首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Voriconazole (formerly UK-109,496) is a new monotriazole antifungal agent which has potent activity against Candida, Cryptococcus, and Aspergillus species. We investigated the in vitro activity of voriconazole compared to those of fluconazole, itraconazole, amphotericin B, and flucytosine (5FC) against 394 bloodstream isolates of Candida (five species) obtained from more than 30 different medical centers. MICs of all antifungal drugs were determined by the method recommended by the National Committee for Clinical Laboratory Standards using RPMI 1640 test medium. Overall, voriconazole was quite active against all the yeast isolates (MIC at which 90% of the isolates are inhibited [MIC90], ≤0.5 μg/ml). Candida albicans was the most susceptible species (MIC90, 0.06 μg/ml) and Candida glabrata and Candida krusei were the least (MIC90, 1 μg/ml). Voriconazole was more active than amphotericin B and 5FC against all species except C. glabrata and was also more active than itraconazole and fluconazole. For isolates of Candida spp. with decreased susceptibility to fluconazole and itraconazole MICs of voriconazole were also higher. Based on these results, voriconazole has promising antifungal activity and further in vitro and in vivo investigations are warranted.  相似文献   

2.
BMS-207147, Sch 56592, and voriconazole are three new investigational triazoles with broad-spectrum antifungal activity. The in vitro activities of these three agents were compared with those of itraconazole and fluconazole against 1,300 bloodstream isolates of Candida species obtained from over 50 different medical centers in the United States. The MICs of all of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards method using RPMI 1640 as a test medium. BMS-207147, Sch 56592, and voriconazole were all quite active against all Candida sp. isolates (MICs for 90% of the isolates tested [MIC90s], 0.5, 1.0, and 0.5 μg/ml, respectively). Candida albicans was the most susceptible species (MIC90s, 0.03, 0.06, and 0.06 μg/ml, respectively), and C. glabrata was the least susceptible (MIC90s, 4.0, 4.0, and 2.0 μg/ml, respectively). BMS-207147, Sch 56592, and voriconazole were all more active than itraconazole and fluconazole against C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. There existed a clear rank order of in vitro activity of the five azoles examined in this study when they were tested versus C. glabrata: voriconazole > BMS-207147 = Sch 56592 = itraconazole > fluconazole (MIC90s, 2.0, 4.0, 4.0, 4.0, and 64 μg/ml, respectively). For isolates of Candida spp. with decreased susceptibility to both itraconazole and fluconazole, the MICs of BMS-207147, Sch 56592, and voriconazole were also elevated. These results suggest that BMS-207147, Sch 56592, and voriconazole all possess promising antifungal activity and that further in vitro and in vivo investigations are warranted to establish the clinical value of this improved potency.  相似文献   

3.
In the course of clinical studies with the investigational streptogramin antimicrobial dalfopristin-quinupristin, isolates of vancomycin-resistant Enterococcus faecium were referred to our laboratory from across the United States. Seventy-two percent of the strains were of the VanA type, phenotypically and genotypically, while 28% were of the VanB type. High-level resistance to streptomycin or gentamicin was observed in 86 and 81%, respectively, of the VanA strains but in only 69 and 66%, respectively, of the VanB strains. These enterococci were resistant to ampicillin (MIC for 50% of the isolates tested [MIC50] and MIC90, 128 and 256 μg/ml, respectively) and to the other approved agents tested, with the exception of chloramphenicol (MIC90, 8 μg/ml) and novobiocin (MIC90, 1 μg/ml). Considering all of the isolates submitted, dalfopristin-quinupristin inhibited 86.4% of them at concentrations of ≤1 μg/ml and 95.1% of them at ≤2 μg/ml. However, for the data set comprised of only the first isolate submitted for each patient, 94.3% of the strains were inhibited at concentrations of ≤1 μg/ml and 98.9% were inhibited at concentrations of ≤2 μg/ml. Multiple drug resistance was very common among these isolates of vancomycin-resistant E. faecium, while dalfopristin-quinupristin inhibited the majority at concentrations that are likely to be clinically relevant.  相似文献   

