首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PLGA multiphase microspheres were prepared by the multiple emulsion solvent evaporation method using acetonitrile as the polymer solvent and mineral oil as the evaporation medium. The preparation process was further developed in the present study to reduce the particle size and to increase the loading capacity of brilliant blue, bovine serum albumin (BSA) and tumour necrosis factor-alpha (TNF-alpha) which were used as water soluble model drug substances. Sorbitan sesqui-oleate (SO-15EX), present at the 1% w/w level in the evaporation medium, prevented agglomeration of the microspheres containing a solid-in-oil (S/O) suspension as the core phase. This S/O suspension core provided significantly higher loading efficiency of the proteins to the W/O emulsion core. The W/O emulsion system resulted in agglomeration of the protein-loaded microspheres and the loading efficiency decreased significantly. When brilliant blue was included as the model compound, the loading efficiencies were not influenced by the core type. Heavy mineral oil was employed to stabilize the dispersed unhardened microspheres rather than light mineral oil that was reported previously. This anhydrous emulsion system employing the S/O suspension core and containing a dispersion of TNF-alpha enabled the encapsulation of this protein without loss of activity. It was concluded that the anhydrous emulsion system is asuitable approach toprepare multiple microspheres as an alternative to the W/O emulsion system, especially when solvent sensitive proteins are incorporated into the microspheres.  相似文献   

2.
Felodipine-loaded poly (epsilon-caprolactone) (PCL) microspheres were prepared by two methods, the conventional emulsion solvent evapouration method and the quenching method. The aim of this work was to investigate the effects of process parameters such as emulsion type, drug loading, molecular-weight of the polymer, types of emulsion stabilizer and dispersed phase solvents, as well as preparation methods. The results show that, when conventional emulsion solvent evapouration method was used, the o/w-method produced smaller mean size and higher encapsulation efficiency compared with the o/o-method. The encapsulation efficiencies increased with an increase in the molecular weight and a decrease in crystallinity of PCL. The size of microspheres varied with the type of emulsion stabilizer used, smaller microspheres with PVA and narrow size distribution with Pol 237. The water solubility of the dispersed phase solvent was one of the critical factors in controlling the encapsulation efficiency and microsphere mean size. When water-soluble solvents such as acetonitrile and ethyl formate were used, the encapsulation efficiencies decreased due to higher evapouration rate. When quenching methods were used, in contrast to the conventional emulsion solvent evapouration method, very narrowly size-distributed but bigger microspheres were obtained.  相似文献   

3.
阙俐  吴伟 《中南药学》2003,1(1):22-26
目的考察内相乙醇加入量及其他制备因素对聚丙交酯微球性质的影响。方法以水略溶性药物氟尿嘧啶和水溶性药物地基米松磷酸钠为模型药物,乳化/溶剂挥发法制备微球。维持其他制备条件不变,改变内相乙醇加入量、理论载药量、聚丙交酯浓度、溶剂挥发时间及聚丙交酯分子质量,考察微球载药量、包封率、粒径和释放的影响。结果随着内相乙醇加入量的增多,微球形成加快,微球的粒径减小,模型药物的载药量及包封率略有升高,但乙醇加入量太多时载药量及包封率均明显降低。内相聚丙交酯浓度越大,形成的微球粒径越大,载药量及包封率也愈大。理论载药量对微球粒径影响不大,地基米松磷酸钠的包封率随理论载药量的增加而减小,而氟尿嘧啶为理论载药量为15%时,包封率最大。溶剂挥发时间在0.5~3h,微球的性质无明显变化。分子质量愈小,微球的粒径愈小,载药量及包封率亦随之减小。结论内相中加入一定量乙醇可以提高药物的包封率,并减少有毒含氯溶剂的用量。  相似文献   

4.
Bupivacaine has been encapsulated by solvent evaporation method based on O/W emulsion, using poly(DL-lactic-co-glycolic) acid (PLGA) 50:50. The particle size can be controlled by changing stirring rate and polymer concentration. The encapsulation efficiency was affected by polymer concentration and burst effect of bupivacaine released from particles was affected by drug/polymer mass ratio. Orthogonal design was used to optimize the formulation according to drug content, encapsulation efficiency and burst effect. The dissolution profile and release model were evaluated with two different bupivacaine microspheres (bupi-MS) groups including low drug loading (6.41%) and high drug loading (28.92%). It was observed that drug release was affected by drug loading especially the amount of drug crystal attached on surface of bupi-MS. The drug release profile of low drug loaded bupi-MS agreed with Higuchi equation and that of high drug loaded bupi-MS agreed with first order equation.  相似文献   

