首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,1′‐Methylene‐di‐(2‐naphthol) (ST1859), a candidate drug for the treatment of Alzheimer's disease, was radiolabelled with carbon‐11 with the aim to perform PET microdosing studies in humans. The radiosynthesis was automated in a commercial synthesis module (Nuclear Interface PET tracer synthesizer) and proceeded via reaction of [11C]formaldehyde with 2‐naphthol. [11C]formaldehyde was prepared by catalytic dehydrogenation of [11C]methanol (conversion yield: 48±11% (n = 19)) employing a recently developed silver‐containing ceramic catalyst. Starting from 69±3 GBq of [11C]carbon dioxide (n = 19), 4±1 GBq of [11C]ST1859 (decay‐corrected to the end of bombardment), readily formulated for intravenous administration, could be obtained in an average synthesis time of 38 min. The specific radioactivity of [11C]ST1859 at the end of synthesis exceeded 32 GBq/µmol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the radiosynthesis of 3‐[11C]methylthiophene, chosen as a model reaction for the preparation of heteroaromatic methylthienyl compounds. Labelling was performed from the corresponding lithiothiophene derivative and [11C]methyl iodide as the alkylating agent in THF at ?78°C. The conditions used were the following: (1) trapping for 2–3 min at ?78°C of the [11C]methyl iodide in the THF solution containing the freshly prepared 3‐lithiothiophene; (2) Hydrolysis of the reaction mixture by adding 0.5 ml of the HPLC mobile phase and (3) HPLC purification. 3‐[11C]Methylthiophene ([11C]‐ 1 ) was collected in high yield as the unique peak of the HPLC radiochromatogram. Non‐reacted [11C]methyl iodide was not present. Typically, 50–60 mCi (1.85–2.22 GBq) of 3‐[11C]methylthiophene ([11C]‐ 1 ) were obtained within 20 min of radiosynthesis (including HPLC purification) with specific radioactivities ranging from 0.6 to 1.0 Ci/μmol (22.2–37.0 GBq/μmol) starting from 180 to 200 mCi (6.66–7.40 GBq) of [11C]CO2 (10 μA, 10 min (6000 μC) irradiation). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A new approach for 11C–C bond formation via a Sonogashira‐like cross‐coupling reaction of terminal alkynes with [11C]methyl iodide was exemplified by the synthesis of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol. The LC‐purified title compound was obtained in decay‐corrected radiochemical yields of 27–47% (n=8) based on [11C]methyl iodide within 21–27 min after EOB. In a typical synthesis starting from 9.6 GBq [11C]methyl iodide, 1.87 GBq of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol was synthesized in radiochemical purity >99%. The specific radioactivity ranged between 10 and 19 GBq/µmol, and the labeling position was verified by 13C‐NMR analysis of the corresponding 13C‐labeled compound. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
1‐[2‐(4‐Fluorobenzoylamino)ethyl]‐4‐(7‐methoxynaphthyl)piperazine (S14506) is one of the most potent and selective agonists at 5‐HT1A receptors. For the purpose of prospective 5‐HT1A receptor imaging with positron emission tomography and the investigation of radioligand metabolic pathways, S14506 was labeled with a positron emitter, either carbon‐11 (t1/2=20.4 min) or fluorine‐18 (t1/2=109.7 min), at different positions. Thus, [O‐methyl11C]S14506 was obtained in a radiosynthesis time of 35 min by treating O‐desmethyl‐S14506 with [11C]iodomethane and tetrabutylammonium hydroxide in N,N–dimethylformamide. The overall decay‐corrected radiochemical yield (RCY) of [O‐methyl11C]S14506 ranged between 6 and 24% and the specific activity (SA) between 1343 and 3101 Ci/mmol (mean 2390; n=30). [carbonyl11C]S14506 was synthesized through a microwave‐enhanced direct coupling of in situ generated [11C]organocarboxymagnesium bromide with amine precursor. RCYs ranged from 10 to 18%. [18F]S14506 was prepared via nucleophilic aromatic fluoridation of the 4‐nitro analog in 