首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The presence of 5-HT(7) receptor mRNA and protein in 5-HT neurons suggests that this receptor may act as a 5-HT autoreceptor. In this study, the effect of the 5-HT(7) receptor antagonist, SB-269970 ((R)-1-[3-hydroxy phenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine), was investigated on 5-HT release in the guinea-pig and rat cortex and the rat dorsal raphe nucleus (DRN), using the techniques of in vitro [(3)H]-5-HT release or fast cyclic voltammetry, respectively. 2. Cortical slices were loaded with [(3)H]-5-HT and release was evoked by electrical stimulation. 5-CT inhibited the evoked release of [(3)H]-5-HT in a concentration-dependent manner. SB-269970 had no significant effect on [(3)H]-5-HT release while the 5-HT(1B) receptor antagonist, SB-224289 significantly potentiated [(3)H]-5-HT release. In addition, SB-269970 was unable to attenuate the 5-CT-induced inhibition of release while SB-224289 produced a rightward shift of the 5-CT response, generating estimated pK(B) values of 7.8 and 7.6 at the guinea-pig and rat terminal 5-HT autoreceptors respectively. 3. Rat DRN slices were electrically stimulated and the evoked 5-HT efflux detected by voltammetric analysis. 8-OH-DPAT inhibited evoked 5-HT efflux and was fully reversed by WAY 100635. SB-269970 had no effect on either 5-HT efflux per se or 8-OH-DPAT-induced inhibition of 5-HT efflux. In addition, 5-CT inhibited 5-HT efflux in a concentration-dependent manner. SB-269970 was unable to attenuate the 5-CT-induced inhibition of 5-HT efflux. 4. In conclusion, we were unable to provide evidence to suggest a 5-HT autoreceptor role for 5-HT(7) receptors. However, investigations with more selective 5-HT(7) receptor agonists are needed to confirm the data reported here.  相似文献   

2.
5-Hydroxytryptamine (5-HT) and the 5-HT(1A/7) receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralinHBr (8-OH-DPAT), injected into the zona incerta (an area in the dorsal hypothalamus) of the female rat, inhibit the release of luteinizing hormone (LH) and the effects of both are blocked by the 5-HT(2/7) receptor antagonist, ritanserin. As both 8-OH-DPAT and ritanserin have moderate activity at the 5-HT7 receptor subtype, the possibility that this subtype might mediate their effects in the zona incerta has been investigated. Ovariectomised rats were primed with 5 microg oestradiol benzoate followed at 48 h by 0.5 mg progesterone, which induces an LH surge. 5-Carboxamidotryptamine (5-CT), a potent but non-selective agonist at 5-HT7 receptors, like 5-HT and 8-OH-DPAT, inhibited the LH surge at 5 and 1.25 nmol injected bilaterally into the zona incerta. The non-selective 5-HT(2/7) receptor antagonist ritanserin and the selective 5-HT7 receptor antagonist, (R)-3-(2-(2-(4-methyl-piperidin-1-yl)-pyrrolidine-1-sulfonyl)-phenol (SB-269970-A) at 0.5 microg/side blocked all three receptor agonists when injected concurrently into the zona incerta. However, lower (0.2 microg) and higher doses (2 and 5 microg) of SB-269970-A were less effective, indicating a bell-shaped dose-response curve. SB-269970-A was also inhibitory when administered systemically (1 mg/kg intraperitoneally (i.p.)). When LH release was suppressed by 5 microg oestradiol benzoate, SB-269970-A (0.5 and 2 microg) did not elevate levels, indicating it is unlikely that 5-HT7 receptors mediate a tonic inhibition on release but rather are involved in terminating the pre-ovulatory LH surge. These data demonstrate that 5-HT7 receptors play a role in the regulation of LH by the zona incerta in rat brain.  相似文献   

