首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L Wu  A D'Amico  H Hochrein  M O'Keeffe  K Shortman  K Lucas 《Blood》2001,98(12):3376-3382
The antigen-presenting dendritic cells (DCs) found in mouse lymphoid tissues are heterogeneous. Several types of DCs have been identified on the basis of the expression of different surface molecules, including CD4, CD8alpha, and DEC-205. Previous studies by the authors showed that the mouse intrathymic lymphoid-restricted precursors (lin(-)c-kit(+)Thy-1(low)CD4(low)) can produce DCs in the thymus and spleen upon intravenous transfer, suggesting a lymphoid origin of these DCs. In the current study, the potential for DC production by the newly identified bone marrow (BM) common lymphoid precursors (CLPs), common myeloid precursors (CMPs), and committed granulocyte and macrophage precursors was examined. It was found that both the lymphoid and the myeloid precursors had the potential to produce DCs. All the different DC populations identified in mouse thymus and spleen could be produced by all these precursor populations. However, CLPs produced predominantly the CD4(-)CD8alpha(+) DCs, whereas CMPs produced similar numbers of CD4(-)CD8alpha(+) and CD4(+)CD8alpha(-) DCs, although at different peak times. On a per cell basis, the CLPs were more potent than the CMPs at DC production, but this may have been compensated for by an excess of CMPs over CLPs in BM. Overall, this study shows that the expression of CD8alpha does not delineate the hemopoietic precursor origin of DCs, and the nature of the early precursors may bias but does not dictate the phenotype of the DC product.  相似文献   

2.
R C Fisher  J D Lovelock  E W Scott 《Blood》1999,94(4):1283-1290
We have previously demonstrated that PU.1 is required for the production of lymphoid and myeloid, but not of erythroid progenitors in the fetal liver. In this study, competitive reconstitution assays show that E14.5 PU.1(-/-) hematopoietic progenitors (HPC) fail to sustain definitive/adult erythropoiesis or to contribute to the lymphoid and myeloid lineages. PU.1(-/-) HPC are unable to respond synergistically to erythropoietin plus stem cell factor and have reduced expression of c-kit, which may explain the erythroid defect. Fluorescently labeled, PU.1(-/-), AA4.1(+), fetal liver HPC were transferred into irradiated recipients, where they demonstrated a severely impaired ability to home to and colonize the bone marrow. PU.1(-/-) HPC were found to lack integrins alpha(4) (VLA-4/CD49d), alpha(5) (VLA-5/CD49e), and CD11b (alpha(M)). Collectively, this study has shown that PU.1 plays an important role in controlling migration of hematopoietic progenitors to the bone marrow and the establishment of long-term multilineage hematopoiesis.  相似文献   

3.
4.
5.
Dendritic cell potentials of early lymphoid and myeloid progenitors   总被引:17,自引:14,他引:17  
Manz MG  Traver D  Miyamoto T  Weissman IL  Akashi K 《Blood》2001,97(11):3333-3341
It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8alpha(+) DCs derived from the lymphoid lineage and CD8alpha(-) DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8alpha(+) and CD8alpha(-) DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8alpha(+) and CD8alpha(-) DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8alpha(+) and CD8alpha(-) subtypes, are of myeloid origin. (Blood. 2001;97:3333-3341)  相似文献   

6.
Hao QL  Zhu J  Price MA  Payne KJ  Barsky LW  Crooks GM 《Blood》2001,97(12):3683-3690
The earliest stages of lymphoid commitment from human pluripotent hematopoietic stem cells have not been defined. A clonogenic subpopulation of CD34(+)CD38(-) cord blood cells were identified that expressed high levels of the CD7 antigen and possessed only lymphoid potential. CD34(+)CD38(-)CD7(+) (CD7(+)) cells uniformly coexpressed CD45RA and HLA-DR; c-kit and Thy-1 expression was absent to low. Clonal analysis demonstrated that single CD7(+) cells could generate B cells, natural killer cells, and dendritic cells but were devoid of myeloid or erythroid potential. In contrast, control CD34(+)CD38(-)CD7(-) (CD7(-)) cells generated both lymphoid and myelo-erythroid cells. The lymphoid potential (generation of lymphoid progeny in bulk and single cell cultures) of CD7(+) cells was equivalent to that of the pluripotent CD7(-) cells. RNA expression studies showed that CD7(+) cells expressed PU.1 and GATA-3, but did not express Pax-5, terminal deoxynucleotide transferase, or CD3epsilon. In contrast to the previously described murine common lymphoid progenitor, the alpha chain of the receptor for interleukin-7 was not detected by fluorescence-activated cell sorting analysis or RNA polymerase chain reaction in CD7(+) cells. These studies identify a clonogenic lymphoid progenitor with both B-cell and natural killer cell lineage potential with a molecular profile that suggests a developmental stage more primitive than previously identified lymphoid progenitors. The CD7(+) phenotype distinguishes primitive human lymphoid progenitors from pluripotent stem cells, thus allowing the study of regulation of early human lymphopoiesis and providing an alternative to pluripotent stem cells for genetic manipulation and transplantation. (Blood. 2001;97:3683-3690)  相似文献   