14–35% RCY and with SA ranging from 1063 to 2302 Ci/mmol (mean 1617; n=14) in a radiosynthesis time of 115 min. Heating the radiofluoridation mixture for 5 min at 180°C in a single mode microwave cavity gave similar RCY and SA to heating for 30 min in an oil bath at the same temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we describe the radiosynthesis of the compound (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene, a potential, universal tumour positron emission tomography imaging agent. The production of (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was carried out via 11C‐methylation of (E)‐2‐(hydroxy)‐3′,4,5′‐trimethoxystilbene by using [11C]methyl trifluoromethanesulfonate ([11C]methyl triflate). (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was obtained with a radiochemical purity greater than 95% in a 20 ± 2% decay‐corrected radiochemical yield, based upon [11C]carbon dioxide. Synthesis, purification and formulation were completed on an average of 30 min following the end of bombardment (EOB). The specific radioactivity obtained was 1.9 ± 0.6 GBq/µmol at EOB. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A method to prepare [1‐11C]propyl iodide and [1‐11C]butyl iodide from [11C]carbon monoxide via a three step reaction sequence is presented. Palladium mediated formylation of ethene with [11C]carbon monoxide and hydrogen gave [1‐11C]propionaldehyde and [1‐11C]propionic acid. The carbonylation products were reduced and subsequently converted to [1‐11C]propyl iodide. Labelled propyl iodide was obtained in 58±4% decay corrected radiochemical yield and with a specific radioactivity of 270±33 GBq/µmol within 15 min from approximately 12 GBq of [11C]carbon monoxide. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Butyl iodide was obtained correspondingly from propene and approximately 8 GBq of [11C]carbon monoxide, in 34±2% decay corrected radiochemical yield and with a specific radioactivity of 146±20 GBq/µmol. The alkyl iodides were used in model reactions to synthesize [O‐propyl‐1‐11C]propyl and [O‐butyl‐1‐11C]butyl benzoate. Propyl and butyl analogues of etomidate, a β‐11‐hydroxylase inhibitor, were also synthesized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
PipISB [N‐(4‐fluoro‐benzyl)‐4‐(3‐(piperidin‐1‐yl)‐indole‐1‐sulfonyl)benzamide, 9] was identified as a selective high potency CB1 receptor ligand. Here we describe the labeling of 9 with positron‐emitters to provide candidate radioligands for imaging brain CB1 receptors with positron emission tomography (PET). The radiolabeling of 9 was achieved by two methods, method A with carbon‐11 and method B with fluorine‐18. In method A, [11C]9 was prepared in one step from [11C]carbon monoxide, itself prepared from cyclotron‐produced [11C]carbon dioxide. In method B, [18F]9 was prepared from cyclotron‐produced [18F]fluoride ion in a two‐stage, four‐step synthesis with [18F]4‐fluoro‐benzyl bromide as a labeling agent. The radiosynthesis time for method A was 44 min; decay‐corrected radiochemical yields (RCYs) from [11C]carbon monoxide ranged from 3.1 to 11.6% and specific radioactivities ranged from 21 to 67 GBq/µmol. The radiosynthesis time for method B was 115 min; RCYs from [18F]fluoride ion ranged from 1.5 to 5.6% and specific radioactivities ranged from 200 to 348 GBq/µmol. With these methods, [11C]9 and [18F]9 may be prepared in adequate activity and quality for future evaluation as PET radioligands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
