首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes (CTL) recognize peptides in association with major histocompatibility complex (MHC) class I proteins, but how peptides bind to class I is not well understood. We used a fluorescence technique to measure antigenic peptide binding to a soluble, single-chain Kd (SC-Kd) molecule in which the Kd heavy chain was connected by a 15-residue link to β2-microglobulin. Peptides were covalently labeled at their N terminus with dansyl, and binding of dansylated Kd-restricted peptides to SC-Kd resulted in significant fluorescence enhancement, which could be inhibited by unmodified Kd-restricted peptides. Real-time binding of a dansylated peptide could be followed by monitoring the fluorescence at 530 nm. The dansylated Plasmodium berghei circumsporozoite (PbCS) 263–260 peptide bound to “empty” SC-Kd with an association rate constant of 1140 M?1s?1, and the subsequent spontaneous dissociation of the SC-Kd-peptide complex was slow. The dissociation increased dramatically after addition of excess unlabeled PbCS 253–260 peptide, but with a slower association constant for unlabeled peptide, 77 M?1s?1. Thus, the Kd-peptide complex on the surface of antigen-presenting cells should be stable, but high concentrations of peptides in the endoplasmic reticulum (ER) lumen would allow for peptide exchange on Kd before export to the surface. The apparent activation energy for PbCS 253–260 peptide binding to SC-Kd was 6.78 ± 0.64 kcal/mole, similar to values previously reported for antigen-antibody interactions.  相似文献   

2.
Virulence and intracellular persistence of Listeria monocytogenes markedly depend on secretion of listeriolysin (Hly), which promotes invasion of the pathogen from the endosome into the cytosol. Recent studies have provided compelling evidence that Hly also facilitates recognition of listerial antigens, in association with major histocompatibility complex (MHC) class I molecules, by CD8 T lymphocytes. Data presented here confirm that the Hly-deficient strains, the prfA? mutant L. monocytogenes SLCC53 and the transposon mutants L. monocytogenes M3 and M20 are avirulent for mice, and unable to replicate inside bone marrow-derived macrophages (BMMΦ). Furthermore, BMMΦ infected with M3, M20 or SLCC53 were as efficiently lysed as BMMΦ infected with the Hly-positive wild-type strain EGD by MHC class I-dependent CD8 cytotoxic T lymphocytes. Using the highly sensitive polymerase chain reaction method, hly mRNA was detectable in BMMΦ infected with L. monocytogenes EGD or SLCC53, but totally absent in M3-infected BMMΦ. In the case of M20, an excision of the transposon occurred, but the excision was not precise and the hly gene was approximately 400 base pairs shorter. These findings argue against a unique role for Hly in MHC class I presentation of listerial antigens, although Hly appears central to virulence and intracellular replication. Thus, virulence of L. monocytogenes is dissociable from MHC class I presentation of listerial antigens.  相似文献   

3.
Anchor residues in peptides determine the specificity of binding to major histocompatibility complex class I molecules through interactions of their side chains with pockets in the peptide-binding groove. We have compared the kinetics of association of a Sendai virus nucleoprotein-derived peptide (FAPGNYPAL, termed SV9) with H-2Kb class I molecules, and the same peptide iodinated on the anchor residue tyrosine (125I-SV9). Even though the association rates were too rapid for direct measurements, competition studies indicated that they were similar for SV9 and 125I-SV9. To measure the binding of non-radioactive SV9 directly, SV9 was tritiated (3H-SV9). 3H-SV9 remained stably associated with H-2Kb molecules, whereas 125I-SV9 dissociated in a temperature-dependent fashion. Thus, modifications on anchor residues do not necessarilly have to affect the specificity and association kinetics of peptide binding to class I molecules but can affect the stability of the resulting class I-peptide interaction. The dissociation of peptides with modified and, more generally, suboptimal anchor residue side chains may explain the presence of empty class I molecules and free class I heavy chains at the cell surface.  相似文献   