3.
BACKGROUND AND PURPOSE: Recent evidence suggests that 5-HT(2C) receptor activation may inhibit midbrain 5-HT neurones by activating neighbouring GABA neurones. This hypothesis was tested using the putative selective 5-HT(2C) receptor agonist, WAY 161503. EXPERIMENTAL APPROACH: The effect of WAY 161503 on 5-HT cell firing in the dorsal raphe nucleus (DRN) was investigated in anaesthetised rats using single unit extracellular recordings. The effect of WAY 161503 on DRN GABA neurones was investigated using double label immunohistochemical measurements of Fos, glutamate decarboxylase (GAD) and 5-HT(2C) receptors. Finally, drug occupancy at 5-HT(2A) receptors was investigated using rat positron emission tomography and ex vivo binding studies with the 5-HT(2A) receptor radioligand [(11)C]MDL 100907. KEY RESULTS: WAY 161503 caused a dose-related inhibition of 5-HT cell firing which was reversed by the 5-HT(2) receptor antagonist ritanserin and the 5-HT(2C) receptor antagonist SB 242084 but not by the 5-HT(1A) receptor antagonist WAY 100635. SB 242084 pretreatment also prevented the response to WAY 161503. The blocking effects of SB 242084 likely involved 5-HT(2C) receptors because the drug did not demonstrate 5-HT(2A) receptor occupancy in vivo or ex vivo. The inhibition of 5-HT cell firing induced by WAY 161503 was partially reversed by the GABA(A) receptor antagonist picrotoxin. Also, WAY 161503 increased Fos expression in GAD positive DRN neurones and DRN GAD positive neurones expressed 5-HT(2C) receptor immunoreactivity. CONCLUSIONS AND IMPLICATIONS: These findings indicate that WAY 161503 inhibits 5-HT cell firing in the DRN in vivo, and support a mechanism involving 5-HT(2C) receptor-mediated activation of DRN GABA neurones.  相似文献   

4.
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.  相似文献   

5.
The effects of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligand was microinjected into the horizontal limb of the diagonal band of Broca (HDB) and the laterodorsal tegmental nucleus (LDT) during the light period of the 12-h light/12-h dark cycle. For comparative purposes the compound was administered systemically and, in addition, injected directly into the dorsal raphe nucleus (DRN). Microinjection of SB-269970 into the HDB and the DRN induced a significant reduction of rapid-eye-movement sleep (REMS). Similar effects were observed after systemic administration of the 5-HT7 receptor antagonist. On the other hand, local infusion of the compound into the LDT provoked the opposite effect. It is proposed that the deactivation of GABAergic cells located in the HDB, DRN and LDT is responsible for the changes induced by SB-269970 on REM sleep values. It is suggested that the antidepressant effect of the 5-HT7 receptor antagonist could partly depend on the involvement of neuronal systems located in the DRN and the HDB.  相似文献   

6.
In the CA3 region of rat hippocampal slices gamma-amino-butyric acid (GABA)(A/B) receptor antagonists induce low frequency bursting activity that was either inhibited (in 21% of slices) or increased by the selective 5-HT receptor agonists 5-carboxy-tryptamine (0.1-1 microM) and 8-hydroxydipropylaminotetralin (8-OH-DPAT). The selective 5-HT1A receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexane carboxamide (WAY 100635) reversed the depression of bursting activity whereas the 5-HT7 receptor antagonist, (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970; 1-10 microM), but not the 5-HT1A, 4 or 6 receptor antagonists WAY100635 (10 microM), SB-204070 (10 microM) and SB-271046 (10 microM), reversed the increase in bursting activity. The apparent -log10 K(D) value (8.4) for the effect of SB-269970 was consistent with a selective action at 5-HT7 receptors. Accompanying the 5-CT-induced increase in bursting frequency there was a shortening of the burst event waveform and a reduction in the after-hyperpolarization following each bursting event both of which were inhibited by SB-269970. These effects appeared to result predominantly from a direct 5-HT(7) receptor-mediated inhibition of a Ca2+ activated K+ channel.  相似文献   

