首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The acquisition of the multidrug resistance phenotype in human tumours is associated with an overexpression of the 170 kDa P-glycoprotein encoded by the multidrug resistance 1 (MDR1) gene, and also with a 190 kDa membrane ATP-binding protein encoded by a multidrug resistance-associated protein (MRP) gene. Human bladder cancer is a highly malignant neoplasm which is refractory to anti-cancer chemotherapy. In order to understand the mechanism underlying multidrug resistance in bladder cancer, we established three doxorubicin-resistant cell lines, T24/ADM-1, T24/ADM-2 and KK47/ADM, and one vincristine-resistant cell line, T24/VCR, from human bladder cancer T24 and KK47 cells respectively. Both T24/ADM-1 and T24/ADM-2 cells which had elevated MRP mRNA levels showed both a cross-resistance to etoposide and a decreased intracellular accumulation of etoposide. T24/VCR cells which had elevated levels of MDR1 mRNA and P-glycoprotein but not of MRP mRNA, showed cross-resistance to doxorubicin. On the other hand, KK47/ADM cells, which had elevated levels of both MRP and MDR1 mRNA and a decreased level of topoisomerase II mRNA, were found to be cross-resistant to etoposide, vincristine and a camptothecin derivative, CPT-11. Our present study demonstrates a concomitant induction of increased levels of MRP mRNA, decreased levels of topoisomerase II mRNA and decreased drug accumulation during development of multidrug resistance in human bladder cancer cells. The enhanced expression of the MRP gene is herein discussed in a possible correlation with the decreased expression of the topoisomerase II gene.  相似文献   

2.
The multidrug resistance protein (MRP) family belongs to the ATP-binding cassette superfamily (ABC) of transporters, which are involved in ATP-dependent transport of hydrophobic compounds. One of the MRP family, MRP1 , is partially associated with the multidrug resistance phe-notype in brain tumors. In this study, we asked whether another MRP family gene, MRP3 , could affect drug sensitivity to anticancer agents in human glioma cell lines and clinical glioma specimens. We first produced two antisense transfectants by introduction of antisense MRP3 cDNA into the glioma cell line NHG2, which endogenously expresses MRP3. The two MRP3 antisense transfectants showed 2- to 5-fold increases in drug sensitivity to etoposide and cisplatin compared with NHG2 cells, but their sensitivity to vincristine or nitrosourea was not changed. Two MRP3 cDNA sense transfectants of pig kidney cell lines showed 4- to 6-fold drug resistance to etoposide, but only 1.4- to 1.5-fold to cisplatin. We next compared the mRNA levels of four ABC transporters, multi-drug resistance 1 ( MDR1 ), MRP1, MRP2 and MRP3 in clinical samples, including 34 patients with gliomas, by quantitative RT-PCR analysis. In some of the clinical samples, increased expression of MRP1 and MRP3 was apparent in malignant gliomas. In situ hybridization revealed that glioma cells were stained with MRP3 probe. MRP3 may modulate drug sensitivity to certain anticancer agents in human gliomas.  相似文献   

3.
The multidrug resistance protein (MRP) family belongs to the ATP-binding cassette superfamily (ABC) of transporters, which are involved in ATP-dependent transport of hydrophobic compounds. One of the MRP family, MRP1, is partially associated with the multidrug resistance phenotype in brain tumors. In this study, we asked whether another MRP family gene, MRP3, could affect drug sensitivity to anticancer agents in human glioma cell lines and clinical glioma specimens. We first produced two antisense transfectants by introduction of antisense MRP3 cDNA into the glioma cell line NHG2, which endogenously expresses MRP3. The two MRP3 antisense transfectants showed 2- to 5-fold increases in drug sensitivity to etoposide and cisplatin compared with NHG2 cells, but their sensitivity to vincristine or nitrosourea was not changed. Two MRP3 cDNA sense transfectants of pig kidney cell lines showed 4- to 6-fold drug resistance to etoposide, but only 1.4- to 1.5-fold to cisplatin. We next compared the mRNA levels of four ABC transporters, multidrug resistance 1 (MDR1), MRP1, MRP2 and MRP3 in clinical samples, including 34 patients with gliomas, by quantitative RT-PCR analysis. In some of the clinical samples, increased expression of MRP1 and MRP3 was apparent in malignant gliomas. In situ hybridization revealed that glioma cells were stained with MRP3 probe. MRP3 may modulate drug sensitivity to certain anticancer agents in human gliomas.  相似文献   