4.
The murine antigen-processing-defective mutant cell line RMA-S is leaky in the presentation of certain endogenously synthesized minor histocompatibility and viral antigens to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL). The viral antigens include influenza virus nucleoprotein, vesicular stomatitis virus (VSV) nucleocapsid and Rauscher murine leukemia virus (MuLV) antigen. Here we demonstrate Sendai virus antigen presentation by the HAM2 (murine TAP2, transporter associated with antigen presentation type 2)-defective RMA-S cell line and compare antigen presentation after restoration of the defect by murine TAP1/2 gene transfection. Kinetic studies revealed that RMA-S cells required 2-3 h longer incubation and approximately 10 times higher doses of Sendai virus to reach the same level of killing as the RMA parental line. After transfection of RMA-S cells with the murine TAP1/2 gene, Sendai virus antigen presentation was restored to levels of the RMA wild-type line with regard to time of virus infection and dose of virus needed for sensitizing target cells. The presentation of Sendai virus antigen in RMA-S cells was sensitive to brefeldin A (BFA), suggesting that the presentation was mediated via the endogenous pathway. Our findings comfirmed leakiness of antigen presentation in RMA-S cells and extended it to Sendai virus. The results underscored the role for intact expression of the TAP 1/2 molecules for efficient MHC class I-mediated antigen presentation.  相似文献   

5.
This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule.  相似文献   

6.
Glycosylphosphatidylinositol-anchored (GPI)-Db molecules are defective in mediating cytotoxic T lymphocytes (CTL) lysis of transfected lymphoma cells, compared to their transmembrane (TM) counterpart. This defect is manifest when antigenic peptide must be processed and presented through the endogenous pathway. These same transfectants can be lysed by allospecific CTL, or by antigen-specific Db-restricted CTL when pulsed with appropriate exogenous synthetic peptide, demonstrating that they can bind and present peptide for CTL-mediated lympholysis. The defect apparently results from differences between GPI-Db and TM-Db assembly and transport, or from differences in membrane topology that affect CD8+ CTL recognition of major histocompatibility complex/peptide complex.  相似文献   

7.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

8.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

9.
The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and β2-microglobulin (β2m) have been used to examine the assembly of the trimolecular MHC class I/β2m/peptide complex. Recombinant human β2m and mouse β2m2 have been generated to compare the binding of the two β2m to mouse class I. It is frequently assumed that human β2m binds to mouse class I heavy chain with a much higher affinity than mouse β2m itself. We find that human β2m only binds to mouse class I heavy chain with slightly (about 3-fold) higher affinity than mouse β2m. In addition, we compared the effect of the two β2m upon peptide binding to mouse class I. The ability of human β2m to support peptide binding correlated well with its ability to saturate mouse class I heavy chains. Surprisingly, mouse β2m only facilitated peptide binding when mouse β2m was used in excess (about 20-fold) of what was needed to saturate the class I heavy chains. The inefficiency of mouse β2m to support peptide binding could not be attributed to a reduced affinity of mouse β2m/MHC class I complexes for peptides or to a reduction in the fraction of mouse β2m/MHC class I molecules participating in peptide binding. We have previously shown that only a minor fraction of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in β2m binding. We propose that mouse β2m interacts with the minor peptide binding (i.e. the “empty”) fraction with a lower affinity than human β2m does, whereas mouse and human β2m interact with the major peptide-occupied fraction with almost similar affinities. This would explain why mouse β2m is less efficient than human β2m in generating the peptide binding moiety, and identifies the empty MHC class I heavy chain as the molecule that binds human β2m preferentially.  相似文献   

10.
A set of mouse HLA-B27-reactive cytotoxic T lymphocyte clones were found to recognize the HLA-B27 molecule in an H-2-unrestricted manner, i.e. independently of any mouse major histocompatibility complex (MHC) molecule. The reactivity patterns of these clones on HLA-B27 variants (positive only on HLA-B*2702 and HLA-B*2701) allowed the identification of residues N77 and A81 of the HLA-B27 molecule as important for their reactivity. The location of these residues in the peptide-binding groove (specificity pocket F) suggested that the reactivity of the clones is dependent on HLA-B27-bound peptide(s). However, several other class I molecules sharing these residues (N77 and A81) were not recognized, indicating that other residues might also be involved. One of the clones was found to display an interesting cross-reactivity with allogeneic H-2Kk molecules, sharing N77 and A81 with HLA-B*2702. Sequence comparison suggested the involvement of residue H9, located in specificity pocket B of the peptide-binding groove, and revealed some similarity of pockets B in HLA-B27 and H-2Kk. The structural basis of such T cell-mediated MHC cross-reactions across species barriers is discussed.  相似文献   

