首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, microemulsion microstructures, key formulation variables, and their relationship to drug transdermal permeation enhancement were investigated. A microemulsion system with high water soluble capacity was developed, using isopropyl myristate, Labrasol, and Cremophor EL as oil, surfactant, and co-surfactant, respectively. The microstructures of the microemulsions were characterized by a combination of techniques including electrical conductivity measurement (EC), differential scanning calorimetry (DSC), electro-analytical cyclic voltammetry (CV), dynamic light scattering (DLS). Three microemulsion formulations with the model drugs at water contents of 20%, 40%, and 70% representing the microstructures of W/O, Bi-continuous, and O/W were prepared along the water dilution line of oil to surfactant ratio of 1/9. Skin permeation of hydrophobic and hydrophilic model drugs, ketoprofen, lidocaine, and caffeine in the microemulsion formulations was studied using Franz-cells and dermatomed porcine skin. Permeation of all drugs from microemulsions was enhanced significantly compared with the control propylene glycol formulation. The drug permeation flux and the cumulative permeation amount after 24 h increased with water content in the microemulsions, thus correlated to the formulation microstructures of W/O, Bi-continuous, and O/W. The permeation of lipophilic drugs ketoprofen and lidocaine increased with water content in a more pronounced manner, which seemed to follow an exponential growth trend, while the permeation of hydrophilic drug caffeine appeared to increase linearly. Additionally, at the same water content, increasing oil content led to higher ketoprofen permeation.  相似文献   

2.
The aim of this work was to determine the type and microstructure of microemulsion samples formed in IPP/water/AerosolOT:1-butanol (2:1) systems as a case study for the investigation of microemulsions. The concentration of the surfactant/cosurfactant mixture was kept constant while the ratio of water to oil was varied. Several techniques were used to investigate the types and phase transitions of the microemulsion formulations. The experimental methods used included visual observation cross-polarized light microscopy (PLM) appearance, conductivity, viscosity, cryo-field emission scanning electron microscopy (cryo-FESEM), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and fluorescence resonance energy transfer (FRET). Taken together, the results of the various techniques imply that the systems investigated are undergoing two transitions as a function of water concentration. Between 10-15%w/w of water, the systems change from headgroup hydrated surfactant solutions in oil (or possibly very small reversed micellar systems) to w/o microemulsions. These systems then change to o/w microemulsions between 25-30%w/w of water. The transitions however, appear to be gradual, as for example the DSC data indicates a transition between 15-20%w/w of water. Furthermore, for some methods the changes observed were very weak, and only with supportive data of other techniques can the phase behaviour of the microemulsion systems be interpreted with confidence. Interestingly, no indication of the presence of a bicontinuous intermediate microstructure was found. Liquid crystal formation was detected in samples containing 55%w/w of water.  相似文献   

3.
Microemulsions are a promising vehicle for administrating drugs. In order to lay the basis for predicting drug release under in vivo conditions, where the microemulsion composition is continuously varying, we have studied the release of ketoprofene as a model drug, from microemulsions on a dilution line containing, initially, 20 wt.% of isopropyl miristate (IPM) and 80 wt.% of the surfactant (Tween 40/co-surfactant (Imwitor 308, 1:1 wt.% mixture. Mixture compositions corresponding to the different types and structure of microemulsion were identified by measuring density, surface tension, electric conductivity, pH and differential scanning calorimetry. Ketoprofene release was then measured for each type and structure. The main factor influencing ketoprofene release was shown to be the strength of the interactions between microemulsion components. Strong interactions prevented rapid ketoprofene release in the water-in oil region, although the release was not dependent on the degree of percolation. Release kinetics in all cases follow zero order kinetics, indicating that the release rate is dependent on the diffusion of ketoprofene inside the microemulsion carrier. Combining different methods to obtain the physical and structural properties of microemulsions can be thus used to predict the release of ketoprofen from a microemulsion.  相似文献   