7.
The study was undertaken to investigate the 5-HT receptor mediating the inhibitory effect of 5-HT on peristalsis in the guinea-pig isolated ileum. The facilitatory and inhibitory effects were measured as the decrease and increase, respectively, in the intraluminal pressure required to trigger peristalsis. In the presence of 5-HT(2/3&4) receptor antagonists ketanserin (0.1 micro M), granisetron (1 micro M) and SB-204070 (1 micro M), a cumulative addition (0.1-100 micro M) of 5-HT or 5-carboxamidotryptamine, but not 2-methyl-5-HT produced a concentration-dependent increase in the threshold required to trigger peristalsis. The 5-HT(7) receptor selective antagonist SB-269970-A (0.01-1 micro M) or methiothepin (0.01-0.1 micro M) concentration-dependently antagonised this response to 5-HT. SB-269970-A (1 micro M) and methiothepin (1 micro M) were also able to restore peristalsis in tissues in which peristalsis was inhibited by a prior addition of 30 micro M of 5-HT. The results indicate an involvement of 5-HT(7) receptors in the inhibitory effect of 5-HT on peristalsis in the guinea-pig ileum.  相似文献   

8.
1. Extracellular 5-hydroxytryptamine (5-HT) was determined in dorsal raphe nucleus (DRN), median raphe nucleus (MRN) and nucleus accumbens by use of microdialysis in unanaesthetized rats. 2. Infusion of the gamma-aminobutyric acid (GABA)A receptor agonist muscimol into DRN and MRN resulted in decreased 5-HT in DRN and MRN, respectively. Muscimol infusion into nucleus accumbens had no effect on 5-HT. 3. Infusion of the GABAA receptor antagonist bicuculline into DRN resulted in increased DRN and nucleus accumbens 5-HT. Bicuculline infusion into MRN had no effect on 5-HT. This suggests that endogenous GABA had a tonic, GABAA receptor-mediated inhibitory effect on 5-HT in DRN, but not in MRN. 4. Infusion of the GABAB receptor agonist baclofen into DRN produced a decrease in DRN 5-HT. Baclofen infusion into nucleus accumbens resulted in decreased nucleus accumbens 5-HT. This suggests that GABAB receptors are present in the area of cell bodies and terminals of 5-hydroxytryptaminergic neurones. 5. Infusion of the GABAB receptor antagonists phaclofen and 2-hydroxysaclofen had no effect on midbrain raphe and forebrain 5-HT. This suggests that GABAB receptors did not contribute to tonic inhibition of 5-HT release. 6. In conclusion, 5-HT release is physiologically regulated by distinct subtypes of GABA receptors in presynaptic and postsynaptic sites.  相似文献   

9.
BACKGROUND AND PURPOSE: The serotonergic system within the spinal cord have been proposed to play an important role in the analgesic effects of systemic morphine. Currently, seven groups of 5-HT receptors (5-HT1-7) have been characterized. One of the most recently identified subtypes of 5 HT receptor is the 5-HT7 receptor. We aimed to examine the role of spinal 5-HT7 receptors in the antinociceptive effects of systemic morphine. EXPERIMENTAL APPROACH: The involvement of spinal 5-HT7 receptor in systemic morphine antinociception was compared to that of the 5-HT1A and 5-HT2 receptors by using the selective 5-HT7 receptor antagonist, SB-269970, the selective 5-HT1A receptor antagonist, WAY 100635, the selective 5-HT2 antagonist ketanserin as well as the non-selective 5-HT1,2,7 receptor antagonist, metergoline. Nociception was evaluated by the radiant heat tail-flick test. KEY RESULTS: I.t. administration of SB-269970 (10 microg) and metergoline (20 microg) completely blocked the s.c. administered morphine-induced (1, 3, 5 and 10 mg kg(-1)) antinociception in a time-dependent manner. Additionally, i.t. administration of SB-269970 (1, 3, 10 and 20 microg) and metergoline (1, 5, 10 and 20 microg) dose dependently inhibited the antinociceptive effects of a maximal dose of morphine (10 mg kg(-1), s.c.). I.t. administration of WAY 100635 (20 microg) or ketanserine (20 microg) did not alter morphine-induced (1, 3, 5 and 10 mg kg(-1), s.c.) antinociception. CONCLUSION AND IMPLICATIONS: These findings indicate that the involvement of spinal 5-HT7, but not of 5-HT1A or of 5-HT2 receptors in the antinociceptive effects of systemic morphine.  相似文献   