5.
Multiphase microspheres of poly(DL-lactic-co-glycolic acid) (PLGA) containing water-soluble compounds were prepared by a multiple-emulsion solvent evaporation technique. These compounds were dissolved in the aqueous phase of a W/O emulsion with soybean oil as the oil phase. This emulsion was dispersed throughout the matrix of the microsphere. The morphological properties of the multiphase microspheres during in vitro dissolution studies were compared to those of conventional microspheres prepared from the same polymer. Drug release from the multiphase microspheres was characterized by an initial uniform release for the first 20 days followed by a more rapid phase of drug release. Chlorpheniramine maleate (CPM) and brilliant blue (BB) were the soluble model compounds investigated. The release rates of these agents from the multiphase microspheres were independent of the drug content in the microspheres. The release profiles from the conventional microspheres showed a lag time of 10 and 16 days for the CPM and BB, respectively. The dissolution rate of the model soluble compounds from the conventional microspheres increased as the loading in the microspheres increased. No differences in the degradation rate of the PLGA from the multiphase and the conventional microspheres were seen during the dissolution studies.  相似文献   

6.
The high initial burst release of a highly water-soluble drug from poly (D,L-lactide-co-glycolide) (PLGA) microparticles prepared by the multiple emulsion (w/o/w) solvent extraction/evaporation method was reduced by coating with an additional polymeric PLGA layer. Coating with high encapsulation efficiency was performed by dispersing the core microparticles in peanut oil and subsequently in an organic polymer solution, followed by emulsification in the aqueous solution. Hardening of an additional polymeric layer occurred by oil/solvent extraction. Peanut oil was used to cover the surface of core microparticles and, therefore, reduced or prevented the rapid erosion of core microparticles surface. A low initial burst was obtained, accompanied by high encapsulation efficiency and continuous sustained release over several weeks. Reduction in burst release after coating was independent of the amount of oil. Either freshly prepared (wet) or dried (dry) core microparticles were used. A significant initial burst was reduced when ethyl acetate was used as a solvent instead of methylene chloride for polymer coating. Multiparticle encapsulation within the polymeric layer increased as the size of the core microparticles decreased (< 50 µm), resulting in lowest the initial burst. The initial burst could be controlled well by the coating level, which could be varied by varying the amount of polymer solution, used for coating.  相似文献   

7.
Poly(D,L-lactic-co-glycolic) acid (PLGA) microspheres containing plasmid DNA encoding the firefly luciferase gene were prepared using the water-in-oil-in-water (w/o/w) double emulsion and solvent evaporation method. In this study, we investigated the effects of three process parameters on DNA microencapsulation: (1) emulsification method used to generate the primary emulsion, (2) water/oil ratio during formation of the first emulsion, and (3) surfactant concentration used in the preparation of the second emulsion. The resulting formulations were also analyzed for microsphere size, encapsulation efficiency, and kinetics of DNA release. We found that although each process alteration resulted in encapsulation of biologically active, structurally intact DNA, the surfactant and water/oil ratio significantly affected the size, release kinetics and encapsulation efficiency of plasmid DNA.  相似文献   

8.
PURPOSE: To investigate the effects of inorganic salts in the external phase of an oil-in-water (O/W) emulsion method during microsphere preparation. METHODS: An O/W emulsion method was used to prepare poly(D,L-lactic acid) microspheres containing quinidine sulfate. Different inorganic salts were used in the external phase during microsphere preparation. Microsphere drug loading was determined by UV and the drug salt anions inside the microspheres were determined by ion chromatography. RESULTS: New drug salts were formed during encapsulation in the microspheres when salts with non-common anions to the drug salt were used. Drug loading increased when NaClO4 or NaSCN were used. The fraction of drug as the new salt in microspheres increased non-linearly with the salt concentration in the external phase, however, the fraction of drug as the new encapsulated salt was linearly related to drug loading. Drug loading decreased and new salt fraction increased with increasing organic solvent volume or with decreasing cosolvent polarity. CONCLUSIONS: Introducing salts containing non-common anions to the drug salt employed in the external phase of O/W emulsion microsphere method leads to new salt formation. The extent of new drug salt formation is affected by salt levels added, cosolvent type and polymer concentration.  相似文献   