4.
The purpose of the present study was to determine the influence of both formulation parameters and vehicle structure on in vitro release rate of amphiphilic drug diclofenac diethylamine (DDA) from microemulsion vehicles containing PEG-8 caprylic/capric glycerides (surfactant), polyglyceryl-6 dioleate (cosurfactant), isopropyl myristate and water. From the constructed pseudo-ternary phase diagram at surfactant-cosurfactant mass ratio (K(m) 1:1), the optimum oil-to-surfactant-cosurfactant mass ratio values (O/SC 0.67-1.64) for formulation of microemulsions with similar concentrations of hydrophilic, lipophilic and amphiphilic phases (balanced microemulsions) were found. The results of characterization experiments indicated bicontinuous or nonspherical water-continuous internal structure of the selected microemulsion vehicles. Low water/isopropyl myristate apparent partition coefficient for DDA as well as elevated electrical conductivity and apparent viscosity values for the investigated microemulsion formulations containing 1.16% (w/w) of DDA, suggested that the drug molecules was predominantly partitioned in the water phase and most likely selfaggregate and interact with interfacial film. Release of DDA from the selected water-continuous (W/O), oil-continuous (O/W) and balanced microemulsions was investigated using rotating paddle dissolution apparatus modified by addition of enhancer cell. A linear diffusion of DDA through regenerated cellulose membrane was observed for the W/O and O/W formulations with the low content of dispersed phase. Non-linearity of the drug release profile in the case of bicontinuous formulations was related to the more complex distribution of DDA including interactions between the drug and vehicle. The membrane flux value increases from 25.02 microgcm(-2)h(-1) (W/O microemulsion) to 117.94 microgcm(-2)h(-1) (O/W microemulsion) as the water phase concentration increases. Moreover, the obtained flux values for balanced microemulsions (29.38-63.70 microgcm(-2)h(-1)) suggested that bicontinuous microstructure hampers the release of the amphiphilic drug.  相似文献   

5.
6.
目的:建立广东王不留行提取物为模型药物的O/W型微乳处方筛选及制备成型的一种方法。方法:选取文献及本实验室15个处方空白微乳建立电导率-含水量曲线,同时与目测法进行对比研究,选取其中4个稳定的微乳处方,分别建立以广东王不留行提取物为模型药物的O/W型微乳的电导率-含水量曲线,进行其方法学考察及微乳质量评价。结果:O/W型空白及含药微乳成型的临界点均是电导率-含水量曲线的顶点,进一步验证其值显著高于目测法测定的临界值,目测法所测定的O/W型微乳临界值在双连续区域内,通过电导率-含水量曲线确定的空白及含药O/W型微乳方法学实验RSD<1%,空白及含药微乳平均粒径均在10~100 nm之间。结论:电导率-含水量曲线法制备的O/W型微乳分布均匀、具备量化、准确、重复性好,应用于微乳处方筛选及制备工艺研究具有理论及实际可行性,能准确反应微乳的相行为及结构变化。  相似文献   

7.
Formulation of ascorbic acid microemulsions with alkyl polyglycosides   总被引:1,自引:0,他引:1  
Ascorbic acid microemulsions for topical application were developed. In this study, microemulsions were prepared using HLD (hydrophilic lipophilic deviation) concept to optimise the formulation. From this optimal formulation, the realisation of dilution ternary diagrams leads to obtain microemulsion zones. In addition, the effects of composition variable on the physicochemical characteristics of each system were investigated. After optimisation of the microemulsion systems, ascorbic acid was loaded in the formulations. Surface tension and small angle neutron scattering were used to characterise the surface properties and the structure of the microemulsions. Bicontinuous structure microemulsions were identified, and the influence of ascorbic acid localisation at the interface leading to modifications of the microemulsion structure was pointed out. The solubilisation of ascorbic acid, the stabilisation and in vitro transdermal penetration “Frantz cells” of ascorbic acid microemulsions were studied. Three different microemulsions were envisaged. The results confirmed that these microemulsion systems present a real interest for formulation and protection of ascorbic acid. Regarding their transcutaneous penetration behaviour, the different microemulsions studied could be useful for different topical applications. A major location of ascorbic acid found in the epidermis where the decomposition of melanin occurred indicates that microemulsion could be considered as a suitable carrier system for application of ascorbic acid as a whitening agent. In addition, a good passage of the drug in the dermis could be interesting for the relative oxygen matrix damage.  相似文献   