3‐Indolylacetic acid (IAA) is the major auxin in higher plants and plays a key role in plant growth and development. We report the rapid radiolabeling of the important plant hormone using carbon‐11 (half life: 20.4 min) enabling in vivo imaging of its distribution and movement in whole plants. 3‐Indolyl[1‐11C]acetic acid was synthesized in 2‐steps: (1) reaction of gramine with [11C]cyanide to give 3‐indolyl[1‐11C]acetonitrile in >99% radiochemical purity; (2) hydrolysis of the intermediate in aqueous sodium hydroxide solution to give 3‐indolyl[1‐11C]acetic acid in >98% radiochemical purity after HPLC purification. The overall nondecay corrected radiochemical yield was 28%, synthesis time was 68 min and specific activity was (0.7 mCi/nmol). Hydrolysis proceeded through the formation of 3‐indolyl[1‐11C]acetamide and by varying the temperature of this step, either C‐11 labeled acid or amide were obtained. This procedure provides unexpectedly high C‐11 incorporation in a short time and using a simple and selective hydrolysis without the need of an indole‐nitrogen protecting group or a typical leaving group. Since 3‐indolylacetonitrile and 3‐indolylacetamide are also intermediates in the biosynthesis of IAA, and also function as auxins, this versatile reaction makes all three of these labeled compounds available for imaging studies in whole plants in vivo. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
[carbonyl11C]Benzyl acetate ([11C]1) has been proposed as a potential agent for imaging glial metabolism of acetate to glutamate and glutamine with positron emission tomography. [11C]1 was synthesized from [11C]carbon monoxide, iodomethane and benzyl alcohol via palladium‐mediated chemistry. The radiosynthesis was automated with a modified Synthia platform controlled with in‐house developed Labview software. Under production conditions, [11C]1 was obtained in 10% (n=6) decay‐corrected radiochemical yield from [11C]carbon monoxide in >96% radiochemical purity and with an average specific radioactivity of 2415 mCi/µmol. The total radiosynthesis time was about 45 min. Peak uptake of radioactivity in monkey brain (SUV=3.1) was relatively high and may be amenable to measuring uptake and metabolism of acetate in glial cells of the brain. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

11.
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2‐Methyl‐1‐[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1‐Iodo‐2‐[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1‐iodo‐2‐[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2‐methyl‐1‐propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol were achieved and applied as proof of their applicability.  相似文献   

12.
The 11C‐labelling of the taxane derivative BAY 59‐8862 ( 1 ), a potent anticancer drug, was carried out as a module‐assisted automated multi‐step synthesis procedure. The radiotracer [11C]1 was synthesized by reacting [1‐11C]acetyl chloride ( 6 ) with the lithium salt of the secondary hydroxy group of precursor 3 followed by deprotection. After HPLC purification of the final product [11C]1 , its solid‐phase extraction, formulation and sterile filtration, the decay‐corrected radiochemical yield of [11C]1 was in the range between 12 and 23% (related to [11C]CO2; n=10). The total synthesis time was about 54 min after EOB. The radiochemical purity of [11C]1 was greater than 96% and the chemical purity exceeded 80%. The specific radioactivity was 16.8±4.7 GBq/µmol (n=10) at EOS starting from 80 GBq of [11C]CO2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A method is presented for preparing [1‐11C]ethyl iodide from [11C]carbon monoxide. The method utilizes methyl iodide and [11C]carbon monoxide in a palladium‐mediated carbonylation reaction to form a mixture of [1‐11C]acetic acid and [1‐11C]methyl acetate. The acetates are reduced to [1‐11C]ethanol and subsequently converted to [1‐11C]ethyl iodide. The synthesis time was 20 min and the decay‐corrected radiochemical yield of [1‐11C]ethyl iodide was 55 ± 5%. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Ethyl iodide was used in two model reactions, an O‐alkylation and an N‐alkylation. Starting with approximately 2.5 GBq of [11C]carbon monoxide, the isolated decay‐corrected radiochemical yields for the ester and the amine derivatives were 45 ± 0.5% and 25 ± 2%, respectively, based on [11C]carbon monoxide. Starting with 10 GBq of [11C]carbon monoxide, 0.55 GBq of the labelled ester was isolated within 40 min with a specific radioactivity of 36 GBq/µmol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This report describes an efficient method of synthesizing [guanido‐13C]‐γ‐hydroxyarginine HCl salt. Iodolactonization of N‐Boc‐protected allylglycine mainly provided the cis iodo compound 2. This was converted to an amine through azide 4. The amine 5 was reacted with N‐Boc‐protected [13C]thiourea to afford N‐Boc‐protected [13C]guanidine 6, which underwent base catalyzed ring opening. Removal of the N‐Boc group afforded [guanido‐13C]‐γ‐hydroxyarginine HCl salt 7 giving a 30% overall yield of the final product from N‐Boc protected allylglycine 1 in five steps. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, 2‐methoxyestradiol‐3,17β‐O,O‐bissulfamate (1), a known angiogenesis inhibitor, was prepared in a radiolabeled form by 11C‐methylation of 2‐hydroxyestradiol‐3,17β‐O,O‐bis(N‐trityl)sulfamate (6) followed by detritylation. Synthesis of precursor 6 required a rather long step because of the presence of two sulfamoyl groups. The decay‐corrected radiochemical yield of [11C]1 was 19 ± 2% based on [11C]CH3I, and the specific activity was 34–39 GBq/µmol. Although 1 is known to significantly inhibit the proliferation of human umbilical vascular endothelial cells (HUVECs), its radiolabeled form, [11C]1 was not avidly taken up by HUVECs, and the uptake increased slightly in a time‐dependent manner (156% at 60 min relative to a value of 100% at 5 min). These results suggest that further studies are warranted to determine the molecular target for [11C]1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
(R)‐(?)‐2‐[11C]Methoxy‐Nn‐propylnorapomorphine ([11C]MNPA ([11C]2)) is an agonist radioligand of interest for imaging D2/D3 receptors in vivo. Here we sought to develop an improved radiosynthesis of this radioligand. Reference 2 was synthesized in nine steps with an overall yield of about 5%, starting from codeine. Trimethylsilyldiazomethane proved to be a practical improvement in comparison to diazomethane in the penultimate methylation step. A protected precursor for radiolabeling ((R)‐(?)‐2‐hydroxy‐10,11‐acetonide‐Nn‐propylnoraporphine, 4) was prepared from (R)‐(?)‐2‐hydroxy‐Nn‐propylnorapomorphine (1) in 30% yield. [11C]2 was prepared from 4 via a two‐step one‐pot radiosynthesis. The first step, methylation of 4 with [11C]methyl triflate, occurred in quantitative radiochemical yield. The second step, deprotection of the catechol moiety with HCl and heat, yielded 60–90% of [11C]2 giving an overall incorporation yield from [11C]methyl triflate of 60–90%. In a typical run more than 1 GBq of [11C]2, was produced from carbon‐11 generated from a 10‐min proton irradiation (16 MeV; 35 µA) of nitrogen–hydrogen target gas. The radiochemical purity of [11C]2 was > 99% and specific radioactivity at the time of injection was 901±342 GBq/µmol (n=10). The total synthesis time was 35–38 min from the end of radionuclide production. The identity of [11C]2 was confirmed by comparing its LC‐MS/MS spectrum with those of reference 2 and (R)‐(?)‐10‐methoxy‐2,11‐dihydroxy‐Nn‐propylnoraporphine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The novel CCK‐A agonist, (S)‐3‐(3‐{1‐[(isopropylphenylcarbamoyl)methyl]‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐benzo[b][1,4]diazepin‐3‐yl}ureido)benzoic acid, GI181771 ((S)‐ 1 ) has been isotopically labelled with carbon‐11 at its urea site using [11C]phosgene in a one‐pot two‐step process, via the intermediate preparation of an [11C]isocyanate derivative. Optimized conditions for the preparation of (S)‐[11C]‐ 1 were the following: (1) Trapping of [11C]phosgene (radiosynthesized from cyclotron‐produced [11C]methane via [11C]carbon tetrachloride using minor modifications of published processes) at room temperature for 1–2 min in 300 µl of acetonitrile containing 0.6 µmol of the appropriate (structurally complex) chiral‐amine giving the corresponding [11C]isocyanate followed by (2) addition of an excess of 3‐aminobenzoic acid (40 µmol in 100 µl of THF) as the second amine giving the desired urea derivative (S)‐[11C]‐ 1 and (3) high‐performance liquid chromatography (HPLC) purification on a semi‐preparative Waters Symmetry® C18. Starting from a typical 1.2 Ci (44.4 GBq) batch of [11C]methane, 25–35 mCi (0.92–1.29 GBq, 6.8–9.6% decay‐corrected yield based on starting [11C] methane, n = 5) of (S)‐[11C]‐ 1 could be obtained within 35 min of radiosynthesis (HPLC purification and formulation as an i.v. injectable solution using a home‐made Sep‐pak®Plus C18 device included) with specific radioactivities ranging from 500 to 1500 mCi/µmol (18.5–55.5 GBq/µmol). The radiotracer preparation was a clear and colourless solution and its pH was between 5 and 7. As demonstrated by HPLC analysis, the radiolabelled product was found to be >99% chemically and radiochemically pure and the preparation was shown to be free of non‐radioactive precursors (starting amines) and radiochemically stable for at least 60 min. Finally, enantiomeric purity was found to be >99% according to chiral HPLC, demonstrating the absence of racemization during the process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Within a novel series of 2‐oxazolidinones developed in the past by Sanofi‐Synthélabo, SL25.1188 ((S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐one), a compound that inhibits selectively and competitively MAO‐B in human and rat brain (Ki values of 2.9 and 8.5 nM for MAO‐B, respectively, and ED50 (rat): 0.6 mg/kg p.o.), was considered an appropriate candidate for imaging this enzyme with positron emission tomography. SL25.1188 was labelled with carbon‐11 (T1/2: 20.38 min) in one chemical step using the following process: (i) reaction of [11C]phosgene with the corresponding ring‐opened precursor (1.2–2.5 mg) at 100°C for 2 min in dichloromethane (0.5 mL) followed by (ii) concentration to dryness of the reaction mixture and finally (iii) semi‐preparative HPLC purification on a Waters Symmetry® C18. A total of 300–500 MBq of [11C]SL25.1188 (>95% chemically and radiochemically pure) could be obtained within 30–32 min (Sep‐pak‐based formulation included) with specific radioactivities ranging from 50 to 70 GBq/µmol (3.5–7% decay‐corrected radiochemical yield, based on starting [11C]CH4). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient large‐scale carbon‐14 synthesis of 1H‐indazole‐[3‐14C]carboxylic acid starting from [14C]potassium cyanide is reported. Key transformations encountered during the synthesis include aromatic nucleophilic substitution of 2‐nitrofluorobenzene by ethyl [14C]cyanoacetate, a mild decarbethoxylation and an aniline nitrosation/cyclization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
As part of our ongoing investigation into the imaging of angiogenic processes, a small library of eight vascular endothelial growth factor receptor‐2 (VEGFR‐2)/platelet‐derived growth factor receptor β dual inhibitors based on the N‐phenyl‐N′‐4‐(4‐quinolyloxy)‐phenyl‐urea was labelled with 11C (β+, t1/2=20.4 min) in the urea carbonyl position via rhodium‐mediated carbonylative cross‐coupling of an aryl azide and different anilines. The decay‐corrected radiochemical yields of the isolated products were in the range of 38–81% calculated from [11C]carbon monoxide. Starting with 10.7±0.5 GBq of [11C]carbon monoxide, 1‐[4‐(6,7‐dimethoxy‐quinolin‐4‐yloxy)‐3‐fluoro‐phenyl]‐3‐(4‐fluoro‐phenyl)‐[11C]‐urea (2.1 GBq) was isolated after total reaction time of 45 min with a specific activity of 92±4 GBq µmol?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号