首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major inhibitory input to the dorsal thalamus arises from neurons in the thalamic reticular nucleus (TRN), which use gamma‐aminobutyric acid (GABA) as a neurotransmitter. We examined the synaptic targets of TRN terminals in the visual thalamus, including the A lamina of the dorsal lateral geniculate nucleus (LGN), the medial interlaminar nucleus (MIN), the lateral posterior nucleus (LP), and the pulvinar nucleus (PUL). To identify TRN terminals, we injected biocytin into the visual sector of the TRN to label terminals by anterograde transport. We then used postembedding immunocytochemical staining for GABA to distinguish TRN terminals as biocytin‐labeled GABA‐positive terminals and to distinguish the postsynaptic targets of TRN terminals as GABA‐negative thalamocortical cells or GABA‐positive interneurons. We found that, in all nuclei, the TRN provides GABAergic input primarily to thalamocortical relay cells (93–100%). Most of this input seems targeted to peripheral dendrites outside of glomeruli. The TRN does not appear to be a significant source of GABAergic input to interneurons in the visual thalamus. We also examined the synaptic targets of the overall population of GABAergic axon terminals (F1 profiles) within these same regions of the visual thalamus and found that the TRN contacts cannot account for all F1 profiles. In addition to F1 contacts on the dendrites of thalamocortical cells, which presumably include TRN terminals, another population of F1 profiles, most likely interneuron axons, provides input to GABAergic interneuron dendrites. Our results suggest that the TRN terminals are ideally situated to modulate thalamocortical transmission by controlling the response mode of thalamocortical cells. J. Comp. Neurol. 440:321–341, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
In order to get more detailed information on the neural circuit of the lateralis medialis-suprageniculate nuclear (LM-Sg) complex of the cat, the GABAergic innervation of this complex was studied by GABA immunohistochemical techniques. Small immunoreactive cells were found throughout the LM-Sg complex. On the basis of their ultrastructural features, these GABAergic cells were identified as Golgi type II interneurons. The neuropil of this nucleus displayed a conspicuous granular immunoreactivity. Ultrastructurally, the immunoreactive neural profiles in the neuropil were identified as the presynaptic dendrites of interneurons, myelinated axons, or axon terminals. The GABAergic dendritic profiles, containing pleomorphic synaptic vesicles, were involved in synaptic glomeruli. Additionally, GABAergic axon terminals containing pleomorphic synaptic vesicles formed symmetric axodendritic synaptic contacts mainly in the extraglomerular neuropil. They appeared to correspond to either axon terminals from the thalamic reticular nucleus (TRN) or the axon terminals of interneurons. The projections from the TRN to the LM-Sg complex were studied by using wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). Following injection of WGA-HRP into the LM-Sg complex, a number of retrogradely labeled cells were observed in the TRN. The connections between the TRN and the LM-Sg complex appeared to be topographically organized, the dorsal TRN being connected mainly with the dorsomedial portion of the LM-Sg complex, and the ventral TRN being connected chiefly with the ventrolateral portion of the LM-Sg complex. Following injection of the tracer into the TRN, ultrastructural examination of anterograde labeling in the LM-Sg complex revealed that labeled terminals contain pleomorphic vesicles and make symmetric synaptic contacts mainly with small to medium-sized dendrites. The labeled terminals were not involved in synaptic glomeruli. The present results provide anatomic support for the contention that the projection cells of the LM-Sg complex may be inhibited by both the TRN axons and interneurons, probably through the mediation of GABA.  相似文献   

3.
Synaptic interactions between GABAergic neurons and thalamic projecting cells within the trigeminal nucleus caudalis were examined using a combined method of GABA immunohistochemistry and retrograde WGA-HRP labeling of the trigeminothalamic pathway. Results showed that GABA-positive neurons and projecting cells were separate but closely intermingled within the spinal trigeminal nucleus. GABAergic axon terminals formed symmetric synaptic connections with the cell bodies and dendrites of trigeminothalamic neurons. In turn, some WGA-HRP filled axon terminals, presumed to originate from axon collaterals of the projecting neurons, formed synaptic connections with GABA containing neurons. The results suggest that in the spinal trigeminal nucleus there is a reciprocal modulation between GABA neurons and trigeminothalamic cells.  相似文献   