10.
This study evaluated the possible involvement of 5-HT(2B) receptors in long-lasting hypotension to 5-hydroxytryptamine (5-HT), which is predominantly mediated by 5-HT7 receptors, in anaesthetised vagosympathectomized rats. Intravenous injections of 5-HT and 5-carboxamidotryptamine (5-CT) elicited a dose-dependent hypotension that was dose-dependently antagonised by (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; a selective 5-HT7 receptor antagonist), but not by saline. Interestingly, alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (BW723C86; a 5-HT(2B) receptor agonist) produced vasopressor responses without affecting hypotension to 5-HT. These results suggest that hypotension to 5-HT and 5-CT is mainly mediated by 5-HT7 receptors, whilst the role of 5-HT(2B) receptors seems unlikely.  相似文献   

11.
1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.  相似文献   

12.
Serotonin (5-HT) enhances the neurogenic contractile response induced by electrical field stimulation (EFS) in the rat isolated urinary bladder. The aim of this study was to functionally characterize the receptors involved in this effect by using a range of 5-HT receptor subtype selective agonists and antagonists. 5-HT produced a concentration-dependent potentiation of contractile responses to EFS with a pEC50 value of 6.86 ± 0.24. SB-269970 (0.01, 0.1 and 1 μM), a selective 5-HT7 receptor antagonist, caused a concentration-dependent rightward shift of the 5-HT-induced response. The pA2 value was 8.16 with a slope of 0.46 ± 0.08. Neither ketanserine nor SB-204741, 5-HT2A and 5-HT2B receptors antagonists, respectively, affected the concentration–response curve to 5-HT. However, 5-HT response was antagonized by the selective 5-HT2C receptor antagonist SB-242084 (0.1 and 1 μM). In the presence of 1 μM of both antagonists SB-269970 and SB-242084, 5-HT response was almost fully inhibited. 5-CT, a 5-HT7 receptor agonist, induced a biphasic concentration-dependent potentiation of neurogenic contractions. SB-269970 concentration-dependently antagonized the first phase of 5-CT response with a pA2 value of 8.77 and a slope not significantly different from unity (0.91 ± 0.11) that suggests a competitive antagonism. WAY-161503, a 5-HT2C receptor agonist (0.01–10 μM), induced a concentration-dependent potentiation of contractile response to EFS while DOI (a selective 5-HT2A agonist) had no effect. SB-242084 (0.1 and 1 μM) antagonized the effect of WAY-161503 in a concentration-dependent manner. The current results demonstrate that 5-HT potentiates neurogenic contractions of rat isolated detrusor muscle through both 5-HT7 and 5-HT2c receptors.  相似文献   

13.
The ventral part of the medial prefrontal cortex (mPFC) plays an important role in mood and cognition. This study examined the effect of the 5-HT in this region by measuring the electrophysiological response of ventral mPFC neurones to electrical stimulation of the dorsal and median raphe nuclei (DRN and MRN), which are the source of the 5-HT input. DRN or MRN stimulation evoked a consistent, short-latency, post-stimulus inhibition in the majority of ventral mPFC neurones tested (DRN: 44/73 neurones; MRN: 24/31 neurones). Some neurones responded to DRN or MRN stimulation with antidromic spikes indicating that they were mPFC-raphe projection neurones. Both DRN- and MRN-evoked inhibitions were attenuated by systemic administration of the 5-HT1A antagonist WAY 100635 (0.1 mg/kg i.v.). DRN-evoked inhibition was also attenuated by iontophoretic application of WAY 100635 and by systemic administration of the 5-HT1A antagonist, NAD-299 (4 mg/kg i.v.) but not the 5-HT2 antagonist ketanserin (4 mg/kg, i.v.). These data suggest that DRN and MRN 5-HT neurones inhibit neurones in the ventral mPFC via activation of 5-HT1A receptors. Some of these mPFC neurones may be part of a 5-HT1A receptor-controlled postsynaptic feedback loop to the DRN and MRN.  相似文献   