7.
The developmental origin of dendritic cells (DCs) is controversial. In the mouse CD8alpha(+) and CD8alpha(-) DC subsets are often considered to be of lymphoid and myeloid origin respectively, although evidence on this point is conflicting. Very recently a novel CD11c(+) B220(+) DC subset has been identified that appears to be the murine counterpart to interferon alpha (IFNalpha)-producing human plasmacytoid DCs (PDCs). We show here that CD11c(+) B220(+) mouse PDCs, like human PDCs, are present in the thymus and express T lineage markers such as CD8alpha and CD4. However, the intrathymic development of PDCs can be completely dissociated from immature T lineage cells in mixed chimeras established with bone marrow cells from mice deficient for either Notch-1 or T-cell factor 1, two independent mutations that severely block early T-cell development. Our data indicate that thymic PDCs do not arise from a bipotential T/DC precursor.  相似文献   

8.
9.
10.
11.
Hou YH  Srour EF  Ramsey H  Dahl R  Broxmeyer HE  Hromas R 《Blood》2005,105(9):3488-3492
CXCR4 is a chemokine receptor required for hematopoietic stem cell engraftment and B-cell development. This study found that a small fraction of primitive CD34(+)/CD19(+) B-cell progenitors do not express CXCR4. These CD34(+)/CD19(+)/CXCR4(-) cells were also remarkable for the relative lack of primitive myeloid or lymphoid surface markers. When placed in B-lymphocyte culture conditions these cells matured to express CXCR4 and other surface antigens characteristic of B cells. Surprisingly, when placed in a myeloid culture environment, the CXCR4(-) B-cell progenitors could differentiate into granulocyte, macrophage, and erythroid cells at a high frequency. These data define a novel B-cell/myeloid common progenitor (termed the BMP) and imply a less restrictive pathway of myeloid versus lymphoid development than previously postulated.  相似文献   

12.
Two dendritic cell (DC) subsets have been identified in the murine system on the basis of their differential CD8alpha expression. CD8alpha(+) DCs and CD8alpha(-) DCs are considered as lymphoid- and myeloid-derived, respectively, because CD8alpha(+) but not CD8alpha(-) splenic DCs were generated from lymphoid CD4(low) precursors, devoid of myeloid reconstitution potential. Although CD8alpha(-) DCs were first described as negative for CD4, our results demonstrate that approximately 70% of them are CD4(+). Besides CD4(-) CD8alpha(-) and CD4(+) CD8alpha(-) DCs displayed a similar phenotype and T-cell stimulatory potential in mixed lymphocyte reaction (MLR), although among CD8alpha(-) DCs, the CD4(+) subset appears to have a higher endocytic capacity. Finally, experiments of DC reconstitution after irradiation in which, in contrast to previous studies, donor-type DCs were analyzed without depleting CD4(+) cells, revealed that both CD8alpha(+) DCs and CD8alpha(-) DCs were generated after transfer of CD4(low) precursors. These data suggest that both CD8alpha(+) and CD8alpha(-) DCs derive from a common precursor and, hence, do not support the concept of the CD8alpha(+) lymphoid-derived and CD8alpha(-) myeloid-derived DC lineages. However, because this hypothesis has to be confirmed at the clonal level, it remains possible that CD8alpha(-) DCs arise from a myeloid precursor within the CD4(low) precursor population or, alternatively, that both CD8alpha(+) and CD8alpha(-) DCs derive from an independent nonlymphoid, nonmyeloid DC precursor. In conclusion, although we favor the hypothesis that both CD8alpha(+) and CD8alpha(-) DCs derive from a lymphoid-committed precursor, a precise study of the differentiation process of CD8alpha(+) and CD8alpha(-) DCs is required to define conclusively their origin.  相似文献   

13.
14.
Merad M  Fong L  Bogenberger J  Engleman EG 《Blood》2000,96(5):1865-1872
Bone marrow-derived dendritic cells (DC) represent a family of antigen-presenting cells (APC) with varying phenotypes. For example, in mice, CD8alpha(+) and CD8alpha(-) DC are thought to represent cells of lymphoid and myeloid origin, respectively. Langerhans cells (LC) of the epidermis are typical myeloid DC; they do not express CD8alpha, but they do express high levels of myeloid antigens such as CD11b and FcgammaR. By contrast, thymic DC, which derive from a lymphoid-related progenitor, express CD8alpha but only low levels of myeloid antigens. CD8alpha(+) DC are also found in the spleen and lymph nodes (LN), but the origin of these cells has not been determined. By activating and labeling CD8alpha(-) epidermal LC in vivo, it was found that these cells expressed CD8alpha on migration to the draining LN. Similarly, CD8alpha(-) LC generated in vitro from a CD8 wild-type mouse and injected into the skin of a CD8alphaKO mouse expressed CD8alpha when they reached the draining LN. The results also show that CD8alpha(+) LC are potent APC. After migration from skin, they localized in the T-cell areas of LN, secreted high levels of interleukin-12, interferon-gamma, and chemokine-attracting T cells, and they induced antigen-specific T-cell activation. These results demonstrate that myeloid DC in the periphery can express CD8alpha when they migrate to the draining LN. CD8alpha expression on these DC appears to reflect a state of activation, mobilization, or both, rather than lineage. (Blood. 2000;96:1865-1872)  相似文献   