4.
The afferent and efferent cortical projections of the dorsal lateral geniculate nucleus (GLD) of adult specimens of the turtle Emys orbicularis were investigated after intraocular or intracortical injections of horseradish peroxidase (HRP), and the distribution of gamma aminobutyric acid (GABA) immunoreactivity in the nucleus was carried out by immunocytochemical techniques, both techniques being combined with light and electron microscopy. In addition, some specimens were prepared for double-labeling of HRP and GABA immunoreactivity, and additional samples impregnated by a rapid Golgi technique. On purely morphological grounds, four types of neurons can be distinguished by light microscopy: two types of large cells in the cell plate which project to the cortex, and two types of smaller cells in the neuropil and optic tract which do not. The small cells are consistently GABA-immunoreactive, while the former are, with extremely rare exceptions, immunonegative for GABA. The supposition that the small neurons of the neuropil are interneurons is supported by electron microscopic observations; these strongly GABA-immunoreactive cells have large plicated nuclei surrounded by a thin layer of cytoplasm poorly endowed with organelles. The dendrites of these cells may contain pleomorphic synaptic vesicles (DCSVs) and appear to be presynaptic to other dendritic profiles. These DCSVs are occasionally contacted by GABA-immunoreactive axon terminals, and more frequently by retinal terminals consistently immunonegative for GABA. The latter, frequently organized in glomeruli, also make synaptic contacts with immunonegative dendrites arising from corticopetal neurons of the cell plate. Two major categories of GABA-immunoreactive axon terminals can be distinguished, and we are led to the conclusion that one of these represents an intrinsic GABAergic innervation of the GLD, while the second is tentatively interpreted as an extrinsic source of GABA to the nucleus, possibly from ventral thalamic structures. The fine structure of the dorsal lateral geniculate nucleus of Emys orbicularis thus shows many similarities with that of mammals. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The shell of the nucleus accumbens receives a dense serotonergic innervation and contains abundant gamma-aminobutyric acid (GABA)-immunoreactive neurons. Moreover, serotonin (5-hydroxytryptamine: 5-HT) and GABA have been implicated in a variety of common motivational and motor-related functions partially ascribed to this brain area. We used immunoelectron microscopy of antisera directed against 5-HT and GABA in the same section of tissue to examine whether there were cellular substrates that might indicate more specific sites for functional interactions involving these transmitters in the shell region of the rat nucleus accumbens. Immunogold-silver labeling for GABA was localized to perikarya, dendrites, axons and axon terminals, whereas immunoperoxidase labeling for 5-HT was restricted to axons and axon terminals. Approximately half (187/366) of the 5-HT-immunoreactive axon terminals apposed or formed synaptic junctions with postsynaptic neurons. These junctions were mainly of the symmetric-type (83/187) characteristic of inhibitory transmitters, and were equally prevalent on dendrites with and without detectable gold-silver labeling for GABA. Of the 187 5-HT-labeled axon terminals with recognized synaptic contacts, 36% also showed convergence on a common dendrite with a GABA-labeled axon terminal. In addition, 5-HT- and GABA-immunoreactive axon terminals were commonly (83/366) identified in direct apposition to one another. Within a single plane of section, 41% of the apposed GABA-immunoreactive axon terminals formed symmetric-type junctions with dendrites or somata, whereas, the apposed 5-HT-labeled axon terminals rarely showed postsynaptic contacts. These results indicate that 5-HT-containing axon terminals may postsynaptically inhibit GABAergic neurons and their targets within the shell of the rat nucleus accumbens. Additionally, our results strongly suggest that, in this brain region, appositions between 5-HT and GABA axons and axon terminals may facilitate presynaptic interactions between these transmitter systems. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Although the reciprocal interconnections between the prefrontal cortex and the mediodorsal nucleus of the thalamus (MD) are well known, the involvement of inhibitory cortical interneurons in the neural circuit has not been fully defined. To address this issue, we conducted three combined neuroanatomical studies on the rat brain. First, the frequency and the spatial distribution of synapses made by reconstructed dendrites of nonpyramidal neurons were identified by impregnation of cortical cells with the Golgi method and identification of thalamocortical terminals by degeneration following thalamic lesions. Terminals from MD were found to make synaptic contacts with small dendritic shafts or spines of Golgi-impregnated nonpyramidal cells with very sparse dendritic spines. Second, a combined study that used anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L) and postembedding gamma-aminobutyric acid (GABA) immunocytochemistry indicated that PHA-L-labeled terminals from MD made synaptic junctions with GABA-immunoreactive dendritic shafts and spines. Nonlabeled dendritic spines were found to receive both axonal inputs from MD with PHA-L labelings and from GABAergic cells. In addition, synapses were found between dendritic shafts and axon terminals that were both immunoreactive for GABA. Third, synaptic connections between corticothalamic neurons that project to MD and GABAergic terminals were investigated by using wheat germ agglutinin conjugated to horseradish peroxidase and postembedding GABA immunocytochemistry. GABAergic terminals in the prelimbic cortex made symmetrical synaptic contacts with retrogradely labeled corticothalamic neurons to MD. All of the synapses were found on cell somata and thick dendritic trunks. These results provide the first demonstration of synaptic contacts in the prelimbic cortex not only between thalamocortical terminals from MD and GABAergic interneurons but also between GABAergic terminals and corticothalamic neurons that project to MD. The anatomical findings indicate that GABAergic interneurons have a modulatory influence on excitatory reverberation between MD and the prefrontal cortex.  相似文献   

