bunazosin has an additive effect on the IOP-lowering effect of nipradilol or timolol. Jpn J Ophthalmol 2005;49:523–526 © Japanese Ophthalmological Society 2005  相似文献   

5.
PURPOSE: This study investigates the time-dependent effects of superior cervical ganglionectomy (SCGx) on aqueous humor dynamics and ocular blood flow in rabbits. METHODS: Measurements were made at various times between 24 hours and 12 months after SCGx. Intraocular pressure (IOP) was measured by pneumatonometry, aqueous flow by fluorophotometry and outflow facility by tonography. Uveoscleral outflow was determined by an intracameral tracer infusion technique and blood flow to the choroid was evaluated with fluorescent microspheres. Values in denervated eyes were compared with the contralateral, normally-innervated eyes using a paired Student's two-tailed t-test. RESULTS: At 24 hours after SCGx, IOP in denervated eyes was less than in normally-innervated eyes (14.6 +/- 0.8 vs 20.1 +/- 1.5 mmHg, 27%, p < 0.002). At one month, IOPs were not different between eyes. Compared with normally-innervated eyes at 10-12 months, IOP in denervated eyes was greater (20.4 +/- 0.7 vs 17.2 +/- 0.9 mmHg, 19%, p < 0.001), outflow facility was less (0.15 +/- 0.02 vs 0.21 +/- 0.01 microl/min/mmHg, 29%, p < 0.01) and blood flow to the choroid was less (12.1 +/- 5.0 vs 16.2 +/- 6.0 ml/min/gm tissue, 25%, p < 0.05). Aqueous humor flow was not significantly altered by SCGx at any time. CONCLUSIONS: The reduction in IOP at 24 hours after SCGx was not due to any change in aqueous flow or uveoscleral outflow (current study) but rather to an increase in outflow facility (previous studies). At 10-12 months, IOP was elevated because outflow facility was significantly reduced. The reduction in choroidal blood flow at 10-12 months may have occurred because of the increased IOP.  相似文献   

6.
Purpose The amount of intraocular pressure (IOP) reduction achieved by the use of latanoprost eyedrops varies among patients, and there are even nonresponders. This report examines whether there is any correlation between the amount of individual variability in IOP reduction and the uveoscleral outflow facility after latanoprost eyedrop instillation in normal-tension glaucoma patients. Methods Sixteen normal-tension glaucoma patients (mean age, 56.4 years) were enrolled in the study to investigate the relationship between the amount of IOP reduction and outflow facility. Before treatment, subjects underwent circadian IOP measurement and then tonography, and the outflow facility was calculated. Subsequently, patients began treatment once daily with latanoprost instillation in one eye. After 4 weeks of daily latanoprost treatment, circadian IOP was measured again. Results Mean pretreatment outflow facility was 0.23 ± 0.05 μl/min per mmHg. On average, latanoprost instillation decreased IOP by 2.8 mmHg, but the reduction varied among individuals from −0.3 mmHg to 5.8 mmHg. No significant correlation was noted between the outflow facility and the IOP decline associated with latanoprost. Conclusion Because there was no significant correlation between individual IOP reduction by latanoprost and outflow facility, the differences in substantial change in uveoscleral outflow after latanoprost administration may be one explanation for the individual variation in IOP reduction after treatment with this drug. Jpn J Ophthalmol 2006;50:20–24 ? Japanese Ophthalmological Society 2006  相似文献   

7.
PURPOSE: To study the effects of topically applied nipradilol, an alpha-beta blocker recently developed in Japan as an ocular hypotensive drug, on retinal blood flow (RBF) in healthy volunteers. METHODS: Seven healthy volunteers (mean age, 33 years) underwent measurement of RBF using a newly developed stabilized laser Doppler velocimetry system. In a double-blind trial, retinal arterial blood flow, intraocular pressure (IOP), and blood pressure (BP) were measured before and after the instillation of nipradilol or saline every hour for 5 hours. RESULTS: Retinal arterial blood flow and the diameter of the retinal artery significantly (p< 0.05) increased at 4 hours after instillation in nipradilol-treated eyes. Retinal blood velocity did not change significantly. Nipradilol evoked a significant (p< 0.05) bilateral decrease in IOP. Mean BP decreased significantly (p< 0.05) 3 hours after instillation. Ocular perfusion pressure (OPP), calculated from the mean BP and IOP, did not change significantly during the study. CONCLUSION: Topical nipradilol significantly increased retinal arterial blood flow in healthy volunteers, not through a secondary effect dependent on a change in OPP, but likely through the vasodilatory action of the drug.  相似文献   

