首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A(1) protein expression of early-passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC-state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.  相似文献   

4.
The efficiency of somatic cell reprogramming to pluripotency using defined factors is dramatically affected by the cell type of origin. Here, we show that human keratinocytes, which can be reprogrammed at a higher efficiency than fibroblast [Nat Biotechnol 2008;26:1276-1284], share more genes hypermethylated at CpGs with human embryonic stem cells (ESCs) than other somatic cells frequently used for reprogramming. Moreover, pluripotent cells reprogrammed from keratinocytes (KiPS) are more similar to ESCs than those reprogrammed from fibroblasts (FiPS) in regard to DNA methylation levels, mostly due to the presence of genes that fail to acquire high levels of DNA methylation in FiPS cells. We propose that higher reprogramming efficiency correlates with the hypermethylation of tissue-specific genes rather than with a more permissive pluripotency gene network.  相似文献   

5.
6.
7.
Histone demethylase LSD1 can form complex with different Rcor family corepressors in different cell types. It remains unknown if cell-specific Rcor proteins function specifically in distinct cell types. Here, we report that Rcor2 is predominantly expressed in ESCs and forms a complex with LSD1 and facilitates its nucleosomal demethylation activity. Knockdown of Rcor2 in ESCs inhibited ESC proliferation and severely impaired the pluripotency. Moreover, knockdown of Rcor2 greatly impaired the formation of induced pluripotent stem (iPS) cells. In contrast, ectopic expression of Rcor2 in somatic cells together with Oct4, Sox2, and Klf4 promoted the formation of iPS cells. Most interestingly, ectopic expression of Rcor2 in both mouse and human somatic cells effectively substituted the requirement for exogenous Sox2 expression in somatic cell reprogramming.  相似文献   

8.
9.
10.
11.
Cohesin is implicated in establishing and maintaining pluripotency. Whether this is because of essential cohesin functions in the cell cycle or in gene regulation is unknown. Here we tested cohesin’s contribution to reprogramming in systems that reactivate the expression of pluripotency genes in the absence of proliferation (embryonic stem [ES] cell heterokaryons) or DNA replication (nuclear transfer). Contrary to expectations, cohesin depletion enhanced the ability of ES cells to initiate somatic cell reprogramming in heterokaryons. This was explained by increased c-Myc (Myc) expression in cohesin-depleted ES cells, which promoted DNA replication-dependent reprogramming of somatic fusion partners. In contrast, cohesin-depleted somatic cells were poorly reprogrammed in heterokaryons, due in part to defective DNA replication. Pluripotency gene induction was rescued by Myc, which restored DNA replication, and by nuclear transfer, where reprogramming does not require DNA replication. These results redefine cohesin’s role in pluripotency and reveal a novel function for Myc in promoting the replication-dependent reprogramming of somatic nuclei.  相似文献   

12.
13.
14.
Lee CH  Kim JH  Lee HJ  Jeon K  Lim H  Choi H  Lee ER  Park SH  Park JY  Hong S  Kim S  Cho SG 《Biomaterials》2011,32(28):6683-6691
Induced pluripotent stem (iPS) cells have been generated from various somatic cells; however, a major restriction of the technology is the use of potentially harmful genome-integrating viral DNAs. Here, without a viral vector, we generated iPS cells from fibroblasts using a non-viral magnetic nanoparticle-based transfection method that employs biodegradable cationic polymer PEI-coated super paramagnetic nanoparticles (NP). Our findings support the possible use of transient expression of iPS genes in somatic cells by magnet-based nanofection for efficient generation of iPS cells. Results of dynamic light scattering (DLS) analysis and TEM analyses demonstrated efficient conjugation of NP with iPS genes. After transfection, nanofection-mediated iPS cells showed ES cell-like characteristics, including expression of endogenous pluripotency genes, differentiation of three germ layer lineages, and formation of teratomas. Our results demonstrate that magnet-based nanofection may provide a safe method for use in generation of virus-free and exogenous DNA-free iPS cells, which will be crucial for future clinical applications in the field of regenerative medicine.  相似文献   

15.
The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.  相似文献   

16.
诱导性多能干细胞(induced pluripotent stem cells,iPS)是通过转录因子诱导的体细胞重编程建立的,它与胚胎干细胞具有共同的发育多潜能性及在细胞替代治疗上潜在的应用前景。然而,转录因子调节的重编程过程是一个复杂而漫长的过程,涉及大量、未知的分子及表观事件,而且产生的iPS细胞发育潜能差异较大。对其重编程机制的揭示,将有助于获得更高效、安全的iPS细胞,为最终实现应用于人类疾病的治疗提供理论依据。本文关注了近几年转录因子调节的重编程分子机制的研究,阐述了重编程过程中转录与表观的变化。  相似文献   

17.
18.
Nuclei of embryonic stem cells reprogram somatic cells   总被引:9,自引:0,他引:9  
The restricted potential of a differentiated cell can be reverted back to a pluripotent state by cell fusion; totipotency can even be regained after somatic cell nuclear transfer. To identify factors involved in resetting the genetic program of a differentiated cell, we fused embryonic stem cells (ESCs) with neurosphere cells (NSCs). The fusion activated Oct4, a gene essential for pluripotency, in NSCs. To further identify whether cytoplasmic or nuclear factors are responsible for its reactivation, we fused either karyoplasts or cytoplasts of ESCs with NSCs. Our results show that ESC karyoplasts could induce Oct4 expression in the somatic genome, but cytoplasts lacked this ability. In addition, mitomycin C-treated ESCs, although incapable of DNA replication and cell division, could reprogram 5-azacytidine-treated NSCs. We therefore conclude that the Oct4 reprogramming capacity resides in the ESC karyoplast and that gene reactivation is independent of DNA replication and cell division.  相似文献   

19.
20.
Stem cells have a capability to self-renew and differentiate into multiple types of cells; specific markers are available to identify particular stem cells for developmental biology research. In this study, we aimed to define the status of somatic stem cells and the pluripotency of human embryonic stem (hES) and induced pluripotent stem (iPS) cells using a novel molecular methodology, lectin microarray analysis. Our lectin microarray analysis successfully categorized murine somatic stem cells into the appropriate groups of differentiation potency. We then classified hES and iPS cells by the same approach. Undifferentiated hES cells were clearly distinguished from differentiated hES cells after embryoid formation. The pair-wise comparison means based on 'false discovery rate' revealed that three lectins -Euonymus europaeus lectin (EEL), Maackia amurensis lectin (MAL) and Phaseolus vulgaris leucoagglutinin [PHA(L)]- generated maximal values to define undifferentiated and differentiated hES cells. Furthermore, to define a pluripotent stem cell state, we generated a discriminant for the undifferentiated state with pluripotency. The discriminant function based on lectin reactivities was highly accurate for judgment of stem cell pluripotency. These results suggest that glycomic analysis of stem cells leads to a novel comprehensive approach for quality control in cell-based therapy and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号