14.
Topical administration of 5-carboxamidotryptamine (5-CT; 0.01-1000 microM) to the exposed dura mater encephali of anesthetized rats produced decreases in blood pressure and dilatation in the middle meningeal artery. Pretreatment with the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate (GR-127935; 1 mg/kg, i.v.), unmasked meningeal dilator responses to lower concentrations of 5-CT, and attenuated those to higher concentrations; GR-127935 also inhibited 5-CT-induced hypotension. The 5-HT7 receptor antagonist, (R)-1-{(3-hydroxyphenyl)sulfonyl}-2-{2-(2-(4-methyl-1-piperidinyl) ethyl} pyrrolidine (SB-269970; 1 mg/kg, i.v.), strongly inhibited dilator and hypotensive responses to 5-CT; the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) further inhibited meningeal and hypotensive responses. Thus, 5-CT may produce dilatation in the middle meningeal artery via 5-HT7 receptors; complex effects appear to involve 5-HT(1B/1D) receptors.  相似文献   

15.
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.  相似文献   

16.
The principal 5-HT(1A) receptor agonist 8-Hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) impairs several different types of learning. Besides 5-HT(1A) receptors, 8-OH-DPAT stimulates 5-HT(7) receptors, but it is not known whether 5-HT(7) receptors contribute to the impairments. The 5-HT(7) receptor antagonist (2R)-1-[(3-Hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl] pyrrolidine (SB-269970) was combined with 8-OH-DPAT to dissociate 5-HT(1A) from 5-HT(7) receptor-mediated effects, in the passive avoidance task for emotional learning. SB-269970 intensified impairments caused by 8-OH-DPAT. SB-269970 alone had no effect on memory performance, but moderately decreased retention under suboptimal learning conditions. These findings indicate that 5-HT(7) receptor stimulation by 8-OH-DPAT counteracts 5-HT(1A) receptor-mediated impairments in hippocampal-dependent contextual learning.  相似文献   

17.
5-HT7 receptors have been linked to a number of psychiatric disorders including anxiety and depression. The localization of 5-HT7 receptors in the thalamus, a key sensory processing center, and the high affinity of many atypical antipsychotic compounds for these receptors have led to the speculation of the utility of 5-HT7 antagonists in schizophrenia. The goal of these studies was to examine the effects of pharmacologic blockade and genetic ablation of 5-HT7 receptors in animal models predictive of antipsychotic-like activity. We evaluated the effects of SB-269970, a selective 5-HT7 receptor antagonist, on amphetamine and ketamine-induced hyperactivity and prepulse inhibition (PPI) deficits. In addition, sensorimotor gating function and locomotor activity were evaluated in 5-HT7 knockout mice. Locomotor activity was measured for up to 180 min using an automated infrared photobeam system, and PPI was evaluated in startle chambers. SB-269970 (3, 10 and 30 mg/kg, intraperitoneally) significantly blocked amphetamine [3 mg/kg, subcutaneously (s.c.)] and ketamine (30 mg/kg, s.c.)-induced hyperactivity and reversed amphetamine (10 mg/kg, s.c.)-induced but not ketamine (30 mg/kg, s.c.)-induced PPI deficits, without changing spontaneous locomotor activity and startle amplitude. The largest dose of SB-269970 did not block the effects of amphetamine in 5-HT7 knockout mice. Collectively, these results indicate that blockade of 5-HT7 receptors partially modulates glutamatergic and dopaminergic function and could be clinically useful for the treatment of positive symptoms of schizophrenia.  相似文献   

18.
Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT7) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action.  相似文献   

19.