7.
This study analyzes the synaptic interactions between the central terminals of A delta high threshold mechanoreceptors (A delta HTMs) and GABA-immunoreactive profiles. A delta HTM primary afferents from three monkeys and one cat were electrophysiologically identified and intracellularly labeled with HRP, and their terminal arborizations in laminae I and II of the sacrocaudal spinal cord were studied at the ultrastructural level. GABA-immunoreactive profiles in relation to A delta HTM terminals were demonstrated using postembedding colloidal gold techniques. Monkey A delta HTM terminals (n = 131) usually constituted the central element of synaptic glomeruli; they established large asymmetric synaptic contacts with 1-13 dendrites (modal value 2-4) and were surrounded by 0-6 peripheral axon terminals (modal value 2-3). The large majority (around 85%) of the peripheral axon terminals were GABA immunoreactive. They were found presynaptic to the A delta HTM terminal and/or to dendrites postsynaptic to the primary afferent terminal. Furthermore, all peripheral axon terminals found presynaptic to the A delta HTM terminals showed GABA immunoreactivity. Within a single A delta HTM fiber, this synaptic arrangement was found in 20-60% of its boutons. In addition, 28% of the postsynaptic dendritic profiles displayed weak GABA immunoreactivity. Some of them contained vesicles; however, only in a few cases did we observe synapses between a GABA-immunoreactive vesicle-containing dendrite and a dendritic profile postsynaptic to an A delta HTM terminal. Similar synaptology and interactions with GABA-immunoreactive profiles were displayed by the terminals of the single cat A delta HTM fiber studied. Our data support the hypothesis that GABA-containing neurons use both presynaptic and/or postsynaptic mechanisms to exert a powerful control, presumably inhibitory, over the transmission of nociceptive information between A delta HTM afferents and second-order neurons in monkey and cat spinal cord. Our results also imply that GABA may be released within the synaptic glomeruli formed by A delta HTM terminals either by local dendrites or by axon terminals. We discuss the possibility that these GABAergic synapses can be driven by inputs from both primary afferents and/or descending systems to modulate the transmission of nociceptive sensory information.  相似文献   

8.
The thalamic reticular nucleus (TRN) of the rat has been studied immunocytochemically using an antiserum against the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Combined light and electron microscopic investigations by means of peroxidase-antiperoxidase and immunogold labeling show that this nucleus contains a homogeneous population of GABA-immunoreactive neurons receiving extensive GABAergic connections suggestive of self-inhibitory inputs.  相似文献   

9.
Pre-embedding immunoperoxidase (for serotonin) and postembedding immunogold (for γ-aminobutyric acid; GABA) labelling were combined at light and electron microscopic levels to demonstrate the neuronal targets of serotonin (5-HT) afferents in the ventral posterior lateral nucleus (VPL) of the cat thalamus. 5-HT-immunoreactive fibres and terminal varicosities were found in close proximity to GABA-immunoreactive interneurons and non-GABAergic relay neurons. Ultrastructurally, the vast majority of 5-HT terminals made close membrane contacts without overt membrane specializations with GABAergic axon terminals, GABAergic presynaptic dendrites and GABAergic somata. A very small number of 5-HT terminals formed typical asymmetrical synapses with GABAergic presynaptic dendrites and with dendritic shafts of relay cells. Some 5-HT terminals participated with the presynaptic dendrites in triadic synaptic arrangements. These findings suggest a dual innervation pattern by 5-HT afferents in VPL and the release of 5-HT in large part at sites not associated with morphologically detectable synapses.  相似文献   