9.
缓释微粒给药系统是蛋白质/多肽药物传输系统的一个重要研究方向,聚乳酸和乳酸-羟基乙酸共聚物是制备缓释微球最常用的载体材料。蛋白质/多肽药物聚乳酸/乳酸-羟基乙酸共聚物微球常用的制备方法包括溶剂萃取/挥发法(复乳法)、相分离法和喷雾干燥法。本文总结了微球制备中面临的难点如蛋白质/多肽药物稳定性、包封率、药物突释和药物吸附等问题,并综述了保持药物结构稳定性和生物活性、提高包封率、改善药物释放曲线等微球制备方法和进展。  相似文献   

10.
Purpose. The efficiency of encapsulation of water-soluble drugs in biodegradable polymer is often low and occasionally these microcapsules are associated with high burst effect. The primary objective of this study is to develop a novel microencapsulation technique with high efficiency of encapsulation and low burst effect. Method. Pentamidine was used as a model drug in this study. Pentamidine/polyvinyl alcohol (PVA) hydrogel was prepared by freeze-thaw technique. Pentamidine loaded hydrogel was later microencapsulated in poly(lactide-co-glycolide) (PLGA) using solvent evaporation technique. The microcapsules were evaluated for the efficiency of encapsulation, particle size, surface morphology, thermal characteristic, and drug release. Results. Scanning Electron Microscope (SEM) studies revealed that the microcapsules were porous. The microcapsules were uniform in size and shape with the median size of the microcapsules ranging between 27 and 94 m. The samples containing 10% PLGA showed nearly three times increase in drug loading (18-53%) by increasing the hydrogel content from 0-6%. The overall drug release from the microencapsulated hydrogel, containing 3% and 6% PVA, respectively, was significantly lower than the control batches. Conclusions. The use of a crosslinked hydrogel such as PVA can significantly increase the drug loading of highly water-soluble drugs. In addition, incorporation of the PVA hydrogel significantly reduced the burst effect and overall dissolution of pentamidine.  相似文献   

11.
Pseudoephedrine HCl, a highly water-soluble drug, was entrapped within poly (methyl methacrylate) microspheres by a water/oil/water emulsification-solvent evaporation method. An aqueous drug solution was emulsified into a solution of the polymer in methylene chloride, followed by emulsification of this primary emulsion into an external aqueous phase to form a water/oil/water emulsion. The middle organic phase separated the internal drug-containing aqueous phase from the continuous phase. Microspheres were formed after solvent evaporation and polymer precipitation. The drug content of the microspheres increased with increasing theoretical drug loading, increasing amounts of organic solvent, polymer and polymeric stabilizer, and decreased with increasing stirring time, increasing pH of the continuous phase and increased volume of the internal and external aqueous phase.  相似文献   

12.
Poly(lactic-co-glycolic acid) (PLGA) nanospheres containing protease inhibitors, camostat mesilate (CM) and nafamostat mesilate (NM), were prepared by the emulsion solvent diffusion methods in water or in oil, and the w/o/w emulsion solvent evaporation method. The average diameter of PLGA nanospheres prepared in the water system were about 150-300 nm, whereas those prepared in the oil system were 500-600 nm. Among the three methods, these drugs were the most efficiently encapsulated up to 60-70% in PLGA nanospheres in the oil system. Other factors that may influence drug encapsulation efficiency and in vitro release such as drug load, molecular weight of polymer were also investigated. Both the CM- and NM-loaded nanospheres prepared in the water system immediately released about 85% of the drug upon dispersed in the release medium while the drug initial burst of nanospheres prepared by the emulsion solvent diffusion in oil method reduced to 30% and 60% for CM and NM, respectively. Poly(aspartic acid) (PAA), a complexing agent for cationic water soluble drugs, showed little effect on the encapsulation efficiency and release behavior for CM and NM. The DSC study and AFM pictures of nanospheres demonstrated that temperature-dependent drug release behavior was ascribable to the glass transition temperature of the polymer, which also affected the morphology of nanospheres upon dispersed in the release medium and influenced the drug release consequently.  相似文献   