8.
PURPOSE: To characterize the physicochemical properties of drug-loaded oil-in-water (o/w) and water-in-oil (w/o) Brij 97-based microemulsions in comparison to their blank counterparts and to investigate the influence of microemulsion type on in vitro skin permeation of model hydrophobic drugs and their hydrophilic salts. METHODS: The microemulsion systems were composed of isopropyl palmitate (IPP), water and a 2:1 w/w mixture of Brij 97 and 1-butanol. The samples were characterized by visual appearance, pH, refractive index, electrical conductivity, viscosity and determination of the state of water and IPP in the formulations using differential scanning calorimetry (DSC). Transdermal flux of lidocaine, tetracaine, dibucaine and their respective hydrochloride salts through heat-separated human epidermis was investigated in vitro using modified Franz diffusion cells. RESULTS: The physicochemical properties of drug-loaded microemulsions and their blank counterparts were generally similar; however, slight changes in some physicochemical properties (apparent pH and conductivity) were observed due to the intrinsic properties of the drugs. The o/w microemulsions resulted in the highest flux of lidocaine, tetracaine and dibucaine as compared to the other formulations with in the same group of drugs. CONCLUSIONS: The characterization results showed that incorporation of the model drugs into the microemulsions did not change the microemulsion type. The permeation data exhibited that the nature of the microemulsions was a crucial parameter for transdermal drug delivery. The o/w microemulsions containing hydrophobic drugs provided the highest skin permeation enhancement. In addition, skin permeation was depended on the molecular weight of the model drugs.  相似文献   

9.
The current study aims to investigate the effect of incorporation of orange oil, mainly consisting of the cyclic mono-terpene linolene, a known skin penetration enhancer, as oil component on microemulsion formation both in water and propylene glycol containing systems. Phase diagrams of pseudoternary mixtures containing orange oil, ethyloleate or a 1:1 mixture (w/w) of orange oil and ethyloleate as oil components, a 6:4 (w/w) mixture of polyoxyethylene 20 sorbitan monooleate and sorbitan monolaurate as surfactant components and water or propylene glycol as hydrophilic components were investigated. Smaller microemulsion regions were observed when orange oil was used as a substitute for ethyloleate in both water and propylene glycol containing systems. Polarising light microscopy, viscosity measurements, electrical conductivity measurements and cryo-field emission scanning electron microscopy were used to identify structural features of the microemulsions. Solution-type, w/o droplet-type microemulsions and microemulsion areas containing liquid crystals were found in varying areas in the phase diagrams of water containing systems. Liquid crystals formation occurs when the water concentration reaches 20%-22.5% (w/w). Only solution-type microemulsions were observed in propylene glycol containing systems. The dimension of solution-type microemulsion areas in the phase diagrams is likely to depend on the miscibility of components and larger microemulsion areas were found when ethyloleate was used instead of orange oil and propylene glycol was used instead of water. W/o droplet-type microemulsions of systems containing orange oil and ethyloleate as oil components appear in different areas of the phase diagrams. Incorporation of orange oil as a penetration enhancer into a topical microemulsion affects its physical characteristics. This in turn may lead to instability of the microemulsion and/or can influence the release patterns of drugs from these microemulsions when applied as topical formulations.  相似文献   

10.
11.
苦参碱口服微乳的制备及含量测定   总被引:1,自引:0,他引:1  
目的制备苦参碱口服微乳,并对微乳进行含量测定和理化性质考察。方法通过滴定法绘制伪三元相图,考察不同因素对微乳区域的影响,筛选合适的微乳处方;采用稀释法和染色法鉴别微乳的类型。结果确定了油酸乙酯-cremophor EL-无水乙醇-蒸馏水的苦参碱微乳,所制备微乳为O/W型;理化性质:pH值为8.23、平均粒径为61.3 nm、黏度为0.022 mPa.s、电导率为0.183 2 S.m-1z、eta电位为-3.72 mV;HPLC法测定微乳中苦参碱的平均质量浓度为39.94 g.L-1。结论所制备的苦参碱微乳粒径较小,分布均匀,理化性质稳定,为进一步研究奠定了基础。  相似文献   