10.
The relationship of the calcium binding protein parvalbumin (PV) with gamma-aminobutyric acidergic (GABAergic) neurons differs within different thalamic nuclei and animal species. In this study, the distribution of PV and GABA throughout the thalamus of the guinea pig was investigated at the light microscopic level by using immunoperoxidase methods. Intense PV labelling was found in all the GABAergic neurons of the reticular nucleus and in scattered GABAergic neurons in the anteroventral nucleus, whereas GABAergic interneurons in the ventrobasal and lateral geniculate nuclei were not PV labelled. At the electron microscopic level, preembedding immunuperoxidase for PV was combined with postembedding immunogold for GABA. In the ventrobasal nucleus, four types of profiles were recognized: 1) terminals with flattened vesicles and forming symmetric synapses, which were labelled with both PV and GABA and could therefore be identified as afferents from the reticular nucleus; 2) boutons morphologically similar to presynaptic dendrites of interneurons, labelled only with GABA; 3) large terminals with round vesicles and asymmetric synapses, labelled only with PV, which contacted GABAergic presynaptic dendrites in glomerular arrangements and resembled ascending excitatory afferents; and 4) terminals unlabelled by either antiserum. In the ventrobasal nucleus of the guinea pig a double immunocytochemical labelling permits therefore the differentiation of two populations of GABAergic vesicle-containing profiles, i. e., the terminals originating from reticular nucleus (that are double labelled) and the presynaptic dendrites originating from interneurons (that are GABA-labelled only). The possibility to differentiate GABAergic inputs from the reticular nucleus and from interneurons can shed light to the functional interpretation of synaptic circuits in thalamic sensory nuclei. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Quantitative electron microscopy was used to examine the relative contributions of different types of synapses to the circuitry of the thalamic reticular nucleus (RTN) in the rat. Single RTN cells were injected with Lucifer Yellow (LY) in fixed brain slices and examined after photoconversion; corticothalamic axons and terminals were labeled by anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L); and gamma-aminobutyric acid (GABA)ergic terminals were labeled by postembedding immunocytochemistry. Three types of synapses, made by morphologically distinguishable small terminals (ST), large terminals (LT), and GABAergic terminals, were distributed on all portions of the dendritic trees of injected RTN cells. ST and LT terminals formed asymmetrical, presumed excitatory, synaptic contacts. On proximal dendrites, approximately 50% of the synapses were ST, 30-40% were LT, and 10-25% were GABAergic. On distal dendrites, 60-65% were ST, 20% were LT, and 15% were GABAergic. PHA-L labeling showed that labeled corticothalamic terminals and ST terminals have identical morphological features and the same distribution patterns on RTN dendrites, indicating that the majority of excitatory afferents to RTN neurons are derived from the cerebral cortex. The LT terminals found in smaller numbers are probably derived from collateral axons of thalamocortical relay cells. GABAergic terminals formed by LY-labeled, intra-RTN axon collaterals were relatively few in number, and no dendrodendritic synapses were observed.  相似文献   

12.
The synaptic organization of the mediodorsal thalamic nucleus (MD) in the rat was studied with the electron microscope, and correlated with the termination of afferent fibers labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Presynaptic axon terminals were classified into four categories in MD on the basis of the size, synaptic vesicle morphology, and synaptic membrane specializations: 1) small axon terminals with round synaptic vesicles (SR), which made asymmetrical synaptic contacts predominantly with small dendritic shafts; 2) large axon terminals with round vesicles (LR), which established asymmetrical synaptic junctions mainly with large dendritic shafts; 3) small to medium axon terminals with pleomorphic vesicles (SMP), which formed symmetrical synaptic contacts with somata and small-diameter dendrites; 4) large axon terminals with pleomorphic vesicles (LP), which made symmetrical synaptic contacts with large dendritic shafts. Synaptic glomeruli were also identified in MD that contained either LR or LP terminals as the central presynaptic components. No presynaptic dendrites were identified. In order to identify terminals arising from different sources, injections of WGA-HRP were made into cortical and subcortical structures known to project to MD, including the prefrontal cortex, piriform cortex, amygdala, ventral pallidum and thalamic reticular nucleus. Axons from the amygdala formed LR terminals, while those from the prefrontal and insular cortex ended exclusively in SR terminals. Fibers labeled from the piriform cortex formed both LR and SR endings. Based on their morphology, all of these are presumed to be excitatory. In contrast, the axons from the ventral pallidum ended as LP terminals, and those from the thalamic reticular nucleus formed SMP terminals. Both are presumed to be inhibitory. At least some terminals from these sources have also been identified as GABAergic, based on double labeling with anterogradely transported WGA-HRP and glutamic acid decarboxylase (GAD) immunocytochemistry.  相似文献   

