首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously cloned from K562 leukemia cells two novel fibroblast growth factor receptors (FGFR-3 and FGFR-4; J. Partanen et al., EMBO J., 10: 1347-1354, 1991). Here we have analyzed the mRNA expression of four different FGFRs, including the two novel genes in human leukemia cell lines. We show FGFR-1, FGFR-3, and FGFR-4 mRNAs in several leukemia cell lines at levels similar to those in solid tumor cell lines. Ligand cross-linking experiments indicate that K562 cells have receptors binding acidic FGF but not basic FGF. Expression of FGFRs in leukemia cells may reflect their presence on normal hematopoietic precursor cells or induction during leukemogenesis or cell culture.  相似文献   

2.
Basic fibroblast growth factor (FGF-2) has been implicated in the progression of human tumours via both autocrine and paracrine (angiogenic) activities. We investigated the expression of FGF-2 and FGF receptors (FGFR-1 to -4) in NSCLC cell lines (N = 16), NSCLC surgical specimens (N = 21) and 2 control cell lines. Our data show that almost all NSCLC cells produce elevated levels of FGF-2 and FGFR in vitro and in vivo. FGF-2 expression did correlate with a short doubling time as well as with potent anchorage-independent growth of NSCLC cell lines. In contrast with control cells, NSCLC cells did not secrete considerable amounts of FGF-2 into the extracellular space. Expression levels of FGFR-1 and -2 in NSCLC cell lines correlated with FGF-2 production. FGFR were located at the plasma membranes in some low FGF-2-producing NSCLC and control cell lines. These cells were sensitive to the proliferative effect of recombinant FGF-2 (rFGF-2). In NSCLC cell lines with an enhanced FGF-2 production, representing the majority studied, FGFR localisation was predominantly intracellular. These cells were insensitive to both the proliferative effect of rFGF-2 and growth inhibition by FGF-2-neutralising antibodies. In contrast, several agents antagonised FGF-2 intracellularly impaired growth of almost all NSCLC cell lines. Our data suggest a role of FGF-2 and FGFR in the growth stimulation of NSCLC cells possibly via an intracrine mechanism.  相似文献   

3.
Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins, and there is evidence that they play a role in tumor cell growth, invasion and metastasis. Matrilysin (MMP-7) is over-expressed in prostate cancer cells and increases prostate cancer cell invasion. Prostate stromal fibroblasts secrete a factor(s), including fibroblast growth factor-1 (FGF-1), which induces promatrilysin expression in the prostate carcinoma cell line LNCaP but not in normal prostate epithelial cells (PrECs). Since FGF-1 is present in the prostate, an altered sensitivity to FGF-1 might explain the up-regulation of matrilysin expression in prostate cancer cells compared to normal prostate epithelium. FGF receptor-1 (FGFR-1) is not normally expressed by normal prostate epithelial cells; however, aberrant expression of this receptor has been reported in prostate cancer cells, including the LNCaP cell line. We hypothesized that aberrant expression of FGFR-1 in PrECs would render them sensitive to induction of promatrilysin expression by recombinant FGF-1. To test this hypothesis, we transiently transfected PrECs with an FGFR-1 expression vector, which resulted in over-expression of FGFR-1 protein in approximately 40% of cells. FGF-1 increased promatrilysin expression in FGFR-1-transfected PrECs 4-fold over mock-transfected cells, and this induction was inhibited by a specific FGFR-1 inhibitor, SU5402, and by co-expression of a dominant negative FGFR-1 protein. Our results demonstrate that aberrant FGFR-1 expression, an epigenetic phenomenon that has been associated with prostate cancer progression, allows induction of promatrilysin expression by FGF-1 in PrECs.  相似文献   