13.
Preparation of microspheres by the solvent evaporation technique   总被引:2,自引:0,他引:2  
The microencapsulation process in which the removal of the hydrophobic polymer solvent is achieved by evaporation has been widely reported in recent years for the preparation of microspheres and microcapsules based on biodegradable polymers and copolymers of hydroxy acids. The properties of biodegradable microspheres of poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) have been extensively investigated. The encapsulation of highly water soluble compounds including proteins and peptides presents formidable challenges to the researcher. The successful encapsulation of such entities requires high drug loading in the microspheres, prevention of protein degradation by the encapsulation method, and predictable release of the drug compound from the microspheres. To achieve these goals, multiple emulsion techniques and other innovative modifications have been made to the conventional solvent evaporation process.  相似文献   

14.
To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.  相似文献   

15.
Felodipine-loaded poly (ε-caprolactone) (PCL) microspheres were prepared by two methods, the conventional emulsion solvent evapouration method and the quenching method. The aim of this work was to investigate the effects of process parameters such as emulsion type, drug loading, molecular-weight of the polymer, types of emulsion stabilizer and dispersed phase solvents, as well as preparation methods. The results show that, when conventional emulsion solvent evapouration method was used, the o/w-method produced smaller mean size and higher encapsulation efficiency compared with the o/o-method. The encapsulation efficiencies increased with an increase in the molecular weight and a decrease in crystallinity of PCL. The size of microspheres varied with the type of emulsion stabilizer used, smaller microspheres with PVA and narrow size distribution with Pol 237. The water solubility of the dispersed phase solvent was one of the critical factors in controlling the encapsulation efficiency and microsphere mean size. When water-soluble solvents such as acetonitrile and ethyl formate were used, the encapsulation efficiencies decreased due to higher evapouration rate. When quenching methods were used, in contrast to the conventional emulsion solvent evapouration method, very narrowly size-distributed but bigger microspheres were obtained.  相似文献   

16.
A modified oil-in-oil (o/o) emulsion solvent evaporation technique was adopted to prepare 5-fluorouracil (5-Fu)-loaded poly (L-lactide) (PLLA) or its carbonate copolymer microspheres. The disperse phase was a drug:polymer solution using a solvent mixture of N,N-dimethylformamide (DMF) and acetonitrile and the continuous phase was liquid paraffin containing 1-10% (w/v) Span 80(R). The effects of preparative parameters, such as the composition of the inner oil phase, drug:polymer ratio, polymer concentration and agitation rate, on 5-Fu entrapment efficiency and microsphere characteristics were investigated. By introducing 25% (v/v) DMF into the inner oil phase, microspheres with high drug entrapment efficiency and an ameliorated burst effect were achieved. Using this modified method, microspheres with various particle sizes could be produced with a high 5-Fu entrapment efficiency (about 80%). In vitro drug release tests showed a burst release of 5-Fu from PLLA microspheres, followed by a sustained release over 50 days. In the case of poly (L-lactide-co-1,3-trimethylene carbonate) (PLTMC) and poly (L-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate) (PLDTMC), the drug release could be continued for over 60 days.  相似文献   

17.
The influence of co-encapsulation of stabilizing additives together with BSA on microsphere characteristics using the modified water-in-oil-in-water emulsion solvent evaporation (W/O/W) method was investigated. For this purpose, poly(L-lactide) microspheres containing bovine serun albumin (BSA) were prepared. The morphology, porosity, specific surface area, particle size, encapsulation efficiency and kinetics of drug release of protein loaded microspheres were analysed in relation to the influence of co-encapsulated stabilizing additives such as electrolytes. High salt concentrations in the internal (W1) aqueous phase, often necessary to stabilize protein or antigen solutions, led to an increase in particle size, particle size distribution, porosity and specific surface area. Bulk density and encapsulation efficiency decreased. The release profile was characterized by a high initial burst due to the highly porous structure. Addition of salt to the external or continuous water phase (W2), however, stabilized the encapsulation process and, therefore, resulted in improved microsphere characteristics as a dense morphology, a reduced initial burst release, a drastically increased bulk density and encapsulation efficiency. Analysis of the specific surface area (BET) showed that the addition of salt to W2, regardless of the salt concentration in the W1 phase, decreased the surface area of the microspheres approximately 23-fold. Microsphere properties were influenced by salts additions through the osmotic pressure gradients between the two aqueous phases and the water flux during microsphere formation. Release profiles and encapsulation efficiencies correlated well with the porosity and the surface area of microspheres. Furthermore, the influence of a low molecular weight drug and different time-points of salt addition to W2 on microsphere characteristics were studied by encapsulation of acid orange 63 (AO63), confirming the results obtained with BSA. This study suggests that modification of the external water phase by adding salts is a simple and efficient method to encapsulate stabilized protein solution, with high encapsulation efficiency and good microsphere characteristics.  相似文献   

18.
Abstract

Poly(DL-lactic acid) (DL-PLA, molecular weight 20 500) microcapsules containing phenobarbitone (PB) as a reference core were prepared using a water/oil (W/O) emulsion system. Surface morphology, particle size and ‘encapsulation efficiency’ of the microcapsules prepared using different preparative variables have been investigated. Buffer pH 9 was used as a dissolution medium to determine the affect of preparative variables on the release rate from these microcapsules.

