首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3‐[18F]Fluoropropyl‐, 4‐[18F]fluorobenzyl‐triphenylphosphonium and 4‐[18F]fluorobenzyltris‐4‐dimethylaminophenylphosphonium cations were synthesized in multi‐step reactions from no carrier added (nca) [18F]fluoride. The time for synthesis, purification, and formulation was 56, 82, and 79 min with an average radiochemical yield of 12, 6 and 15%, respectively (not corrected for decay). The average specific radioactivity for the three radiolabeled compounds was 14.9 GB q/µmole (403 mCi/µmole) at end of synthesis (EOS). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
[18F]NS12137 (exo‐3‐[(6‐[18F]fluoro‐2‐pyridyl)oxy]8‐azabicyclo[3.2.1]octane) is a highly selective norepinephrine transporter (NET) tracer. NETs are responsible for the reuptake of norepinephrine and dopamine and are linked to several neurodegenerative and neuropsychiatric disorders. The aim of this study was to develop a copper‐mediated 18F‐fluorination method for the production of [18F]NS12137 with straightforward synthesis conditions and high radiochemical yield and molar activity. [18F]NS12137 was produced in two steps. Radiofluorination of [18F]NS12137 was performed via a copper‐mediated pathway starting with a stannane precursor and using [18F]F? as the source of the fluorine‐18 isotope. Deprotection was performed via acid hydrolysis. The radiofluorination reaction was nearly quantitative as was the deprotection based on HPLC analysis. The radiochemical yield of the synthesis was 15.1 ± 0.5%. Molar activity of [18F]NS12137 was up to 300 GBq/μmol. The synthesis procedure is straightforward and can easily be automated and adapted for clinical production.  相似文献   

3.
The synthesis of 2‐([4‐18F]fluorophenyl)benzimidazole, which has potential to be used as a building block for many endogenous and pharmaceutical compounds, is reported. A range of solvents and catalysts as well as conventional and microwave heating have been investigated to optimise the reaction conditions. The cyclocondensation of 1,2‐diaminobenzene with radiolabelled [4‐18F]fluorobenzoic acid in neat methanesulphonic and polyphosphoric acids under microwave heating led rapidly to the cyclised phenylbenzimidazole. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Compared to homoaromatic and aliphatic nucleophilic radiofluorinations, only few references can be found in the literature describing nucleophilic substitutions with [18F]fluoride ion of heteroaromatic compounds such as pyridines and only reactions involving fluorination processes at the ortho‐position (2‐position) have been more intensively studied. In the present paper, the scope of the nucleophilic aromatic fluorinations at the meta‐ and para‐position of the pyridine ring with no‐carrier‐added [18F]fluoride ion as its activated K[18F]F‐K222 complex has been evaluated and compared to the nucleophilic aromatic fluorinations at the ortho‐position in this pyridine series. The syntheses of 3‐ and 4‐[18F]fluoropyridines were chosen as model reactions and compared to the radiosynthesis of 2‐[18F]fluoropyridine. The parameters studied include the influence of the position of the leaving group at the pyridine ring, as well as the quantity of the precursor used, the type of activation (conventional heating, microwave irradiation), the solvent, the temperature and the reaction time. Using the corresponding nitro precursor, high yields were obtained at the 2‐position (94% yield) using microwaves (100 W) for 2 min in DMSO. Good yields (up to 72%) were observed at the 4‐position using the same conditions while practically no reaction was observed at the 3‐position. About 60% yield was also obtained at both the 2‐ and 4‐position using the corresponding nitro precursor at 145°C for 10 min in DMSO. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Syntheses of N‐3(substituted) analogues of thymidine, N‐3([18F]fluorobutyl)thymidine ([18F]‐FBT) and N‐3([18F]fluoropentyl)thymidine ([18F]‐FPT) are reported. 