4.
Growth factors may play a role in autocrine or paracrine growth control of tumour cells. We have now examined the expression pattern in vivo by in situ hybridization (ISH) on a series of 13 ductal adenocarcinomas of the pancreas using the non-radioactive digoxigenin system to generate specific antisense orientated riboprobes for FGF-1 and FGF-2, and the four FGFRs (FGFR-1, -2, -3 and -4). We confirmed the expression of both FGF/FGFR by tumour cells, with the potential of a potential autocrine loops in 46% of the cases studied. FGF-2 and FGFR-3 were the most commonly expressed ligand and receptor (46% and 76% respectively). Endothelial cells lining vessels within an around invasive tumours were frequently positive for expression of FGFR-1 and/or FGFR-3. In the normal pancreas remote from the tumour, the acinar cells were found to have a heterogeneous expression pattern for FGFRs while duct cells, islet cells and stromal components including nerves and vascular endothelium were negative. The data suggest a role for FGFs and their high affinity receptors in the control of growth of human pancreatic adenocarcinoma and its supporting stroma.  相似文献   

5.
Pancreatic ductal adenocarcinomas (PDACs) overexpress various cell-surface tyrosine kinase receptors, including the type I high-affinity fibroblast growth factor receptor (FGFR-1). The purpose of this study was to determine whether FGFR-targeted gene therapy is feasible in this disorder. Accordingly, the effects of a conjugate consisting of fibroblast growth factor (FGF)-2 linked to a Fab' fragment against the adenovirus knob region were evaluated in human pancreatic cancer cell lines treated with an adenoviral vector containing the herpes simplex virus thymidine kinase (AdTK) gene. An adenoviral vector containing the firefly luciferase reporter gene (AdLuc) served to assess infection efficiency, and was initially tested in L6 rat myoblasts. In parental L6 cells that express exceedingly low levels of high-affinity FGFRs, transduction with AdLuc was enhanced 7- to 10-fold with the FGF2-Fab' conjugate, whereas in L6 cells transfected to express FGFR-1, it was enhanced 39- to 52-fold. The pancreatic cancer cell lines expressed variable levels of the four high-affinity FGF receptors, and exhibited 2- to 34-fold increases in gene transduction in the presence of the FGF2-Fab' conjugate. In the absence of FGF2-Fab' there was no correlation between surface binding of FGF2 and AdLuc transduction efficiency, whereas in the presence of FGF2-Fab', enhanced AdLuc transduction efficiency correlated with greater surface binding of FGF2. In the absence of AdTK, all the cell lines were insensitive to ganciclovir, whereas after AdTK transduction, only ASPC-1 and PANC-1 cells were resistant to ganciclovir even in the presence of FGF2-Fab'. Ganciclovir-mediated inhibition was dependent on the conjugate in CAPAN-1 and COLO-357 cells, but was independent of the conjugate in T3M4 and MIA-PaCa-2 cells. Real-time quantitative PCR of laser-captured cancer cells revealed high levels of various FGFR mRNA species in six of seven PDAC tumor samples. These findings indicate that transduction efficiency with FGF2-Fab' in pancreatic cancer cells is independent of native adenoviral transduction efficiency and is greatest in cells that exhibit concomitant expression of various high-affinity FGFRs. In view of the overexpression of high-affinity FGFRs in the cancer cells in PDAC, our findings also suggest that the combined use of AdTK, ganciclovir, and FGF2-Fab' may ultimately be a promising therapeutic approach in a subgroup of patients with PDAC.  相似文献   

6.
Fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) have been increasingly recognized to play an important role in the pathobiology of pancreatic malignancy. We have investigated the effects of FGF-1 and FGF-2 on the behaviour and adhesion properties of human pancreatic adenocarcinoma cell lines (BxPc3, T3M4 and HPAF) that were previously characterised for the expression of FGFRs. Here we show that exposure to FGF-1 and FGF-2 leads to significant and dose-dependent increase in E-cadherin-dependent cell-cell adhesion, tubular differentiation, and a reduced capacity to invade collagen gels. FGF stimulation produces phosphorylation of E-cadherin and beta-catenin on tyrosine residues, as well as increased E-cadherin localisation to the cytoplasmic membrane and association with FGFR1 demonstrable by coimmunoprecipitation. These results demonstrate that FGF-1 and FGF-2 may be involved in the regulation of cell adhesion, differentiation and invasion of pancreatic cancer. Copyright Cancer Research Campaign.  相似文献   