4.
Drug resistance is a major clinical problem in the chemotherapy of human gliomas. The multidrug resistance-associated protein (MRP), a membrane transporter related to non-P-glycoprotein multidrug resistance, is overexpressed in some drug-selected cancer cell lines. To investigate whether MRP is involved in the intrinsic drug resistance of human gliomas, surgical specimens of 20 gliomas (11 glioblastomas, 6 anaplastic astrocytomas, and 3 astrocytomas), 3 normal brain specimens, and 4 glioma cell lines (U87MG, U251MG, U373MG, and T98G) were analyzed. The expression of MRP was studied by RT-PCR and immunohistochemistry in the surgical specimens. The MRP expression levels in the cell lines were assessed by the quantitative RT-PCR and Western blot analyses. Sensitivity to adriamycin (ADM), etoposide (VP-16), cisplatin (CDDP), and 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), were determined by MTT assay, and antisense treatment was evaluated in the cell lines. The expression of MRP was detected in 9 of 11 glioblastomas and 3 of 6 anaplastic astrocytomas. The quantitative analyses of the cell lines revealed that the MRP mRNA and protein levels were increased 4.5-fold in the T98G cells as compared to U87MG. T98G cells showed the highest resistance to all drugs. Western blot analysis revealed that treatment with the antisense oligonucleotide reduced the level of MRP expression to 25% of the sense oligonucleotide treatment in T98G cells. The sensitivity to ADM, VP-16 and CDDP was significantly increased in the antisense-treated cells as compared with the sense-treated cells. These results suggest that the MRP expression may be related to the intrinsic multidrug resistance in human gliomas.  相似文献   

5.
The multidrug resistance-associated protein (MRP), a new membrane transporter related to non-Pgp multidrug resistance, is overexpressed in some drug-selected cancer-cell lines. The role of MRP in unselected cell lines and in human cancer is unknown. MRP gene expression, determined by RNase protection assay and chemosensitivity to doxorubicin, etoposide and cisplatin, determined by MTT assay, were assessed in 18 non-drug-selected lung-cancer cell lines (10 small-cell lung cancer, 6 non-small-cell lung cancer, and 1 carcinoid). MRP gene expression was also investigated in normal lung tissue and primary non-small-cell lung cancer. All cell lines except one and all normal lung tissues and primary non-small-cell lung cancers expressed detectable levels of MRP. Expression was significantly lower in cell lines than in normal and neoplastic lung. MRP protein expression was also assessed by immunohistochemistry using the monoclonal antibody MRPrl; comparable levels of expression were observed between mRNA and protein in cell lines; however, in tumor samples intense staining was observed in tumor cells as well as in infiltrating normal cells in tumors, making the results less comparable to those obtained by RNase expression. MRP expression did not directly correlate with function in a calcein accumulation assay in 2 unselected cell lines. No gene amplification was observed by Southern-blot analysis, in the unselected cell lines or in tumor samples. In general, in cell lines, MRP gene expression was correlated with lower chemosensitivity to doxorubicin and etoposide, but not to cisplatin. However, MRP expression did not directly correlate with MRP function as assessed by a calcein accumulation assay in one of 2 unselected cell lines examined. Our results suggest that MRP may be implicated in drug resistance in unselected lung-cancer cell lines and its role in normal lung and primary lung cancer warrants further investigation in patients undergoing chemotherapy. © 1996 Wiley-Liss, Inc.  相似文献   

6.
U-937 human leukemia cells were selected for resistance to doxorubicin in the presence or absence of a specific drug modulator that inhibits the activity of P-glycoprotein (Pgp), encoded by the multidrug-resistance gene (MDR1). Parental cells expressed low basal levels of the multidrug-resistance-associated gene (MRP1) and major vault protein (MVP) mRNAs and no MDR1 mRNA. Two doxorubicin-resistant cell lines were selected. Both drug-resistant cell lines upregulated the MVP mRNA level 1.5-fold within 1 cell passage. The MVP mRNA level continued to increase over time as the doxorubicin selection pressure was increased. MVP protein levels generally paralleled the mRNA levels. The 2 high molecular weight vault protein mRNAs were always expressed at constitutive levels. Fully formed vault particles consisting of the MVP, the 2 high molecular weight proteins and the vault RNA assembled and accumulated to increased levels in drug-selected cells. MVP induction is therefore the rate-limiting step for vault particle formation in U-937 cells. By passage 25 and thereafter, the selected cells were resistant to doxorubicin, etoposide, mitoxantrone and 5-fluorouracil by a pathway that was independent of MDR1, MRP1, MRP2 and breast cancer resistance protein. In summary, U-937 doxorubicin-selected cells are programmed to rapidly upregulate MVP mRNA levels, to accumulate vault particles and to become multidrug resistant.  相似文献   