12.
We examined the design of the versatile novel self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion formulation which enhances the oral bioavailability by raising the solubility of poorly water soluble compounds. Namely, seven kinds of poorly water soluble compounds such as disopyramide, ibuprofen, ketoprofen, tolbutamide, and other new compounds, as the model compounds were used to compare the plasma concentration profile of the compound following single oral administration of each compound to rats and beagle dogs as a solution, an oily solution, a suspension (or a powder), an O/W microemulsion, and a SEDDS type O/W microemulsion. And the enhancing effect of the SEDDS type O/W microemulsion on the gastrointestinal absorption of these compounds was evaluated. In the components of the SEDDS type O/W microemulsion, medium chain fatty acid triglyceride (MCT), diglyceryl monooleate (DGMO-C), polyoxyethylene hydrogenated castor oil 40 (HCO-40), and ethanol were used as an oil, a lipophilic surfactant, a hydrophilic surfactant, and a solubilizer, at the mixture ratio of 25/5/45/25 (w/w%), respectively. Thereby, to six kinds of the model compounds except disopyramide, the solubility was from 340 to 98,000 times that in water, and the AUCs in plasma concentration of the compound were equivalent to that of solution or O/W microemulsion administration, or was increased by 1.5 to 78 times that of suspension administration. Accordingly, this novel SEDDS type O/W microemulsion is the versatile, useful formulation which enhances the oral bioavailability by raising the solubility of poorly water soluble compounds.  相似文献   

13.
Chen L  Tan F  Wang J  Liu F 《Die Pharmazie》2012,67(1):31-36
The objective of this study was to evaluate the influence of the ratios or the hydrophile-lipophile balance (HLB) values of Cremophor EL and Span 80 on the phase behavior of the O/W microemulsions and the percutaneous absorption and penetration of indomethacin microemulsions. The existence of microemulsion regions is investigated in quaternary systems composed of soybean oil/Cremophor EL and Span 80 (mixed surfactants)/diethylene glycol monoethyl ether (cosurfactant)/water by constructing pseudo-ternary phase diagrams at various Cremophor EL/Span 80 ratios. In addition, five microemulsion formulations with various mixed surfactants HLB values were evaluated by in vitro penetration experiments using mouse skin and Franz diffusion cells. The flux and amount of indomethacin penetration from 5 microemulsion formulations were significantly different from the control, and the enhance ratios ranged from 2.38 to 4.68 and 2.11 to 4.23, respectively. The HLB value of mixed surfactants in the formulations was a principal factor in determining the percutaneous penetration of the drug. The flux and amount of drug penetration increased gradually with increasing content of the lipophilic surfactant Span 80 and skin retention was highest for mixed surfactants with a HLB value of 7.6. Therefore, it is suggested that the presence of mixed surfactants was beneficial in the formation of O/W microemulsions and enhanced percutaneous penetration of indomethacin.  相似文献   

14.
卵磷脂微乳的制备与理化性质考察   总被引:23,自引:1,他引:23  
目的:对25℃各卵磷脂系统中微乳的形成区域以及微乳理化性质随系统中各组分的变化情况进行研究。方法:卵磷脂作表面活性剂,短链醇类作助表面活性剂,采用不同油相考察相图中油包水型微乳形成区域的变化;选择不同处方组分的微乳测定微乳理化性质。结果:各个系统均可形成油包水型微乳,室温下放置数月未见分层。卵磷脂/醇质量比(Km)与水相量对微乳的粘度有显著影响;电导率随着水相含量增加而增大;微乳的粒径随着体系中水相的增加而增大。结论:Km较大,水相含量适中的微乳体系较为适合制备药物载体。  相似文献   

15.
The skin permeation enhancement of many kinds of drugs and cosmetic substances by microemulsions has been widely known; however, the correlations between microemulsion microstructures and the efficiency of skin permeation are not fully elucidated. Therefore, the aim of our study was to investigate the influence of microemulsion types on in vitro skin permeation of model hydrophobic drugs and their hydrophilic salts. The microemulsion systems were composed of isopropyl palmitate (IPP), water, a 2:1 w/w mixture of Aerosol OT (AOT) and 1-butanol, and a model drug. The concentrations of surfactant mixture and model drug were maintained at 45% and 1% w/w, respectively. The concentrations of IPP and water were 15% and 39% w/w, respectively, for oil-in-water (o/w) type and vice versa for water-in-oil (w/o) type. The samples were prepared by simple mixing and characterized by visual appearance, pH, refractive index, electrical conductivity, viscosity, and determination of the state of water and IPP in the formulations using differential scanning calorimetry. Transdermal flux of lidocaine, tetracaine, dibucaine, and their respective hydrochloride salts from the drug-loaded AOT-based microemulsions through heat-separated human epidermis was investigated in vitro using modified Franz diffusion cells. The o/w microemulsions resulted in the highest fluxes of the model drugs in base form as compared with the other formulations within the same group of drugs. Moreover, the skin permeation of drug from microemulsions depended on drug molecular structure and interaction between drug and surfactant.  相似文献   