13.
The inhibitory circuitry of the ventroposterolateral nucleus (VPL) of the macaque somatosensory thalamus was analyzed in normal animals and in those surviving for a few days or several weeks following a unilateral lesion of the cuneate nucleus, the source of medial lemniscal (ML) axons carrying information from the contralateral upper extremity. Inhibitory synaptic terminals in the VPL were defined as those that contain flattened or pleomorphic synaptic vesicles and that can be shown to be immunoreactive for γ-aminobutyric acid (GABA). There are two types of these profiles: F axon terminals that arise from neurons of the thalamic reticular nucleus, and perhaps from VPL local circuit neurons (LCNs); and the dendritic appendages of LCNs that form presynaptic dendrites (PSDs). ML terminals normally have extensive synaptic interactions with PSDs but not with F axon terminals. Electron microscopic analyses revealed that cuneatus lesions resulted in a rapid loss of ML terminals and a statistically significant reduction in both F and PSD synaptic profiles. Confocal scanning microscopy also demonstrated a profound loss of GABA immunoreactivity in the deafferented VPL. These changes persisted for more than 20 weeks, without any evidence of reactive synaptogenesis of surviving sensory afferents or of inhibitory synapses. The changes in GABA circuitry are transneuronal, and the possible mechanisms that may underlie them are discussed. It is suggested that the altered GABAergic circuitry of the VPL in the monkey may serve as a model for understanding changes in somatic sensation in the human following peripheral or central deafferentation. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Neurons in the magnocellular nucleus of the caudal basal forebrain extend an axonal projection which arborizes within the reticular nucleus of the thalamus. The present study addresses the ultrastructure and neurochemistry of this projection in rats. Many labeled terminals are apparent within the thalamic reticular nucleus following Phaseolus vulgaris leucoagglutinin injections into the caudal basal nucleus; anterogradely labeled axon terminals most commonly contact both somata and dendrites of reticular nucleus neurons with symmetric membrane specializations. Thus, the majority of the labeled terminals examined contrast with choline acetyltransferase positive terminals which have been previously identified as contacting dendrites and forming asymmetric synapses within this nucleus. Many of the neurons within the caudal basal nucleus which are retrogradely labeled following tracer injections into the thalamic reticular nucleus are gamma-aminobutyric acid (GABA) immunoreactive. In addition, following injections of Phaseolus vulgaris leucoagglutinin or fluoro-ruby into the caudal basal forebrain, some of the labeled axonal swellings and boutons within the thalamic reticular nucleus also contain glutamic acid decarboxylase. These results indicate that a significant component of the projection is GABAergic. These anatomical observations suggest that the projection from the caudal basal nucleus onto the thalamic reticular nucleus could facilitate the relay of information through the dorsal thalamus by inhibiting reticular nucleus neurons, and thus, in turn, disinhibiting thalamic relay neurons.  相似文献   