1,4‐Butane diol and 1,5 pentane diol were converted to their tosyl derivatives 2 and 3 followed by conversion to benzoate esters 4 and 5, respectively. Protected thymidine 1 was coupled separately with 4 and 5 to produce 6 and 7 , which were hydrolyzed to 8 and 9 , then converted to their mesylates 10 and 11 , respectively. Compounds 10 and 11 were fluorinated with n‐Bu4N[18F] to produce 12 and 13 , which by acid hydrolysis yielded 14 and 15 , respectively. The crude products were purified by HPLC to obtain [18F]‐FBT and [18F]‐FPT. The radiochemical yields were 58–65% decay corrected (d.c.) for 14 and 46–57% (d.c.) for 15 with an average of 56% in three runs per compound. Radiochemical purity was >99% and specific activity was >74 GBq/µmol at the end of synthesis (EOS). The synthesis time was 65–75 min from the end of bombardment (EOB). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The syntheses of adenosine analogues, 2′‐deoxy‐2′‐[18F]fluoro‐9‐β‐D ‐arabinofuranosyladenine ([18F]‐FAA) and 3′‐deoxy‐3′‐[18F]fluoro‐9‐β‐D ‐xylofuranosyladenine ([18F]‐FXA) are reported. Adenosine ( 1 ) was converted to its methoxytrityl derivatives 2 and 3 as a mixture. After separation, these derivatives were converted to their respective triflates 4 and 5 . Each triflate was reacted with tetrabutylammonium[18F]fluoride to produce 6b or 7b , which by acidic hydrolysis yielded compounds 8b and 9b . Crude preparations were purified by HPLC to obtain the desired pure products. The radiochemical yields were 10‐18% decay corrected (d. c.) for 8b and 30‐40% (d. c.) for 9b in 4 and 3 runs, respectively. Radiochemical purity was >99% and specific activity was >74 GBq/μmol at the end of synthesis (EOS). The synthesis time was 90‐95 min from the end of bombardment (EOB). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The potential for radiolabeled antisense oligonucleotides to image gene expression combined with the enhanced resolution of positron‐emission tomography justifies the continued interest in the development of oligonucleotides tagged with positron‐emitting radionuclides. The radiolabeling of oligonucleotides is a multi‐step process and may require handling large amounts of radioactivity initially. A previously reported method for radiolabeling oligonucleotides with N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide was adapted for use in a commercially available automated synthesis unit by linking two reaction trains. The yield of N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide ranged from 3 to 18% and the synthesis was completed within 1 h. Challenges in using this unit included the maintenance of anhydrous conditions for the effective reduction of 4‐[18F]fluorobenzonitrile. Preliminary results indicated that a mean yield of 36% could be obtained upon incubation of an oligonucleotide with N–(4‐[18F]fluorobenzyl)‐2‐bromoacetamide. The entire synthesis could be performed within 3 h. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
To develop a novel progesterone receptor‐targeting probe for positron emission tomography imaging, an ethisterone derivative [18F]EAEF was designed and prepared in high decay‐corrected radiochemical yield (30–35%) with good radiochemical purity (>98%). [18F]EAEF is a lipophilic tracer (logP = 0.53 ± 0.06) with very good stability in saline and serum. In the biodistribution study, high radioactivity accumulation of [18F]EAEF were found in uterus (5.73 ± 1.83% ID/g) and ovary (4.05 ± 0.73% ID/g) at 2 hr postinjection (p.i.), which have high progesterone receptor expression after treated with estradiol, while the muscle background has very low uptake (0.50 ± 0.17% ID/g). For positron emission tomography imaging, [18F]EAEF showed high uptake in progesterone receptor‐positive MCF‐7 tumor (3.15 ± 0.07% ID/g at 2 hr p.i.) with good tumor to muscle ratio (2.90), and obvious lower tumor uptakes were observed in MCF‐7 with EAEF blocking (1.84 ± 0.05% ID/g at 2 hr p.i.) or in progesterone receptor‐negative MDA‐MB‐231 tumor (1.80 ± 0.03% ID/g at 2 hr p.i.). Based on the good stability and specificity of [18F]EAEF, it may be a good candidate for imaging progesterone receptor and worth further investigation.  相似文献   

9.