16.
Topical delivery of Cyclosporin A (CysA) is of great interest for the treatment of autoimmune skin disorders. Microemulsion systems prepared by AOT/Tween85/isopropyl myristate (IPM)/water possessing a potentially improved skin bioavailability of CysA were designed. The structure of microemulsions was investigated by diffusion-ordered NMR spectroscopy (DOSY) and differential scanning calorimetry (DSC) measurements. The DOSY measurements indicated the presence of bicontinuous and water-in-oil microemulsions depending on microemulsion composition. The DSC measurement confirmed that the microemulsion containing 30.0 wt% water was bicontinuous type, in agreement with the DOSY findings. We also evaluated the therapeutic advantage of dermal administration of CysA in rat model. Local (subcutaneous and skin), systemic concentrations and organ distribution (liver and kidney) were evaluated serially following topical and oral application of the drug. In rat dermal applied with the bicontinuous microemulsion containing CysA, the deposition of the drug into skin and subcutaneous fat was respectively almost 30 and 15-fold higher than the concentrations compared with oral administration. Systemic distribution in blood, liver and kidney was much lower following topical administration than that of following oral administration. With high local concentrations and minimal distribution to other organs via the circulation, topical microemulsion vehicle loaded with CysA might deliver maximal therapeutic effect to local tissue while avoiding side effects seen with systemic therapy. The histopathological findings revealed that the new bicontinuous microemulsion was a safe vehicle for topical drug delivery of CysA.  相似文献   

17.
Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660 nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.  相似文献   

18.
The aim of this study was to develop a new microemulsion formulation for topical application of poorly soluble drug named quercetin. In order to design suitable microemulsion system, the pseudo-ternary phase diagrams of microemulsion systems were constructed at different surfactant/co-surfactant ratios using tween 80 as surfactant, transcutol® P as a co-surfactant and oleic acid as an oil phase. Some physicochemical properties such as droplet size, density, refractive index, electrical conductivity, pH, surface tension, and viscosity of the microemulsion systems were measured at 298.15 K. The average hydrodynamic droplet size of the optimized microemulsions was obtained by dynamic light scattering method. Morphology assessment of the optimized quercetin-loaded microemulsion by transmission electron microscopy analysis indicated that the particles have the size of about 25?nm and spherical with narrow size distribution. Equilibrium solubility, in vitro drug release at a 24?h time period, release kinetic evaluation as well as ex vivo permeation and retention of quercetin-loaded microemulsions through rat skin has been investigated. The obtained results showed a slow release behavior without any transdermal delivery. Most of the formulations fitted best with zero-order kinetic model with a non-Fickian mechanisms. This study illustrated that the proposed QU-microemulsion has a good potential for use in sunscreen formulations.

  相似文献   

19.
A microemulsion, made from water, oil, surfactants and cosurfactant is a thermodynamically stable system. The presence of the cosurfactant is often required in order to lower the interfacial tension of this interface, because a low interfacial tension is essential for the formation of microemulsions. The transparency of microemulsions arises from their small droplet diameter. The droplet diameter in stable microemulsions is usually within the range of 10 - 140 nm. Microemulsions are graphically represented as stability areas in triangular phase diagrams where each triangular corner designates a certain component. Microemulsions are actually quaternary (pseudoternary) systems. In pharmaceutical fields, the interest in microemulsions is increasing and, thus, they are applied to various administration routes.  相似文献   

20.
A microemulsion, made from water, oil, surfactants and cosurfactant is a thermodynamically stable system. The presence of the cosurfactant is often required in order to lower the interfacial tension of this interface, because a low interfacial tension is essential for the formation of microemulsions. The transparency of microemulsions arises from their small droplet diameter. The droplet diameter in stable microemulsions is usually within the range of 10 – 140 nm. Microemulsions are graphically represented as stability areas in triangular phase diagrams where each triangular corner designates a certain component. Microemulsions are actually quaternary (pseudoternary) systems. In pharmaceutical fields, the interest in microemulsions is increasing and, thus, they are applied to various administration routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号