8.
PURPOSE: To elucidate the intraocular pressure (IOP)-lowering effects and associated characteristics of Y-39983, a selective Rho-associated coiled coil-forming protein kinase (ROCK) inhibitor derived from Y-27632, in animal eyes. METHODS: Y-39983 was compared with Y-27632 for selectivity of ROCK inhibition by biochemical assay. The IOP was monitored by pneumatonometer in albino rabbits and cynomolgus monkeys that were given topically administered Y-39983. The total outflow facility and uveoscleral outflow were measured by two-level constant-pressure perfusion and perfusion technique using fluorescein isothiocyanate-dextran, respectively, at 2 hours after topical administration of Y-39983 in albino rabbits. The ocular toxicologic effects of topical administration of Y-39983 were observed in albino rabbits and cynomolgus monkeys. RESULTS: A biochemical assay showed that Y-39983 inhibited ROCK more potently than Y-27632. In rabbits, topical administration of Y-39983 significantly increased conventional outflow by 65.5%, followed by significant, dose-dependent reduction in IOP. Maximum IOP reduction was 13.2 +/- 0.6 mm Hg (mean +/- SE) at 0.1% Y-39983 in rabbits. In monkeys, at 3 hours after topical administration of 0.05% Y-39983, maximum reduction of IOP was 2.5 +/- 0.8 mm Hg. No serious side effects were observed in ocular tissues except sporadic punctate subconjunctival hemorrhage during long-term topical administration of Y-39983 four times a day (at 2-hour intervals) in rabbits or monkeys. However, punctate subconjunctival hemorrhage was not observed with administration twice daily (at a 6-hour interval) or three times a day (at 5-hour intervals). CONCLUSIONS: Y-39983 causes increased outflow facility followed by IOP reduction. Y-39983 ophthalmic solution may be a candidate drug for lowering of IOP, since it increases conventional outflow and produces relatively few side effects.  相似文献   

9.
PURPOSE: To investigate the ocular hypotensive effect of the prostanoid EP2 receptor agonist butaprost and to establish its mechanism of action. METHODS: All experiments were performed in cynomolgus monkeys after topical application of butaprost (0.1%). The effects of butaprost on aqueous humor flow were determined by fluorophotometry. Total outflow facility was measured by the two-level, constant-pressure perfusion method, and uveoscleral outflow was determined by perfusion of FITC-labeled dextran through the anterior chamber. Effects on ocular morphology were studied after tissue fixation with transcardial perfusion by paraformaldehyde and immersion fixation of the globe, in animals subjected to long-term treatment with butaprost. Conscious ocular normotensive monkeys and monkeys with unilateral ocular hypertension were used for intraocular pressure (IOP) studies. RESULTS: Butaprost had no significant effect on aqueous humor flow or total outflow facility in ocular normotensive monkeys. Uveoscleral outflow was significantly higher in the butaprost treated eyes than in vehicle treated eyes, 1.03 +/- 0.20 vs. 0.53 +/- 0.18 microL.min(-1). After a 1-year treatment with butaprost, the morphology of the ciliary muscle was changed, showing increased spaces between ciliary muscle bundles and the apparent formation of new outflow channels. In many instances, changes were observed in the trabecular meshwork as well. Butaprost, in a single 0.1% dose, decreased IOP significantly in ocular normotensive monkeys and reduced IOP in laser-induced glaucomatous monkey eyes to the same level as that in the ocular normotensive contralateral eyes. CONCLUSIONS: The prostanoid EP2 receptor agonist butaprost appears to lower IOP by increasing uveoscleral outflow, according to both physiological and morphologic findings. Although the prostanoid EP2 receptor is structurally and functionally distinct from the FP receptor, the effects of EP2 and FP receptor stimulation on aqueous humor outflow are similar.  相似文献   