11.
Mutations of the p53 gene are the most frequently observed genetic changes in human cancers; often leading to an overexpression of the wild-type (wt) p53 protein. Demonstrable T cell reactivity against tumor cells overexpressing wt or mutant p53-derived peptides could support the application of such epitopes in cancer immunotherapies. As the binding of peptide to MHC class I molecules is a prerequisite for antigen-specific T cell recognition, we evaluated the ability of wt and mutant p53 peptides to bind to HLA-A2.1 using two independent flow cytometry-based assay systems, the T2 major histocompatibility complex (MHC) class I peptide stabilization assay (stabilization assay) and the peptide-induced MHC class I reconstitution assay (reconstitution assay). The twenty selected wt sequences each conformed to the previously reported HLA-A2.1 peptide binding motif. Seven of the wt p53 and 2/13 mutant p53 peptides derived from the previously chosen wt peptides bound to HLA-A2.1 in both the stabilization and the reconstitution assays. An additional six wt and six mutant p53 peptides, presumably exhibiting lower affinity for HLA-A2.1, were identified only in the reconstitution assay. Those p53 peptides binding HLA-A2.1 may provide useful immunogens for the generation of HLA-A2.1-restricted cytolytic T lymphocytes in vitro and in vivo.  相似文献   

12.
The peptides recognized by an H-2Db-restricted CD8 cytotoxic T lymphocyte (CTL) clone which is specific for the 60-kDa mycobacterial heat shock protein (hsp) and cross-reacts with stressed host cells were characterized. None of the nonapeptides from hsp60 conforming to the H-2Db binding motif were able to sensitize target cells for lysis by this CTL clone. Sequence analysis of the stimulatory fraction from a trypsin digest of hsp60, together with synthetic peptide studies, defined a cluster of overlapping epitopes. Carboxy-terminal extension by at least one amino acid of the nonamer predicted to bind best to H-2Db was essential for CTL recognition. Two such elongated peptides, a 10-mer and a 12-mer stimulated the clone at similarly low concentrations in the 100 pM range. We assume that these two peptides comply best with the natural epitope. In contrast, the 11-mer was inactive. The stimulatory 10-mer bound to H-2Db with an efficacy similar to that of the nonapeptide corresponding to the H-2Db motif, as revealed by peptide induced major histocompatibility complex (MHC) surface expression on RMA-S cells and competitive blocking of epitope recognition by the nonamer. Binding of these carboxy-terminally extended peptides to the MHC groove can be explained by anchoring through the amino acid residue Asn in position 5 of the peptide and by intrusion of the hydrophobic carboxy-terminal Ala (10-mer) or Leu (12-mer), but not Gly (11-mer), into the hydrophobic pocket of the H-2Db cleft. Because the carboxy-terminal part is thus larger than predicted this region of the peptide may arch up from the binding groove. We assume that recognition of steric components of the MHC/peptide complex broaden the range of epitope specificity for a single T cell receptor. This flexibility not only promotes recognition of several overlapping peptides from a single antigen, but may also increase the chance of cross-reaction with similar peptides from unrelated proteins, including autoantigens. Consistent with this latter assumption, the T cell clone cross-recognizes mycobacterial hsp60 and stressed host cells.  相似文献   

13.
Three-color flow cytometric analysis was carried out with intraepithelial lymphocytes from mice deficient in expression of major histocompatibility complex (MHC) antigens. These experiments were done to address the possible role of MHC class II molecules in the positive selection of Vδ4+ γδ T cells. By analyzing mice deficient MHC class II antigens alone or in combination with MHC class I antigens, no evidence was found for positive selection of Vδ4+ cells among CD8a+ or CD4?CD8? subpopulations of γδ T cell receptor-positive cells. Because V54+, CD8a+ cells were reported to be positively selected on I-Ek and hybrid I-Ek/b molecules, class II-deficient animals were crossed with I-Ek transgenic mice and progeny examined for Vδ4 expression. Again, no evidence for positive selection was found. Interestingly, in MHC class I-deficient animals, the total number of γδ T cells was about twofold higher than in control and MHC class II-deficient mice and the proportion of V8δ-expressing cells was correspondingly decreased. Taken together, these results cast doubt on a major role for conventional MHC antigens in shaping the γδ T cell repertoire of intraepithelial lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号