Synthesis of 2′‐deoxy‐2′‐[18F]fluoro‐5‐methyl‐1‐β‐D‐arabinofuranosyluracil ([18F]‐FMAU) is reported. 2‐Deoxy‐2‐[18F]fluoro‐1,3,5‐tri‐O‐benzoyl‐α‐D‐arabinofuranose 2 was prepared by the reaction of the respective triflate 1 with tetrabutylammonium[18F]fluoride. The fluorosugar 2 was converted to its 1‐bromo‐derivative 3 and coupled with protected thymine 4 . The crude product mixture ( 5a and 5b ) was hydrolyzed in base and purified by HPLC to obtain the radiolabeled FMAU 6a . The radiochemical yield of 6a was 20–30% decay corrected (d.c.) in four steps with an average of 25% in four runs. Radiochemical purity was >99% and average specific activity was 2300 mCi/μmol at the end of synthesis (EOS). The synthesis time was 3.5–4.0 h from the end of bombardment (EOB). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Several [18F]‐labeled α‐trifluoromethyl ketones have been synthesized. Reactions of 2,2‐difluoro‐1‐aryl‐1‐trimethylsiloxyethenes ( 1a–d ) with [18F]‐F2 at low temperature produced [18F]‐labeled α‐trifluoromethyl ketones ( 2a–d ). Radio‐labeled products were isolated by purification with column chromatography in 22–28% yields, decay corrected (d.c.) in three runs per compound. Radiochemical purity was >99% with specific activities 15–20 GBq/mmol at the end of synthesis (EOS). The synthesis time was 35–40 min from the end of bombardment (EOB). This one‐step simple method is highly useful for the radiochemical synthesis of potential biologically active [18F]‐labeled α‐trifluoromethyl ketones for PET imaging. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The SUZUKI reaction of organoboron compounds with 4‐[18F]fluoroiodobenzene has been developed as a novel radiolabelling technique in 18F chemistry. The cross‐coupling reaction of p‐tolylboronic acid with 4‐[18F]fluoroiodobenzene was used to screen different palladium complexes, bases and solvents. Optimized reaction conditions (Pd2(dba)3, Cs2CO3, acetonitrile, 60°C for 5 min) were further applied to the synthesis of various 18F‐labelled biphenyls bearing different functional groups. The reaction proceeded in excellent radiochemical yields of up to 94% within 5 min while showing good compatibility to many functional groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The acylation reagent [18F]N‐succinimidyl‐4‐fluorobenzoate (18F‐SFB) has been prepared using a new two‐step approach. The starting material p‐[18F]fluorobenzaldehyde (18F‐FBA) was obtained by an improved radiosynthesis with a decay‐corrected radiochemical yield of 66±6 % (n=3). Reaction of 18F‐FBA with (diacetoxyiodine)benzene and N‐hydroxysuccinimide and preparative HPLC purification furnished 18F‐SFB in an r.c.y. of 49±6 % (n=3), based on the starting radioactivity of 18F‐FBA. The radiochemical purity of 18F‐SFB was >99%. Alternatively, purification by solid phase extraction gave 18F‐SFB with an r.c.y. of 77±9% (n=4) and a radiochemical purity of 89±5% (n=4). This radiochemical synthesis only used non‐aqueous solvents, which simplifies the method and facilitates subsequent applications of 18F‐SFB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The scope of the nucleophilic aromatic ortho‐fluorinations from the corresponding ortho‐halonitrobenzene precursors (halo‐to‐fluoro substitutions) with no‐carrier‐added [18F]fluoride ion as its activated K[18F]F–K222 complex has been evaluated via the radiosynthesis of ortho‐[18F]fluoronitrobenzene, chosen as a model reaction. The parameters studied include the influence of the leaving group in the ortho position of the phenyl ring (–Cl, –Br, –l), the quantity of precursor used, the type of activation (conventional