10.
PURPOSE: To determine the mechanism by which travoprost 0.004% reduces intraocular pressure (IOP) in patients with ocular hypertension or primary open angle glaucoma. DESIGN: This is a randomized, double-masked, placebo-controlled, single center study of 26 patients scheduled for 3 visits (baseline, day 15, and days 17 to 18) following screening. METHODS: After appropriate washout of all ocular medications, baseline IOPs were taken and travoprost 0.004% was administered once-daily in the evening for 17 consecutive doses to 1 eye and its vehicle to the fellow eye in a randomized, masked fashion. On day 15, beginning 12 hours after the 14th consecutive dose, IOP was measured by pneumatonometry, aqueous flow and outflow facility by fluorophotometry, and episcleral venous pressure by venomanometry. Uveoscleral outflow was determined by mathematical calculation. Two days later, the last drop of drug/vehicle was given at 2000 hours. Fluorophotometry and tonometry measurements were repeated between 2200 and 0600 hours. Treated eyes were compared with contralateral control eyes or baseline measurements, and daytime measurements were compared with nighttime measurements using paired t tests. RESULTS: Travoprost-treated eyes showed a significant (P<0.001) decrease in daytime IOP compared with baseline (26%) or to vehicle-treated eyes (22%), and an increase in daytime outflow facility (P=0.001; 64%). The increase in uveoscleral outflow was not statistically significant. At night, the IOPs of travoprost-treated eyes remained 21% to 24% below baseline daytime values. Seated and supine IOPs in control eyes were significantly (P<0.04) lower at 2200 hours than 1700 hours (P<0.04). Supine IOPs were higher than seated IOPs in both control and treated eyes (P<0.001). Aqueous flow was significantly (P<0.001) reduced at night in both travoprost (30%) and vehicle-treated (25%) eyes when compared with daytime values. No other comparisons were statistically significant. CONCLUSIONS: Travoprost seems to lower IOP by increasing trabecular outflow facility. An effect on uveoscleral outflow cannot be ruled out.  相似文献   

11.
This study examines, in 11 cynomolgus monkeys with unilateral laser-induced glaucoma, the ocular hypotensive mechanism of action of AL-6598, partial agonist at the DP and EP prostanoid receptors. In a crossover fashion, both eyes of each monkey were dosed twice daily with 25 microL of either AL-6598 0.01% or vehicle for 2 days and on the morning of the 3rd day. Measurements were made on day 3 of each treatment. Alternative treatments were separated by at least 2 weeks. Intraocular pressures (IOPs) were measured by pneumatonometry and aqueous flow and outflow facility by fluorophotometry. Uveoscleral outflow was calculated mathematically. In the normotensive eyes, compared to vehicle treatment, AL-6598 decreased IOP from 22.5 +/- 0.7 to 18.7 +/- 0.9 mmHg (P = 0.006), increased uveoscleral outflow from 0.47 +/- 0.17 to 1.22 +/- 0.17 microL/min (P = 0.03), and increased aqueous flow from 1.49 +/- 0.10 to 1.93 +/- 0.13 microL/min (P = 0.01). No measurement in AL-6598-treated hypertensive eyes was significantly different from vehicle treatment. It is concluded that AL-6598 reduces IOP by increasing uveoscleral outflow in normotensive eyes of ketamine-sedated monkeys, despite an increase in aqueous flow. This effect is different from that of PGD(2), which decreases aqueous flow, and of the selective DP receptor agonist, BW245C, which increases both outflow facility and uveoscleral outflow in addition to decreasing aqueous flow.  相似文献   

12.
PURPOSE. Previous studies have shown that adenosine agonists are effective in reducing intraocular pressure (IOP). However, the mechanism(s) responsible for this ocular hypotensive effect has not been established. This study evaluates the relative contribution of changes in aqueous flow and outflow facility associated with the ocular hypotensive response to the adenosine agonist cyclohexyladenosine (CHA). METHODS. New Zealand White rabbits were treated topically in one eye with the adenosine A(1) agonist CHA. Changes in IOP, aqueous flow, and total outflow facility at various times after CHA administration were then determined. RESULTS. These studies demonstrated that CHA produces a dose-related reduction in IOP. Analysis of the dose-response curve revealed an ED(50) and a Hill coefficient of 87 microg and 1.9, respectively. Aqueous flow measurements demonstrated that 1.5 hours after CHA administration, aqueous flow was reduced by 35%. However, by 3.5 hours postdrug, no significant change in aqueous flow was observed. Measurement of the outflow facility found no significant change in facility 1.5 hours after CHA administration. However, by 3.5 hours after CHA administration, outflow facility was significantly increased by 85%. CONCLUSIONS. These data demonstrate that the adenosine agonist CHA lowers IOP in a dose-related fashion. This hypotensive action results from an early reduction in aqueous flow followed by a subsequent increase in outflow facility. This dual mechanism of action is consistent with analysis of CHA dose-response curve, which indicates that the reduction in IOP induced this agonist's results from multiple mechanisms of action.  相似文献   