Background and purpose:

Recent experiments using non-selective 5-hydroxytryptamine (5-HT)2C receptor agonists including WAY 161503 suggested that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, acting via neighbouring gamma-aminobutyric acid (GABA) neurones. The present study extended this pharmacological characterization by comparing the actions of WAY 161503 with the 5-HT2C receptor agonists, Ro 60-0275 and 1-(3-chlorophenyl) piperazine (mCPP), as well as the non-selective 5-HT agonist lysergic acid diethylamide (LSD) and the 5-HT releasing agent 3,4-methylenedioxymethamphetamine (MDMA).

Experimental approach:

5-HT neuronal activity was measured in the dorsal raphe nucleus (DRN) using extracellular recordings in anaesthetized rats. The activity of DRN GABA neurones was assessed using double-label immunohistochemical measurements of Fos and glutamate decarboxylase (GAD).

Key results:

Ro 60-0175, like WAY 161503, inhibited 5-HT neurone firing, and the 5-HT2C antagonist SB 242084 reversed this effect. mCPP also inhibited 5-HT neurone firing (∼60% neurones) in a SB 242084-reversible manner. LSD inhibited 5-HT neurone firing; however, this effect was not altered by either SB 242084 or the 5-HT2A/C receptor antagonist ritanserin but was reversed by the 5-HT1A receptor antagonist WAY 100635. Similarly, MDMA inhibited 5-HT neurone firing in a manner reversible by WAY 100635, but not SB 242084 or ritanserin. Finally, both Ro 60-0275 and mCPP, like WAY 161503, increased Fos expression in GAD-positive DRN neurones.

Conclusions and implications:

These data strengthen the hypothesis that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, and suggest that the 5-HT2C agonists Ro 60-0175, mCPP and WAY 161503, but not LSD or MDMA, are useful probes of the mechanism(s) involved.  相似文献   

20.
1. We examined the involvement of the frontal cortex in the 5-HT2A receptor-induced inhibition of 5-HT neurones in the dorsal raphe nucleus (DRN) of the anaesthetized rat using single-unit recordings complemented by Fos-immunocytochemistry. 2. Both transection of the frontal cortex as well as ablation of the medial region of the prefrontal cortex (mPFC) significantly attenuated the inhibition of 5-HT neurones induced by systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT (0.5-16 microg kg(-1), i.v.). In comparison, the response to 8-OH-DPAT was not altered by ablation of the parietal cortex. The inhibitory effect of 8-OH-DPAT was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg(-1), i.v.) in all neurones tested. 3. In contrast, cortical transection did not alter the sensitivity of 5-HT neurones to iontophoretic application of 8-OH-DPAT into the DRN. Similarly, cortical transection did not alter the sensitivity of 5-HT neurones to systemic administration of the selective 5-HT reuptake inhibitor, paroxetine (0.1-0.8 mg kg(-1) , i.v.). 4. 8-OH-DPAT evoked excitation of mPFC neurones at doses (0.5-32 microg kg(-1), i.v.) in the range of those which inhibited 5-HT cell firing. At higher doses (32-512 microg kg(-1), i.v.) 8-OH-DPAT inhibited mPFC neurones. 8-OH-DPAT (0.1 mg kg(-1), s.c.) also induced Fos expression in the mPFC. The neuronal excitation and inhibition, as well as the Fos expression, were antagonized by WAY 100635. 5. These data add further support to the view that the inhibitory effect of 5-HT1A receptor agonists on the firing activity of DRN 5-HT neurones involves, in part, activation of a 5-HT1A receptor-mediated postsynaptic feedback loop centred on the mPFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号