15.
An antiserum against the inhibitory transmitter substance gamma-aminobutyric acid (GABA) was used to investigate the distribution of GABAergic nerve terminals and cell bodies in the lateral cervical nucleus (LCN) of the cynomolgus monkey. Light microscopic immunohistochemistry demonstrated GABA-immunoreactive puncta, suggestive of nerve terminals, scattered throughout the LCN. The terminal-like profiles are often present along the somata of unlabeled neurons, but most are located in the neuropil. GABA-immunoreactive neurons are present in the LCN, but constitute a very small number of the LCN neurons. Electron microscopy showed that the GABA-positive neurons are small with a relatively large nucleus. They are contacted by few somatic boutons. Numerous GABA-immunoreactive terminals containing densely packed round to oval synaptic vesicles were also found. Most GABA-positive terminals make synaptic contact with dendrites, but synapses with cell bodies are also present. Synaptic contacts between labeled and unlabeled terminals were not observed. Some GABA-positive terminals make contact with GABA-positive neurons. The present findings suggest that GABA is a major inhibitory transmitter substance in the LCN of the monkey. However, in comparison with other somatosensory relay nuclei, there are few GABA-immunoreactive neurons in the LCN. This may imply that the GABA-positive neurons branch extensively in the LCN or that an extrinsic source of GABAergic input exists.  相似文献   

16.
The hypoglossal nucleus of the macaque monkey Macaca fuscata was investigated with light and electron microscopic immunocytochemistry with an antibody directed against gamma-aminobutyric acid (GABA). At the light microscopic level, GABA immunoreactivity was present in small neurons, punctate structures, and thin, fiberlike structures. These GABA-positive elements were distributed throughout the hypoglossal nucleus at rostrocaudal levels. There was no immunoreactivity in the hypoglossal motoneurons. The GABA-positive small neurons were fusiform or ovoid (15 X 9 micron) and extended a few proximal dendrites from both poles. At the ultrastructural level, these small neurons were characterized by a markedly invaginated nucleus and a scanty cytoplasm in which cisternae of rough endoplasmic reticulum were not organized into extensive lamellar arrays as seen in the motorneurons. The GABA-positive punctate structures at the light microscopic level were identified as vesicle-containing axon boutons at the electron microscopic level. These GABA-positive axon terminals made synaptic contacts mainly with the dendrites of the motoneurons and infrequently with the somata. The majority of them made symmetric synapses and they contained pleomorphic synaptic vesicles. However, a small number of GABA-positive terminals (7%) formed asymmetric synapses with the dendrites of motoneurons, and these contacts exhibited postsynaptic dense bars or Taxi bodies lying beneath the postsynaptic membranes. There were no GABA-positive boutons that contacted the cell bodies of the small neurons. Although GABA-positive myelinated and unmyelinated axons were seen as thin, fiberlike structures, these myelinated and unmyelinated axons rarely gave rise to boutons on the motoneurons. The present study suggests that GABAergic inhibition in the monkey hypoglossal nucleus occurs mainly on the dendrites of the motoneurons and to some extent on the somata.  相似文献   

17.
GABAergic neurons in the thalamic reticular nucleus (TRN) form powerful inhibitory connections with several dorsal thalamic nuclei, thereby controlling attention, sensory processing, and synchronous oscillations in the thalamocortical system. TRN neurons are interconnected by a network of GABAergic synapses, but their properties and their role in shaping TRN neuronal activity are not well understood. Using recording techniques aimed to minimize changes in the intracellular milieu, we show that synaptic GABA(A) receptor activation triggers postsynaptic depolarizations in mouse TRN neurons. Immunohistochemical data indicate that TRN neurons express very low levels of the Cl(-) transporter KCC2. In agreement, perforated-patch recordings show that intracellular Cl(-) levels are high in TRN neurons, resulting in a Cl(-) reversal potential (E(Cl)) significantly depolarized from rest. Additionally, we find that GABA(A) receptor-evoked depolarizations are amplified by the activation of postsynaptic T-type Ca(2+) channels, leading to dendritic Ca(2+) increases and the generation of burst firing in TRN neurons. In turn, GABA-evoked burst firing results in delayed and long-lasting feedforward inhibition in thalamic relay cells. Our results show that GABA-evoked depolarizations can interact with T-type Ca(2+) channels to powerfully control spike generation in TRN neurons.  相似文献   