7.
Previous studies have shown that the in vitro-selected adriamycin-resistant human small-cell lung-carcinoma cell line GLC4-ADR150 displays multidrug resistance as the result of 3-fold decreased DNA-topoisomerase II (topo II) activity and a 6-fold reduction in adriamycin accumulation. Not the MDRI gene, but the MRP gene, was over-expressed in this cell line. The aim of our study was to establish which of these drug-resistance-associated factors are already involved in drug resistance occurring at early steps of selection with adriamycin. To address this question, changes in expression of topo IIα/topo IIβ, MRP and drug accumulation were measured along with adriamycin resistance (from 2- to 10- to 150-fold) and in a partial revertant cell line (10-fold resistant). Topo IIα and IIβ mRNA and protein levels were decreased in the resistant sub-lines, except in the 10-fold-resistant cell line. Cellular daunorubicin accumulation was decreased 1.2- to 5-fold with increasing resistance. MRP mRNA was over-expressed in all resistant sub-lines, with a marked increase in the 10-fold-resistant cells (level of expression as high as in the GLC4-ADR150 cells). Expression of an ATP-binding 190-kDa membrane protein and Western-blot analysis with anti-MRP anti-serum ASPKE, was in accordance with the expression of MRP mRNA in all cell lines. Expression of MRP mRNA and protein, however, was not proportional with the decrease in drug accumulation in all resistant sub-lines. This study also shows that drug accumulation, topo II and MRP expression were all changed at the earliest stage of resistance development of GLC4 cells upon adriamycin selection. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The MDM2 protein is known to be overexpressed in some sarcomas including rhabdomyosarcoma. However, the extent to which the MDM2 protein influences sensitivity to chemotherapeutic drugs is unclear. We have analysed this further using stable transfection of the mdm2 gene into 4 well-characterised human paediatric rhabdomyosarcoma cell lines. Transfection with the mdm2 gene resulted in increased levels of the MDM2 protein in all the cell lines. In 2 of the lines, SCMC and RD, the mdm2 gene caused between 2-fold and 61-fold increase in resistance to vincristine, etoposide and doxorubicin but not to cisplatin. In these lines there was an increase in expression of the mdr-1 gene which encodes P-glycoprotein, but not the mrp1 gene which encodes the multidrug resistance protein (MRP). The resistance was reversible using the MDR modulator PSC833, confirming the presence of P-glycoprotein. We conclude that MDM2 overexpression may be a mechanism by which multidrug resistance is regulated in some rhabdomyosarcomas.  相似文献   

9.
10.
11.
12.
The level of expression of the multidrug resistance-associated protein (MRP1) in a panel of human ovarian carcinoma cell lines and their variants with acquired cisplatin resistance was determined using Western blotting. No overexpression of MRP1 was detected in any of the cell lines. In addition, we have transfected the MRP1 gene into an intrinsically cisplatin-resistant cell line SKOV3, previously shown to have elevated levels of glutathione (GSH). The MRP1-transfected line SKOV3-S2 was shown to be cross-resistant to doxorubicin, vincristine and etoposide but not to paclitaxel, vinblastine and platinum agents, such as cisplatin, JM216 [bis-acetato-ammine-dichloro-cyclohexylamine platinum (IV)] and AMD473 [cis-ammine dichloro (2-methyl-pyridine) platinum (II)]. No cross-resistance to any of the platinum agents was observed in a MRP1-overexpressing human lung cancer cell line with acquired doxorubicin resistance. Reduction of GSH levels (80-90%) by buthionine sulphoximine (BSO) produced significant potentiation in cisplatin sensitivity in the parental SKOV3, the vector-alone control SKOV3-puro and the MRP1-transfected line SKOV3-S2. The degree of sensitization was similar in all cell lines (1.6-fold). However, selective sensitization by BSO to vincristine was observed in the MRP1-transfected line (4.1-fold) but not in the vector control. No significant differences were observed in cisplatin accumulation in the SKOV3-puro and the SKOV3-S2 cells, although both these transfected lines accumulated significantly more than the parental line. Our results suggest that MRP1 does not play a significant role in platinum resistance in the human tumour cell lines investigated in this study.  相似文献   