heating or microwave irradiations), the solvent, the temperature and the reaction time. The iodo‐precursor was completely unreactive and the bromo‐precursor gave only low incorporation (<10%) in the optimal conditions used (conventional heating at 145°C or microwave activation, 100 W for 120 s). Only the chloro‐precursor was found reactive in the conditions described above and up to 70% yield was observed for the formation of ortho‐[18F]fluoronitrobenzene ([18F]‐ 1 ). In all the experiments, the unwanted ortho‐[18F]fluoro‐halobenzenes, potentially resulting from the nitro‐to‐fluoro substitution, could not be detected. These results will be applied for the radiosynthesis of 5‐[18F]fluoro‐6‐nitroquipazine, a potent radioligand for the imaging of the serotonin transporter with PET. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
2′‐Deoxy‐2′‐[18F]fluoro‐5‐substituted‐1‐β‐D ‐arabinofuranosyluracils, including 2′‐deoxy‐2′‐[18F]fluoro‐5‐methyl‐1‐β‐D ‐arabinofuranosyluracil [18F]FMAU and [18F]FEAU are established radiolabeled probes to monitor cellular proliferation and herpes simplex virus type 1 thymidine kinase (HSV1‐tk) reporter gene expression with positron emission tomography. For clinical applications, a fully automated CGMP‐compliant radiosynthesis is necessary for production of these probes. However, due to multiple steps in the synthesis, no such automated synthetic protocols have been developed. We report here a fully automated synthesis of [18F]‐FEAU and [18F]‐FMAU on a prototype dual reactor module TRACERlab FX FN. The synthesis was performed by using a computer‐programmed standard operating procedure, and the product was purified on a semipreparative high‐performance liquid chromatography (HPLC) integrated with the synthesis module using 12% EtOH in 50 mM Na2HPO4. Finally, the percentage of alcohol was adjusted to 7% by adding Na2HPO4 and filtered through a Millipore filter to make dose for human. The radiochemical yield on the fluorination was 40±10% (n=10), and the overall yields were 4±1% (d. c.), from the end of the bombardment; [18F]FEAU (n=7) and [18F]FMAU (n=3). The radiochemical purity was >99%, specific activity was 1200–1300 mCi/µmol. The synthesis time was 2.5 h. This automated synthesis should be suitable for production of [18F]FIAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and other 5‐substitued thymidine analogues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
To assess the potential of intermolecular hydroacylation reactions as a new fluorine‐18 labeling method, model reactions of [18F]fluorobenzaldehyde with three different olefins (1‐hexene ( 2a ), allylbenzene ( 2b ), and 3‐phenoxypropene ( 2c )) in the presence of Wilkinson's catalyst were performed. The procedure gave high radiochemical yields (38–62%) of [18F]fluorophenylketones with short reaction times (15 min). The intermolecular hydroacylation reaction provides a new method for the preparation of fluorine‐18 labeled compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The cocaine‐derived dopamine reuptake inhibitors FE‐β‐CIT (8‐(2‐fluoroethyl)‐3‐(4‐iodophenyl)‐8‐azabicyclo[3.2.1]octane‐2‐carboxylic acid methyl ester) (1) and PR04.MZ(8‐(4‐fluorobut‐2‐ynyl)‐3‐p‐tolyl‐8‐azabicyclo[3.2.1]octane‐2‐carboxylic acid methyl ester) (2) were labelled with 18F‐fluorine using a two‐step route. 2‐[18F]Fluoroethyltosylate and 4‐[18F]fluorobut‐2‐yne‐1‐yl tosylate were used as labelling reagents, respectively. Radiochemically pure (>98%) [18F]FE‐β‐CIT and [18F]PRD04.MZ (32–86 GBq/µmol) were obtained after a synthesis time of 100 min in about 25% non‐decay‐corrected overall yield.  相似文献   

17.