4.
When tested by agar dilution on Mueller-Hinton agar supplemented with 5% horse blood, the ketolides HMR 3004 and HMR 3647 were slightly more active (MIC at which 90% of the isolates were inhibited [MIC90], 0.03 μg/ml) against Bordetella pertussis than azithromycin, clarithromycin, erythromycin A, and roxithromycin. Azithromycin (MIC90, 0.06 μg/ml) was the most active compound against B. parapertussis. Rifampin and rifapentine were considerably less active.  相似文献   

5.
The in vitro activities of quinupristin-dalfopristin and streptogramin RPR 106972 were determined with 44 strains of Mycoplasma pneumoniae and compared to those of macrolides, minocycline, and quinolones. All isolates tested were highly susceptible to macrolides and to quinupristin-dalfopristin (MIC at which 90% of the isolates are inhibited [MIC90], 0.0625 μg/ml), followed by RPR 106972 (MIC90, 0.5 μg/ml), quinolones, and minocycline.  相似文献   

6.
We have tested the in vitro activities of eight fluoroquinolones against 160 Brucella melitensis strains. The most active was sitafloxacin (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 μg/ml). In decreasing order, the activities (MIC90s) of the rest of the tested fluoroquinolones were as follows: levofloxacin, 0.5 μg/ml; ciprofloxacin, trovafloxacin, and moxifloxacin, 1 μg/ml; and ofloxacin, grepafloxacin, and gatifloxacin, 2 μg/ml.  相似文献   

7.
The activities of HMR 3004 and HMR 3647 and comparator agents, especially macrolides, were determined by the agar dilution method against 262 aerobic and 120 anaerobic strains isolated from skin and soft tissue infections associated with human and animal bite wounds. HMR 3004 and HMR 3647 were active against almost all aerobic and fastidious facultative isolates (MIC at which 90% of the isolates are inhibited [MIC90], ≤0.5 and 1 μg/ml, respectively) and against all anaerobes [Bacteroides tectum, Porphyromonas macacae (salivosa), Prevotella heparinolytica, Porphyromonas sp., Prevotella sp., and peptostreptococci] at ≤0.25 and ≤0.5 μg/ml, respectively, except Fusobacterium nucleatum (HMR 3004, MIC90 = 16 μg/ml; HMR 3647, MIC90 = 8 μg/ml) and other Fusobacterium species (MIC90, 1 and 2 μg/ml, respectively). In general, HMR 3004 and HMR 3647 were more active than any of the macrolides tested. Azithromycin was more active than clarithromycin against all Pasteurella species, including Pasteurella multocida subsp. multocida, Eikenella corrodens, and Fusobacterium species, while clarithromycin was more active than azithromycin against Corynebacterium species, Weeksella zoohelcum, B. tectum, and P. heparinolytica.  相似文献   

8.
Streptococcus pneumoniae isolates (6,958) were collected from patients at 163 U.S. medical centers during 2009 through 2012. Isolates were evaluated for multidrug resistance (MDR) to penicillin, ceftriaxone, erythromycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin. Ceftaroline was 16-fold more potent than ceftriaxone (MIC50/MIC90, ≤0.25/2 μg/ml) against all isolates. For MDR isolates (35.2% of tested strains), ceftaroline (MIC50/MIC90, 0.06/0.25 μg/ml; 100.0% susceptible) was the most active agent tested, being 8-fold more potent than ceftriaxone (MIC50/MIC90, 0.5/2 μg/ml) and 16-fold more potent than penicillin (MIC50/MIC90, 1/4 μg/ml).  相似文献   