13.
Overexpression of either the multidrug resistance 1 (MDR1) gene or multidrug resistance protein (MRP) gene is involved in acquisition of multidrug-resistant phenotypes in human cancer cells. In this study we examined whether selection for resistance to the epipodophyllotoxins, etoposide/teniposide (VP16/VM26), could induce overexpression of MDR1 or MRP. We have previously isolated two VP16/VM26-resistant KB cell lines. Two VP16/VM26-resistant KB cell lines, KB/VM-1 and KB/VM-4, which were selected by stepwise exposure to VM26 had decreased accumulation of [3H]VP16 and increased levels of MRP, but no apparent expression of MDR1 gene was observed. Another VP16/VM26-resistant KB cell line, KB/VP-4, which was further isolated from a VP16-resistant KB cell line, KB/VP-2, had decreased accumulation of [3H]VP16 and showed overexpression of MRP gene, but not that of MDR1 gene. We also isolated a VP16-resistant cell line, IN157/VP-1, from a human glioma cell line IN157. IN157/VP-1 cells showed decreased accumulation of [3H]VP16 and overexpression of MRP gene, but not of MDR1. These findings suggest that selection for resistance to VP16/VM26, preferentially induces overexpression of MRP gene.  相似文献   

14.
15.
Multidrug resistance (MDR) in human cancer cells is multifactorial. Previously, we reported on the association between expression of P-glycoprotein (Pgp), the multidrug resistance-associated protein (MRP), and the lung resistance protein (LRP) with the MDR phenotype in the NCI panel of 60 human cancer cell lines used for in vitro anticancer drug screening. Eight cell lines from this panel, manifesting widely divergent levels of in vitro drug resistance were chosen to investigate the role of MRP and LRP expression at the molecular level. LRP mRNA levels, as determined by ribonuclease protection assay, varied significantly among the 8 cell lines, and correlated closely with in vitro drug resistance to both MDR and non-MDR related drugs. LRP mRNA expression was determined to be a stronger correlate of drug sensitivity than protein expression. In contrast, MRP mRNA levels were not significantly correlated with drug sensitivity. The rates of newly transcribed LRP or MRP mRNA did not correlate with mRNA levels, indicating that mRNA stability or other features of processing may be important in regulation of LRP and MRP mRNA levels. Using Southern blot analysis, LRP gene amplification was shown not to be associated with LRP overexpression. These data suggest that LRP expression may be an important determinant of the MDR phenotype in cell lines intrinsically resistant to cancer chemotherapeutic agents. Int. J. Cancer 72:1021–1026, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Recently, cDNAs have been identified that encode four human proteins (MRP2-5) with structural similarity to the multidrug resistance protein (MRP). Preliminary studies have shown that levels of mRNAs encoding MRP2, MRP3, and MRP5, are increased in some drug-selected cell lines, but the correlation of MRP2-5 mRNA levels with drug resistance has not been examined. Using a collection of small cell lung cancer (SCLC) and non-SCLC patient samples and unselected cell lines established from patients at various stages of treatment, we examined the expression of MRP2, MRP3, MRP4, and MRP5, as well as MDR1 and MRP, by PCR. The levels of individual mRNAs were correlated with the sensitivity of these cell lines to doxorubicin (DOX), vincristine, VP-16, and cis-diamminedichloroplatinum(II), as determined by a modified MTT assay. Using both SCLC and non-SCLC cell lines, we confirmed the previously observed correlation of MRP mRNA levels with resistance to DOX (B. G. Campling et al., Clin. Cancer Res., 3:115-122, 1997) and found a strong correlation of MRP3 mRNA levels with resistance of the cell lines to DOX. In addition, the mRNA levels of both MRP and MRP3 correlated with resistance of the cell lines to vincristine, VP-16, and cis-diamminedichloroplatinum(II). These findings are consistent with the suggestion that MRP3, like MRP, may contribute to the drug resistance phenotype of lung cancer cells.  相似文献   