A fully automated synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) was carried out by a convenient three‐step, one‐pot procedure on the modified TRACERlab FXFN synthesizer, including [18F]fluorination of ethyl 4‐(trimethylammonium triflate)benzoate as the precursor, saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide instead of sodium hydroxide, and conversion of 4‐[18F]fluorobenzoate salt ([18F]FBA) to [18F]SFB treated with N,N,N′,N′‐tetramethyl‐O‐(N‐succinimidyl)uranium tetrafluoroborate (TSTU). The purified [18F]SFB was used for the labeling of Tat membrane‐penetrating peptide (containing the Arg‐Lys‐Lys‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Pro‐Leu‐Gly‐Leu‐Ala‐Gly‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu sequence, [18F]CPP) through radiofluorination of lysine amino groups. The uncorrected radiochemical yields of [18F]SFB were as high as 25–35% (based on [18F]fluoride) (n=10) with a synthesis time of~40 min. [18F]CPP was produced in an uncorrected radiochemical yields of 10–20% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]CPP were greater than 95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Radiosyntheses of two N3‐substituted thymidine analogues, N3‐[(4[18F]fluoromethyl‐phenyl)butyl]thymidine ([18F]‐FMPBT) and N3‐[(4[18F]fluoromethyl‐phenyl)pentyl]thymidine ([18F]‐FMPPT), are reported. The precursor compounds 9 and 10 were synthesized in six steps and the standard compounds 13 and 14 were synthesized from these precursors. For radiosynthesis, compounds 9 and 10 were fluorinated with n‐Bu4N[18F] to produce [18F]‐ 11 and [18F]‐ 12 , which by acid hydrolysis yielded [18F]‐ 13 and [18F]‐ 14 , respectively. The crude products were purified by high‐performance liquid chromatography to obtain [18F]‐FMPBT and [18F]‐FMPPT. The average decay‐corrected radiochemical yield for [18F]‐ 13 was 15% in five runs, and that for [18F]‐ 14 was 10% in four runs. The radiochemical purity was >99% and the specific activity was >74 GBq/µmol at the end of synthesis. The synthesis time was 80–90 min from the end of bombardment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Acrylamido‐quinazolines substituted at the 6‐position bind irreversibly to the intracellular ATP binding domain of the epidermal growth factor receptor (EGFR). A general route was developed for preparing 6‐substituted‐4‐anilinoquinazolines from [18F]fluoroanilines for evaluation as EGFR targeting agents with PET. By a cyclization reaction, 2‐[18F]fluoroaniline was reacted with N′‐(2‐cyano‐4‐nitrophenyl)‐N,N‐dimethylimidoformamide to produce 6‐nitro‐4‐(2‐[18F]fluoroanilino)quinazoline in 27.5% decay‐corrected radiochemical yield. Acid mediated tin chloride reduction of the nitro group was achieved in 5 min (80% conversion) and subsequent acylation with acrylic acid gave 6‐acrylamido‐4‐(2‐[18F]fluoroanilino)quinazoline in 8.5% decay‐corrected radiochemical yield, from starting fluoride, in less than 2 h. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
18F‐labelled fluoroalkylamines are attractive reagents for the preparation of positron emission tomography tracers containing amine, amide, and N‐heterocyclic moieties. Herein, we report that 2‐[18F]fluoroethylamine can be obtained from 2‐[18F]fluoroethyl azide by reduction with elemental copper under acidic conditions. Azide to amine reduction was achieved in near quantitative analytical yields within 30 min by heating a solution of 2‐[18F]fluoroethyl azide in the presence of copper wire and aqueous trifluoroacetic acid. Subsequent reaction of 2‐[18F]fluoroethylamine with benzoyl chloride in the presence of triethylamine provided N‐[18F]fluoroethyl benzamide in 63% decay‐corrected radiochemical yield from 2‐[18F]fluoroethyl azide. The utility of the Cu(0)/H+ azide reduction method was further exemplified by preparation of the potential GABAA tracer 9H‐β‐carboline N‐2‐[18F]fluoroethylamide, which was obtained in 46% decay‐corrected radiochemical yield by reaction of 2‐[18F]fluoroethylamine with the corresponding 9H‐β‐carboline pentafluorophenyl ester. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号