15.
This report describes age-related alterations of dendritic cells (DC) distribution in nude athymic mice in vivo and reversal of certain age-dependent defects by an in vivo administration of hematopoietic growth factor FLT3 ligand (FLT3L). There are decreased percentages of CD11c(+) DC in the bone marrow and spleen and a reduced expression of MHC class II and CD86 molecules on DC in old nude mice. The decreased levels of CD11c(+) DC were due to the CD8alpha(-) DC subset. The distribution of CD11c(+) CD8alpha(+) DC in the lymphoid tissues was not different in young and old mice. The effect of in vivo administration of FLT3L on the generation and distribution of DC in the lymphoid tissues in young and old nude mice was also evaluated. Although, FLT3L had a higher inductive potential on the expansion of DC from the bone marrow in the elderly mice, the total level of CD11c(+) DC in the young animals was still significantly higher as compared to the old animals. Interestingly, FLT3L induced a pronounced redistribution and accumulation of MHC class II(+) DC in the lymphoid tissues in old mice, markedly increased the accumulation of CD8alpha(-) DC in the bone marrow in both young and old nude mice, and elevated both CD8alpha(-) and CD8alpha(+) DC in the spleen in young mice. However, only the level of CD8alpha(+) DC was up regulated in the spleen in old athymic mice after FLT3L-based therapy. In summary, abnormalities in DC generation and distribution in old athymic mice could be, in part, circumvented by the in vivo administration of FLT3L.  相似文献   

16.
To better characterize human dendritic cells (DCs) that originate from lymphoid progenitors, the authors examined the DC differentiation pathways from a novel CD7(+)CD45RA(+) progenitor population found among cord blood CD34(+) cells. Unlike CD7(-)CD45RA(+) and CD7(+)CD45RA(-) progenitors, this population displayed high natural killer (NK) cell differentiation capacity when cultured with stem cell factor (SCF), interleukin (IL)-2, IL-7, and IL-15, attesting to its lymphoid potential. In cultures with SCF, Flt3 ligand (FL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-alpha (standard condition), CD7(+)CD45RA(+) progenitors expanded less (37- vs 155-fold) but yielded 2-fold higher CD1a(+) DC percentages than CD7(-)CD45RA(+) or CD7(+)CD45RA(-) progenitors. As reported for CD34(+)CD1a(-) thymocytes, cloning experiments demonstrated that CD7(+)CD45RA(+) cells comprised bipotent NK/DC progenitors. DCs differentiated from CD7(-)CD45RA(+) and CD7(+)CD45RA(+) progenitors differed as to E-cadherin CD123, CD116, and CD127 expression, but none of these was really discriminant. Only CD7(+)CD45RA(+) or thymic progenitors differentiated into Lag(+)S100(+) Langerhans cells in the absence of exogenous transforming growth factor (TGF)-beta 1. Analysis of the DC differentiation pathways showed that CD7(+)CD45RA(+) progenitors generated CD1a(+)CD14(-) precursors that were macrophage-colony stimulating factor (M-CSF) resistant and CD1a(-)CD14(+) precursors that readily differentiated into DCs under the standard condition. Accordingly, CD7(+)CD45RA(+) progenitor-derived mature DCs produced 2- to 4-fold more IL-6, IL-12, and TNF-alpha on CD40 ligation and elicited 3- to 6-fold higher allogeneic T-lymphocyte reactivity than CD7(-)CD45RA(+) progenitor-derived DCs. Altogether, these findings provide evidence that the DCs that differentiate from cord blood CD34(+)CD7(+)CD45RA(+) progenitors represent an original population for their developmental pathways and function. (Blood. 2000;96:3748-3756)  相似文献   

17.
18.
19.
20.
Prospective isolation of human clonogenic common myeloid progenitors   总被引:16,自引:0,他引:16  
The hierarchical development from hematopoietic stem cells to mature cells of the hematolymphoid system involves progressive loss of self-renewal capacity, proliferation ability, and lineage potentials. Here we show the prospective isolation of early developmental intermediates, the human clonogenic common myeloid progenitors and their downstream progeny, the granulocyte/macrophage and megakaryocyte/erythrocyte progenitors. All three populations reside in the lineage-negative (lin(-)) CD34(+)CD38(+) fraction of adult bone marrow as well as in cord blood. They are distinguishable by the expression of the IL-3R alpha chain, the receptor of an early-acting hematopoietic cytokine, and CD45RA, an isoform of a phosphotyrosine phosphatase involved in negative regulation of cytokine signaling. Multipotent progenitors, early lymphoid progenitors, and the here-defined myeloid progenitors express distinct profiles of hematopoiesis-affiliated genes. The isolation of highly purified hematopoietic intermediates provides tools to better understand developmental programs underlying normal and leukemic hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号