17.
The aim of our study was to investigate the functional expression of P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) in 2 distinct glioma cells (GL15 and 8MG) from patients with glioblastoma multiforme. MDR1 gene and Pgp expression was not detected in either cell line by RT-PCR and Western blotting, respectively. In contrast, MRP1 was detected at both mRNA and protein level in both cell lines, with a higher expression in the 8MG cells that occur predominantly at the cell membrane. Three other MRPs (MRP3, MRP4 and MRP5) were detected by RT-PCR in both cell lines, whereas MRP2 was not expressed. In addition, MRP3 protein was also detected by immunocytochemistry in both GL15 and 8MG cell lines. Indomethacin and probenecid, 2 modulators of MRPs activity, increased the accumulation of vincristine and etoposide, 2 substrates of MRPs, by both cell lines. These modulators also decreased the efflux of vincristine from both cell lines with a more pronounced effect in 8MG cells. In conclusion, our results show functional expression of MRPs leading to a decrease in the intracellular vincristine and etoposide concentrations in human glioblastoma cell lines. Furthermore, our results that exhibit protein expression of MRP1 and MRP3 and gene expression of MRP4 and MRP5 in these 2 glioblastoma cell lines suggest new mechanisms that could lead to a MDR phenotype of tumour cells in patients with glioblastoma multiforme.  相似文献   

18.
Multidrug resistance phenotypes in human tumours are associated with the overexpression of the 170 kDa P-glycoprotein encoded by the multidrug resistance 1 (MDR1) gene, and also with that of the non-P-glycoprotein-mediated multidrug resistance gene, MRP, which encodes a 190 kDa membrane ATP-binding protein. We have previously reported that overexpression of MRP appears to be responsible for spontaneous multidrug resistance in some human glioma cell lines (Abe et al., Int. J. Cancer, 58, 860-864, 1994). In this study, we investigated whether chemosensitising agents of P-glycoprotein-mediated multidrug resistance such as verapamil, a biscoclaurine alkaloid (cepharanthine), and a dihydropyridine analogue (NIK250) could also reverse multidrug resistance in human glioma cells. The glioma cell lines were the two MRP-expressing cell lines, T98G and IN500, an MDR1-expressing cell line, CCF-STTG1, and the MRP1 MDR1-non-expressing cell line, IN157. Verapamil and NIK250 almost completely reversed drug resistance to vincristine, etoposide and doxorubicin in T98G cells, while they also reversed drug resistance to vincristine and etoposide, but only partially to doxorubicin in IN500 cells. Cepharanthine as well as verapamil and NIK250 reversed vincristine resistance in CCF-STTG1 cells, but cepharanthine only partially reversed drug resistance in T98G and IN500 cells. The cellular accumulation of [3H]etoposide increased about 2- and 3-fold compared with control in T98G cells in the presence of verapamil and NIK250 respectively. Furthermore, the release of doxorubicin from the nuclei of T98G cells was blocked by NIK250. However, NIK250 and verapamil caused no apparent increase in vincristine accumulation in T98G cells. NIK250 or verapamil might exert inhibitory effects upon MRP function, resulting in a reversal of MRP-mediated spontaneous multidrug resistance in cultured human glioma cells.  相似文献   

19.
20.
We examined the effects of suppressing multidrug resistance-associated protein (MRP) and multidrug resistance 1 (MDR1) gene expression in HCT-8DDP human colon cancer cell lines, which showed both cisplatin and multidrug resistance. Hammerhead ribozymes, designed to cleave MRP mRNA (anti-MRP Rz) and MDR1 mRNA (anti-MDR1 Rz), were transfected into the HCT-8DDP cells. Drug sensitivity was estimated by MTT assay in vitro. The HCT-8DDP/anti-MRP Rz cells were more sensitive to doxorubicin (DOX) and etoposide (VP-16) by 2.5- and 4.1-fold, respectively, compared with HCT-8DDP cells. The HCT-8DDP/anti-MDR Rz cells were more sensitive to DOX and VP-16 by 2.3- and 3.8-fold, respectively. The anti-MRP Rz and anti-MDR1 Rz significantly down-regulated resistance to DOX and VP-16, while anti-MRP Rz and anti-MDR1 Rz did not affect resistance to cisplatin, methotrexate and 5-fluorouracil. The hammerhead ribozyme-mediated specific suppression of MRP or MDR1 was sufficient to reverse multidrug resistance in the human colon cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号