13.
Prostaglandin F2 alpha (PGF2 alpha) is a powerful ocular hypotensive agent in rabbit, cat, dog, monkey and human. In cynomolgus monkeys, the intraocular pressure (IOP) lowering is due to increased uveoscleral outflow (Fu). Because the anatomy of the rabbit outflow apparatus differs significantly from that of the primate, we sought to determine whether the mechanism of the PGF2 alpha-induced IOP fall was the same. PGF2 alpha tromethamine salt (PGF2 alpha-TS) (50 micrograms) applied to one eye of 14 conscious rabbits produced a significant IOP fall of 7.4 +/- 0.9 mmHg (P less than 0.001). In untreated control eyes, Fu determined from the quantity of intracamerally perfused [125I]albumin found in the ocular and periocular tissues accounted for 5-8% of total aqueous outflow. In 15 unilaterally PGF2 alpha-treated rabbits, after 4-6 hr dosing Fu was 49 +/- 14% higher in the treated than in the contralateral control eyes. Total outflow facility of outflow from the anterior chamber to the general circulation were measured concurrently in 11 rabbits using a two-level constant pressure perfusion and isotope accumulation technique. Both facilities tended to be higher in the treated eyes than in the controls, with a strong correlation between drug-induced changes in total facility and changes in facility of flow to blood (r = 0.85, P less than 0.001). In eight rabbits treated unilaterally with 50 micrograms PGF2 alpha-TS, the fluorophotometrically determined aqueous formation rate was probably not decreased relative to control eyes. Protein levels in the aqueous humor were approximately eight-fold higher in PG-treated vs. control eyes, suggesting a drug-induced compromise of the blood-aqueous barrier.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We evaluated changes in ocular hemodynamics induced by nipradilol, an NO donor, applied as an eye drop. Eight volunteers underwent color Doppler imaging for measurement of hemodynamic parameters in the central retinal artery (CRA) and ophthalmic artery (OA) after instillation of nipradilol. Intraocular pressure (IOP) and systemic blood pressure were also measured. Two months later, the same volunteers were examined after instillation of saline into the same eyes to obtain control data. The pulsatility index in the CRA was significantly lowered in the eyes treated with nipradilol compared with control eyes. Blood velocities in the CRA, hemodynamic parameters in the OA, IOP, blood pressure, and ocular perfusion pressure were unaffected by nipradilol. The current study suggests that nipradilol may dilate the CRA as a result of reduced vascular resistance in humans.  相似文献   

15.
PURPOSE: To determine the mechanism by which travoprost, a prodrug of a prostaglandin F2alpha analog, reduces intraocular pressure (IOP) in cynomolgus monkey eyes. METHODS: One eye each of 12 monkeys was treated with laser burns to the trabecular meshwork to elevate IOP. At least 4 months later (Baseline Day), IOP was measured by pneumatonometry (9:00 AM and 11:45 AM), and aqueous flow and outflow facility were determined by a fluorophotometric method. Uveoscleral outflow was calculated. Both eyes were treated with travoprost 0.004% at 9:00 AM and 5:00 PM for two days and at 9:30 AM on the third day (Treatment Day), when measurements were repeated as on Baseline Day. Statistical analyses were performed using two-tailed, paired t tests. RESULTS: On Treatment Day compared with Baseline Day, IOP in hypertensive eyes was reduced at 2.25 hours (25.8 +/- 11.2 vs 33.7 +/- 13.2 mm Hg; mean +/- standard error of the mean [SEM]; P = 0.02) and 16 hours (26.3 +/- 10.2 vs 35.1 +/- 13.6 mm Hg; P = 0.02) after treatment. The increase in uveoscleral outflow was not significant. In normotensive eyes, IOP was reduced at 2.25 hours (19.0 +/- 3.7 vs 23.0 +/- 4.0 mm Hg; P = 0.03) and 16 hours (20.7 +/- 5.4 vs 23.4 +/- 5.3 mm Hg; P = 0.01) after treatment, and uveoscleral outflow was significantly (P = 0.02) increased (1.02 +/- 0.43 vs 0.35 +/- 0.72 microL/min). CONCLUSION: Travoprost reduces IOP in normotensive monkey eyes by increasing uveoscleral outflow. The IOP reduction in hypertensive eyes is probably via the same mechanism, although the increased uveoscleral drainage did not reach statistical significance. Travoprost had no effect on aqueous flow or outflow facility.  相似文献   