18.
In the nucleus raphe dorsalis of the cat, an electron microscopic immunocytochemistry method was used to identify the fine structure of serotoninergic dendritic profiles and axon terminals analyzed in serial sections. Two classes of serotoninergic dendrites were distinguished in the nucleus. The first class was constituted by conventional serotonin (5-HT) dendrites that were contacted by unlabeled axon terminals containing differing populations of synaptic vesicles. The second class consisted of serotoninergic dendrites that contained vesicles in their dendritic shafts. Such 5-HT dendrites were further subdivided into two groups according to their synaptic contacts. In some 5-HT vesicle-containing dendrites, the vesicles were densely packed in small clusters and were associated with a well-defined synaptic specialization. These dendrites were classified as serotoninergic presynaptic dendrites and established synaptic contacts with unlabeled and labeled dendrites and were contacted by unlabeled axon terminals. In other 5-HT vesicle-containing dendrites, extensive serial section examination showed that the vesicles could be observed near the membrane but were never found to be associated with any synaptic membrane specialization. Serotoninergic axon terminals that were presumed to be recurrent collaterals of 5-HT neurons were present in the nucleus. Some of them were observed in synaptic contact with dendrites or dendritic protrusions whereas others did not exhibit synaptic specializations. The existence of serotoninergic dendrodendritic synaptic contacts and axon terminals suggests direct local interactions between serotoninergic neurons within the nucleus raphe dorsalis.  相似文献   

19.
We studied the ultrastructure of the synaptic organization in the feline spinal trigeminal nucleus, emphasizing specific neurotransmitter patterns within lamina II of the pars caudalis/medullary dorsal horn. Normal adults were perfused, and Vibratome sections from pars caudalis were processed for electron microscopy. Ultrathin sections were reacted with antibodies for the excitatory neurotransmitter glutamate (Glu) and for the inhibitory neurotransmitter γ-aminobutyric acid (GABA) by using postembedding immunogold techniques. Both single- and double-labeled preparations were examined. Results with single labeling show that Glu-immunoreactive terminals have round synaptic vesicles and form asymmetric synaptic contacts onto dendrites. GABA-immunoreactive axon terminals and vesicle-containing dendrites have pleomorphic vesicles, and the axon terminals form symmetric contacts onto dendrites and other axons. Double labeling on a single section shows glomeruli with central Glu-immunoreactive terminals that are presynaptic to dendrites, including GABA+ vesicle-containing dendrites. These Glu+ terminals are also postsynaptic to GABA+ axon terminals, and these GABA-immunoreactive terminals may also be presynaptic to the GABA+ vesicle-containing dendrites. Quantitative analyses confirm the specificity of the Glu and GABA immunoreactivities seen in the various glomerular profiles. The results suggest that a subpopulation of Glu-immunoreactive primary afferents (excitatory) may be under the direct synaptic influence of a GABA-immunoreactive intrinsic pathway (inhibitory) by both presynaptic and postsynaptic mechanisms. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The ventrolateral portion of the periaqueductal gray (PAG) is one brain region in which ligands of the mu-opioid receptor (MOR) produce analgesia. In the PAG, MOR ligands are thought to act primarily on inhibitory [e.g., gamma-aminobutyric acidergic (GABAergic)] neurons to disinhibit PAG output rather than directly on medullary-projecting PAG neurons. In this study, the ultrastructural localization of MOR immunolabeling was examined with respect to either GABAergic PAG neurons or PAG projection neurons that were labeled retrogradely from the rostral ventromedial medulla. Immunoreactivity for MOR and GABA often coexisted within dendrites. Dual-labeled profiles accounted for subpopulations of dendrites containing immunoreactivity for either MOR (65 of 145 dendrites; 45%) or GABA (65 of 183 dendrites; 35%). In addition, nearly half of PAG neuronal profiles (148 of 344 profiles) that were labeled retrogradely from the ventromedial medulla contained MOR immunoreactivity. MOR was distributed equally among retrogradely labeled neuronal profiles in the lateral and ventrolateral columns of the caudal PAG. With respect to the presynaptic distribution of MOR, approximately half of MOR-immunolabeled axon terminals (35 of 69 terminals) also contained GABA. Some MOR and GABA dual-immunolabeled axon terminals contacted unlabeled dendrites (11 of 35 terminals), whereas others contacted GABA-immunoreactive dendrites (15 of 35 terminals). Furthermore, axon terminals synapsing on medullary-projecting PAG neurons sometimes contained immunoreactivity for MOR. These data support the model that MOR ligands can act by inhibiting GABAergic neurons, but they also provide evidence that MOR ligands may act directly on PAG output neurons. In addition, MOR at presynaptic sites could affect both GABAergic neurons and output neurons. Thus, the disinhibitory model represents only partially the potential mechanisms by which MOR ligands can modulate output of the PAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号