9.
The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 μg/ml for cefoxitin, 2.0 and 128.0 μg/ml for cefotetan, 2.0 and 64.0 μg/ml for moxalactam, 4.0 and >128.0 μg/ml for ceftizoxime, 16.0 and >128.0 μg/ml for cefotiam, 8.0 and >128.0 μg/ml for cefamandole, and 4.0 and 128.0 μg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 μg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 μg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 μg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 μg/ml), fusobacteria (MIC90, 1.0 μg/ml), peptostreptococci (MIC90, 2.0 μg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 μg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4× the MIC and cefoperazone at 8× the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2× the MIC produced the most rapid effect, with 90% killing of all strains.  相似文献   

10.
The in vitro activities of 11 antifungal drugs against 68 Scopulariopsis and Microascus strains were investigated. Amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, ketoconazole, miconazole, posaconazole, voriconazole, and ciclopirox showed no or poor antifungal effect. The best activities were exhibited by terbinafine and caspofungin, where the MIC and MEC (minimal effective concentration) ranges were 0.0313 to >16 μg/ml and 0.125 to 16 μg/ml, respectively. The MIC and MEC modes were both 1 µg/ml for terbinafine and caspofungin; the MIC50 and MEC50 were 1 µg/ml for both drugs, whereas the MIC90 and MEC90 were 4 µg/ml and 16 µg/ml, respectively.  相似文献   

11.
AN3365 (MIC50/90, 0.5/1 μg/ml) was active against Enterobacteriaceae, including a subset of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains (MIC50/90, 1/2 μg/ml). AN3365 inhibited 98.0 and 92.2% of wild-type (MIC50/90, 2/8 μg/ml) and carbapenem-resistant (MIC50/90, 4/8 μg/ml) Pseudomonas aeruginosa strains, respectively, at ≤8 μg/ml. AN3365 also demonstrated activity against wild-type Acinetobacter baumannii (MIC50/90, 2/8 μg/ml) and Stenotrophomonas maltophilia (MIC50/90, 2/4 μg/ml), while it was less active against multidrug-resistant A. baumannii (MIC50/90, 8/16 μg/ml) and Burkholderia cepacia (MIC50/90, 8/32 μg/ml).  相似文献   

12.
RX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shown in vitro activity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis. Enterobacteriaceae (657), Pseudomonas aeruginosa (200), and Acinetobacter baumannii (202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were tested in vitro by broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% of Enterobacteriaceae isolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positive Protea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active against Pseudomonas aeruginosa isolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active against P. aeruginosa than tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent against Acinetobacter baumannii (MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.  相似文献   

13.
Solithromycin, a fourth-generation macrolide (a fluoroketolide with enhanced activity against macrolide-resistant bacteria due to interaction with three ribosomal sites) and the first fluoroketolide, was tested against a 2014 collection of 6,115 isolates, including Streptococcus pneumoniae (1,713 isolates), Haemophilus influenzae (1,308), Moraxella catarrhalis (577), Staphylococcus aureus (1,024), and beta-hemolytic streptococci (1,493), by reference broth microdilution methods. The geographic samples included 2,748 isolates from the United States, 2,536 from Europe, 386 from Latin America, and 445 from the Asia-Pacific region. Solithromycin was observed to be very active against S. pneumoniae (MIC50/90, 0.008/0.12 μg/ml), demonstrating 2-fold greater activity than telithromycin (MIC50/90, 0.015/0.25 μg/ml) and 16- to >256-fold greater activity than azithromycin (MIC50/90, 0.12/>32 μg/ml), with all strains being inhibited at a solithromycin MIC of ≤1 μg/ml. Against H. influenzae, solithromycin showed potency identical to that of telithromycin (MIC50/90, 1/2 μg/ml), and both of these compounds were 2-fold less active than azithromycin (MIC50/90, 0.5/1 μg/ml). All but one of the M. catarrhalis isolates were inhibited by solithromycin at ≤0.25 μg/ml. Solithromycin inhibited 85.3% of S. aureus isolates at ≤1 μg/ml, and its activity was lower against methicillin-resistant (MIC50/90, 0.06/>32 μg/ml) than against methicillin-susceptible (MIC50/90, 0.06/0.06 μg/ml) isolates. Little variation in solithromycin activity was observed by geographic region for the species tested. Solithromycin was very active against beta-hemolytic streptococci (MIC50/90, 0.015/0.03 μg/ml), and all isolates were inhibited at MIC values of ≤0.5 μg/ml. In conclusion, solithromycin demonstrated potent activity against global and contemporary (2014) pathogens that represent the major causes of community-acquired bacterial pneumonia. These data support the continued clinical development of solithromycin for the treatment of this important indication.  相似文献   