With an increase in temperature of evaporation the microcapsule surface became increasingly irregular and porous, due to deposition of phenobarbitone crystals near the vicinity of the microcapsule surface leading to rapid release of the core. The normalized release rate was found to increase exponentially with an increase in the temperature of evaporation. Microcapsule morphology was also severely affected due to differences in polymer concentration in the disperse phase solvent. With the increase in polymer concentration, the microcapsule surface was found to be increasingly irregular and non-continuous, due to rapid precipitation of the polymer. Increased polymer concentrations also increased mean microcapsule diameter. The release rate increased with the increase in polymer concentration due to surface defects and did not exhibit a straight line correlation. When core loading was very high (e.g. C:P, 2:1 and 1:1), crystals of phenobarbitone appeared at the surface and these caused a very rapid burst effect. However, microcapsules containing a lower phenobarbitone content were found to follow t1/2 dependent release. The encapsulation efficiency was not seriously affected due to variations in temperature of preparation and polymer concentration. However, with the decrease in initial core loading the encapsulation efficiency of microcapsules was found to be reduced.  相似文献   

19.
PURPOSE: The aim of this study was to prepare poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing sodium fusidate (SF) using a double emulsion solvent evaporation method with varying polymer:drug ratios (1:1, 2.5:1, 5:1) and to evaluate its efficiency for the local treatment of chronic osteomyelitis. METHODS: The particle size and distribution, morphological characteristics, thermal behaviour, drug content, encapsulation efficiency and in vitro release assessments of the formulations had been carried out. Sterilized SF-PLGA microspheres were implanted in the proximal tibia of rats with methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. After 3 weeks of treatment, bone samples were analysed with a microbiological assay. RESULTS: PLGA microspheres between the size ranges of 2.16-4.12 microm were obtained. Production yield of all formulations was found to be higher than 79% and encapsulation efficiencies of 19.8-34.3% were obtained. DSC thermogram showed that the SF was in an amorphous state in the microspheres and the glass transition temperature (T(g)) of PLGA was not influenced by the preparation procedure. In vitro drug release studies had indicated that these microspheres had significant burst release and their drug release rates were decreased upon increasing the polymer:drug ratio (p < 0.05). Based on the in vivo data, rats implanted with SF-PLGA microspheres and empty microspheres showed 1987 +/- 1196 and 55526 +/- 49086 colony forming unit of MRSA in 1 g bone samples (CFU/g), respectively (p < 0.01). CONCLUSION: The in vitro and in vivo studies had shown that the implanted SF loaded microspheres were found to be effective for the treatment of chronic osteomyelitis in an animal experimental model. Hence, these microspheres may be potentially useful in the clinical setting.  相似文献   

20.
Biodegradable poly(D,L-lactic acid) (PLA) microspheres containing hexamethylmelamine (HMM) were developed for potential use in chemoembolization and intraperitoneal implantation. The emulsion-solvent-evaporation/extraction method was used to prepare 15 formulations with different drug/polymer ratios, solvent compositions and emulsifer concentrations in the continuous aqueous phase. A central composite experimental design was used, with five levels of the three different factors. All formulations resulted in the formation of discrete matrix microspheres containing crystalline drug. The mean particle sizes of the microsphere formulations ranged from 62-348 microm and the effect of the independent variables on microsphere size was satisfactorily predicted using response surface methodology. For theoretical drug loads of 5-40%, efficiency of entrapment ranged from 75-107% and porosities of the microspheres were between 0-6.5%. The rate of drug release from the microspheres depended on drug loading and particle size. Microspheres with 22.5% or greater theoretical drug content released drug rapidly, with almost complete release occurring in 70 h or less. Formulations with drug loading of 5% and 9.57%, however, released drug very slowly, with less than 50% released in 40 days. Release kinetics of narrow sieve cuts of microspheres with high drug load (35.4%) followed square root of time profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号