16.
Latanoprost (PhXA41, Xalatan) and isopropyl unoprostone (UF-021, unoprostone, Rescula) two new prostanoid derivatives, have been shown to reduce intraocular pressure (IOP) significantly in patients with glaucoma or ocular hypertension. This study was designed to compare the ocular hypotensive effects of latanoprost and unoprostone in cynomologus monkeys with glaucoma and characterizes the prostanoid’s mechanisms of action in normal cynomolgus monkey eyes. Intraocular pressure was measured daily at 0, 0.5, and 1 hour and hourly for 5 additional hours during 1 baseline day, 1 vehicle-treated day, and 5 days of therapy with either 0.005% latanoprost or 0.12% unoprostone applied twice daily, at 9:30 am and 3:30 pm, to the glaucomatous eye of eight monkeys with unilateral laser-induced glaucoma. Outflow facility was measured in six normal monkeys 3 hours prior to dosing and 1 hour after unilateral dosing with either drug. Aqueous humor flow rates were measured in six normal monkeys hourly for 4 hours on 1 baseline day and on 1 treatment day beginning 1 hour after administration of either drug to one eye. Intraocular pressure was significantly (P < 0.005) reduced after the first application for 4 hours with latanoprost and for 2 hours with unoprostone, up to 5.4±0.8 mm Hg (mean ± SEM) (latanoprost) and 3.8 ± 0.5 mm Hg (unoprostone). Intraocular pressure was significantly (P < 0.005) reduced for at least 18 hours following each pm dose of latanoprost. Intraocular pressure was not reduced (P > .05) 18 hours after each pm dose of unoprostone. An enhancement of the ocular hypotensive effect was observed from day 1 to day 5 with repeated dosing of either drug. Latanoprost produced a greater magnitude of IOP reduction for a longer duration of time than unoprostone after each application. Neither drug altered outflow facility or aqueous humor flow rates. Latanoprost and unoprostone appear to reduce IOP in monkeys by enhancing uveoscleral outflow. Latanoprost appears to be more efficacious and potent than unoprostone in reducing IOP in glaucomatous monkey eyes.  相似文献   

17.
PURPOSE: To compare the effect of pilocarpine, an agent that reduces uveoscleral outflow, on the ocular hypotensive efficacy of latanoprost and 8-iso prostaglandin E2 (PGE2). METHODS: Each of the two treatment groups was composed of the same eight monkeys with unilateral laser-induced glaucoma. Intraocular pressure (IOP) was measured hourly for 6 hours beginning at 9:00 AM on the baseline day (Thursday before treatment week) and on treatment days 1, 3, and 5 (Monday, Wednesday, and Friday). On all five treatment days, one drop of pilocarpine 4% was administered at 9:00 AM and 3:00 PM and one drop of latanoprost 0.005% or 25 microL of 8-iso PGE2 0.1% was administered at 10:00 AM and 4:00 PM. RESULTS: One hour after pilocarpine instillation on day 1, the reduction of IOP was similar (P > 0.90) in both treatment groups, 7.6 +/- 1.1 mm Hg (mean +/- standard error of the mean ) in the latanoprost group and 7.4 +/- 0.8 mm Hg in the 8-iso PGE2 group. However, the IOP effects of the two treatment groups became significantly different (P < 0.05) beginning 2 hours after dosing with latanoprost or 8-iso PGE, on day 1. A difference (P < 0.05) between the two groups persisted at all subsequent measurements. The reduction of IOP lessened with repeated dosing in the latanoprost and 8-iso PGE2 groups. Three hours after dosing with pilocarpine and two hours after dosing with the prostanoids, the IOP reduction was 8.3 +/- 0.9 mm Hg in the latanoprost group and 9.9 +/- 0.6 mm Hg in the 8-iso PGE2 group on day 1, and 2.1 +/- 1.0 mm Hg in the latanoprost group and 7.3 +/- 0.9 mm Hg in the 8-iso PGE1 group on day 5. CONCLUSIONS: The smaller reductions in IOP with pilocarpine and latanoprost than with pilocarpine and 8-iso PGE2 show that pilocarpine blocks much more of the ocular hypotensive effect of latanoprost than of 8-iso PGE2. The results also indicate that pilocarpine and latanoprost are mutually antagonistic. Enhancement of uveoscleral outflow appears to account for most of the ocular hypotensive effect of latanoprost and for much less of the ocular hypotensive effect of 8-iso prostaglandin E2.  相似文献   