14.
Cryptococcal antigen screening is recommended among people living with AIDS when entering HIV care with a CD4 count of <100 cells/μl, and preemptive fluconazole monotherapy treatment is recommended for those with subclinical cryptococcal antigenemia. Yet, knowledge is limited of current antimicrobial resistance in Africa. We examined antifungal drug susceptibility in 198 clinical isolates collected from Kampala, Uganda, between 2010 and 2014 using the CLSI broth microdilution assay. In comparison with two previous studies from 1998 to 1999 that reported an MIC50 of 4 μg/ml and an MIC90 of 8 μg/ml prior to widespread human fluconazole and agricultural azole fungicide usage, we report an upward shift in the fluconazole MIC50 to 8 μg/ml and an MIC90 value of 32 μg/ml, with 31% of isolates with a fluconazole MIC of ≥16 μg/ml. We observed an amphotericin B MIC50 of 0.5 μg/ml and an MIC90 of 1 μg/ml, of which 99.5% of isolates (197 of 198 isolates) were still susceptible. No correlation between MIC and clinical outcome was observed in the context of amphotericin B and fluconazole combination induction therapy. We also analyzed Cryptococcus susceptibility to sertraline, with an MIC50 of 4 μg/ml, suggesting that sertraline is a promising oral, low-cost, available, novel medication and a possible alternative to fluconazole. Although the CLSI broth microdilution assay is ideal to standardize results, limit human bias, and increase assay capacity, such assays are often inaccessible in low-income countries. Thus, we also developed and validated an assay that could easily be implemented in a resource-limited setting, with similar susceptibility results (P = 0.52).  相似文献   

15.
The activities of the oxazolidinone antibacterial agents eperezolid (PNU-100592) and linezolid (PNU-100766) were compared with that of vancomycin against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus (n = 200), coagulase-negative staphylococci (n = 100), and vancomycin-susceptible and -resistant Enterococcus faecalis and Enterococcus faecium (n = 50). Eperezolid and linezolid demonstrated good in vitro inhibitory activity, regardless of methicillin susceptibility for staphylococci (MIC at which 90% of the isolates are inhibited [MIC90] range, 1 to 4 μg/ml) or vancomycin susceptibility for enterococci (MIC90 range, 1 to 4 μg/ml). In time-kill studies, eperezolid and linezolid were bacteriostatic in action. A postantibiotic effect of 0.8 ± 0.5 h was demonstrated for both eperezolid and linezolid against S. aureus, S. epidermidis, E. faecalis, and E. faecium.  相似文献   

16.
Ceftolozane/tazobactam, a novel antimicrobial agent with activity against Pseudomonas aeruginosa (including drug-resistant strains) and other common Gram-negative pathogens (including most extended-spectrum-β-lactamase [ESBL]-producing Enterobacteriaceae strains), and comparator agents were susceptibility tested by a reference broth microdilution method against 7,071 Enterobacteriaceae and 1,971 P. aeruginosa isolates. Isolates were collected consecutively from patients in 32 medical centers across the United States during 2011 to 2012. Overall, 15.7% and 8.9% of P. aeruginosa isolates were classified as multidrug resistant (MDR) and extensively drug resistant (XDR), and 8.4% and 1.2% of Enterobacteriaceae were classified as MDR and XDR. No pandrug-resistant (PDR) Enterobacteriaceae isolates and only one PDR P. aeruginosa isolate were detected. Ceftolozane/tazobactam was the most potent (MIC50/90, 0.5/2 μg/ml) agent tested against P. aeruginosa and demonstrated good activity against 310 MDR strains (MIC50/90, 2/8 μg/ml) and 175 XDR strains (MIC50/90, 4/16 μg/ml). Ceftolozane/tazobactam exhibited high overall activity (MIC50/90, 0.25/1 μg/ml) against Enterobacteriaceae and retained activity (MIC50/90, 4/>32 μg/ml) against many 601 MDR strains but not against the 86 XDR strains (MIC50, >32 μg/ml). Ceftolozane/tazobactam was highly potent (MIC50/90, 0.25/0.5 μg/ml) against 2,691 Escherichia coli isolates and retained good activity against most ESBL-phenotype E. coli isolates (MIC50/90, 0.5/4 μg/ml), but activity was low against ESBL-phenotype Klebsiella pneumoniae isolates (MIC50/90, 32/>32 μg/ml), explained by the high rate (39.8%) of meropenem coresistance observed in this species phenotype. In summary, ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers. Importantly, ceftolozane/tazobactam retained potency against many MDR and XDR strains.  相似文献   

17.
Plazomicin is a next-generation aminoglycoside that is not affected by most clinically relevant aminoglycoside-modifying enzymes. The in vitro activities of plazomicin and comparator antimicrobials were evaluated against a collection of 5,015 bacterial isolates obtained from patients in Canadian hospitals between January 2011 and October 2012. Susceptibility testing was performed using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method, with MICs interpreted according to CLSI breakpoints, when available. Plazomicin demonstrated potent in vitro activity against members of the family Enterobacteriaceae, with all species except Proteus mirabilis having an MIC90 of ≤1 μg/ml. Plazomicin was active against aminoglycoside-nonsusceptible Escherichia coli, with MIC50 and MIC90 values identical to those for aminoglycoside-susceptible isolates. Furthermore, plazomicin demonstrated equivalent activities versus extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella pneumoniae, with 90% of the isolates inhibited by an MIC of ≤1 μg/ml. The MIC50 and MIC90 values for plazomicin against Pseudomonas aeruginosa were 4 μg/ml and 16 μg/ml, respectively, compared with 4 μg/ml and 8 μg/ml, respectively, for amikacin. Plazomicin had an MIC50 of 8 μg/ml and an MIC90 of 32 μg/ml versus 64 multidrug-resistant P. aeruginosa isolates. Plazomicin was active against methicillin-susceptible and methicillin-resistant Staphylococcus aureus, with both having MIC50 and MIC90 values of 0.5 μg/ml and 1 μg/ml, respectively. In summary, plazomicin demonstrated potent in vitro activity against a diverse collection of Gram-negative bacilli and Gram-positive cocci obtained over a large geographic area. These data support further evaluation of plazomicin in the clinical setting.  相似文献   

18.
Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined.  相似文献   

19.
Agar dilution was used to test the activities of HMR 3647, erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, and quinupristin-dalfopristin against 235 strains of Enterococcus faecalis. HMR 3647 was the most active compound (MICs at which 50 and 90% of the isolates are inhibited [MIC50 and MIC90, respectively] of 0.06 and 4.0 μg/ml, respectively). The MIC50 and MIC90 (with the MIC50 given first and the MIC90 given second; both in micrograms per milliliter) for other compounds were as follows: 4.0 and >32.0 for erythromycin A, 16.0 and >32.0 for azithromycin, 2.0 and >32 for clarithromycin, 32.0 and >32.0 for roxithromycin, 32.0 and >32.0 for clindamycin, and 8.0 and 16.0 for quinupristin-dalfopristin. All compounds were only bacteriostatic.  相似文献   

20.
A total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited all Staphylococcus aureus isolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). Among Streptococcus pneumoniae isolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most common Enterobacteriaceae species (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号