18.
Potential mechanism for the additivity of pilocarpine and latanoprost   总被引:3,自引:0,他引:3  
PURPOSE: To determine the ocular hypotensive mechanism underlying the additivity of latanoprost and pilocarpine. METHODS: This randomized, double-masked study included 30 patients with ocular hypertension on no ocular medications for at least 3 weeks. On each of six visits to the clinic, measurements were taken of aqueous flow and outflow facility by fluorophotometry, intraocular pressure by tonometry, and episcleral venous pressure by venomanometry. Uveoscleral outflow was calculated. Clinic visits were scheduled on baseline day; on day 8 of four times daily pilocarpine (2%) to one eye and vehicle to the other; on day 8 of continued pilocarpine/vehicle treatment plus latanoprost (0.005%) once daily to both eyes; after a 3-week washout period; on day 8 of once-daily latanoprost to one eye and vehicle to the other; and on day 8 of continued latanoprost/vehicle treatment plus pilocarpine four times a day to both eyes. Drug-treated eyes were compared with contralateral vehicle-treated eyes and with baseline day by paired t tests. Combined pilocarpine and latanoprost-treated eyes were compared with individual drug-treated eyes and with baseline day using the Bonferroni test. RESULTS: Compared with baseline, pilocarpine reduced intraocular pressure from 18.9 to 16.2 mm Hg (P =.001) and increased outflow facility from 0.18 to 0.23 microl per minute per mm Hg (P =.03). No other parameters were affected. Adding latanoprost further reduced intraocular pressure to 13.7 mm Hg (P <.001) and increased uveoscleral outflow from 0.82 to 1.36 microl per minute (P =.02). Latanoprost alone reduced intraocular pressure from 17.6 to 14.3 mm Hg (P <.0001) and increased uveoscleral outflow from 0.89 to 1.25 microl per minute (P =.05). Adding pilocarpine to the latanoprost treatment further reduced intraocular pressure to 12.7 mm Hg (P <.001) and increased outflow facility from 0.21 to 0.30 microl per minute per mm Hg (P =.03). CONCLUSIONS: Latanoprost and pilocarpine predominantly increase uveoscleral outflow and outflow facility, respectively, when given alone. These drugs are additive because pilocarpine does not inhibit the uveoscleral outflow increase induced by latanoprost.  相似文献   

19.
目的:研究PGF2α类抗青光眼药Latanoprost和Unoprostone对兔及猴的降眼压途径有否不同。方法:1.用0.005Latanoprost、0.12%Unoprostone分别对12只兔、8只猴发10天,测量点眼前后兔及猴眼压,兔眼前房水蛋白浓度。2.采用Zymography技术对兔、猴点眼后葡萄膜中MMP-2活性进行定量分析。结果:①Latanoprost及Unoprostone都可有效降低兔及猴眼压,并且对兔眼前房水蛋白浓度无明显影响。②两种药物点眼后,猴葡萄膜中MMP-2活性增强,却对兔葡萄膜中MMP-2活性均无明显影响。结论:Latanoprost及Unoprostone对猴的降眼压作用机制在于影响了葡萄膜巩膜房水流出,而对兔眼的降压效果可能存在其他途径。  相似文献   

20.
目的:研究Lat-B对家兔眼内压、葡萄膜巩膜通路的影响。方法:兔眼局部应用Lat-B,BSS和DMSO,于用药前1h及用药后1,2,3,4,5,6,24h测量眼压后部分免疫荧光组通过前房内注入微量示踪剂异硫氰酸荧光素牛血清白蛋白(fluorescein isothiocyanate bovine serum albumin,FITC-BSA),于点眼后2,4,6,8,10h各处死家兔2只,摘除双侧眼球作冰冻切片,于荧光显微镜下观察并确定睫状体、脉络膜上腔、前、后巩膜和脉络膜的荧光强度等级。结果:Lat-B滴眼后处理眼眼压不同时间点与滴眼前比较眼压呈下降趋势,差异有显著性(P<0.05),1h即可引起眼压降低,24h仍有效,BSS组与DMSO组未引起眼压下降;葡萄膜巩膜途径通路3组之间在睫状体、脉络膜上腔、前、后巩膜和脉络膜的荧光强度,各部位均为Lat-B组最强,Lat-B与BSS组和DMSO组相比差异均有显著性(P<0.05),BSS组和DMSO组相比差异无显著性。结论:Lat-B能够有效降低眼压,1h即可起效,且24h仍有效。Lat-B可以增加葡萄膜巩膜途径通路的房水流出率,具有治疗青光眼的应用前景,尤其是正常眼压性青光眼、开角性青光眼。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号