7.
The hypothesis that tumor growth is angiogenesis-dependent has been documented by a considerable body of direct and indirect experimental data. Since the discovery of the vascular endothelial growth factor (VEGF), most attention has been focused on the VEGF system. Although fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) can exert a strong angiogenic activity when they are supplied as a single pharmacological agent, their role in pathological angiogenesis in preclinical models remains controversial. To decipher the contribution of FGF receptors in various models of angiogenesis, we took advantage of the anti-idiotypic strategy to obtain circulating agonists specific for FGFR-1 and FGFR-2 (AIdF-1 and AIdF-2). They mimicked FGF-1 and FGF-2 for receptor binding, signal transduction, proliferation of endothelial cells and differentiation of the bladder carcinoma cell NBT-II which expresses FGFR-2b but not FGFR-1. The constitutive expression of FGFR-1 allowed binding of FGF-2 and AIdF-2 and inhibition of the proliferation of NBT-II cells. AIdF-1 and AIdF-2 induced angiogenesis in the corneal pocket assay. Although FGFR-1 dimerization achieved by AIdF-2 injection led to highly differentiated and smaller NBT-II tumors, no sign of reduction of tumor angiogenesis was observed, thus suggesting that endothelial cells are resistant to FGF.  相似文献   

8.
The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells.  相似文献   

9.
Fibroblast growth factors (FGFs) play an important role in the growth and maintenance of the normal prostate. There is increasing evidence from both animal models and analysis of human prostate cancer cell lines that alterations of FGFs and/or FGF receptors (FGFRs) may play an important role in prostate cancer progression. To better define the role of FGF2 and FGF7 in human prostate cancer in vivo, we have quantified these two growth factors in clinically localized human prostate cancers and uninvolved prostate by ELISA and Western blotting and determined their localization by immunohistochemistry. The expression of two of the primary receptors for these growth factors, FGFR-1 and FGFR-2, were also analyzed by immunohistochemistry and Western blotting in these same samples. We have found that FGF2 is significantly increased in prostate cancers when compared with uninvolved prostate and that the FGF2 is present in the stromal fibroblasts and endothelial cells but not the cancer cells. In addition, we have observed overexpression of both FGFR-1 and FGFR-2 in the prostate cancer epithelial cells in a subset of prostate cancers and that such overexpression is correlated with poor differentiation. Thus, there is both an increase in FGF2 concentration in prostate cancers and an increased expression of a receptor capable of responding to this growth factor, establishing a potential paracrine stimulation of prostate cancer cells by the surrounding stromal cells, which may play an important role in prostate cancer progression.  相似文献   

10.
11.
12.
Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.  相似文献   

13.
14.
Beta 2-microglobulin (β2m) is a component of the major histocompatibility complex (MHC) class I molecule, which presents tumor antigens to T lymphocytes to trigger cancer cell destruction. Notably, β2m has been reported as persistently expressed, rather than down regulated, in some tumor types. For renal cell and oral squamous cell carcinomas, β2m expression has been linked to increased migratory capabilities. The migratory ability of pancreatic cancer cells contributes to their metastatic tendencies and lethal nature. Therefore, in this study, we examined the impact of β2m on pancreatic cancer cell migration. We found that β2m protein is amply expressed in several human pancreatic cancer cell lines (S2-013, PANC-1, and MIA PaCa-2). Reducing β2m expression by short interfering RNA (siRNA) transfection significantly slowed the migration of the PANC-1 and S2-013 cancer cell lines, but increased the migration of the MIA PaCa-2 cell line. The amyloid precursor-like protein 2 (APLP2) has been documented as contributing to pancreatic cancer cell migration, invasiveness, and metastasis. We have previously shown that β2m/HLA class I/peptide complexes associate with APLP2 in S2-013 cells, and in this study we also detected their association in PANC-1 cells but not MIA PaCa-2 cells. In addition, siRNA down regulation of β2m expression diminished the expression of APLP2 in S2-013 and PANC-1 but heightened the level of APLP2 in MIA PaCa-2 cells, consistent with our migration data and co-immunoprecipitation data. Thus, our findings indicate that β2m regulates pancreatic cancer cell migration, and furthermore suggest that APLP2 is an intermediary in this process.  相似文献   

15.
BACKGROUND: Expression of fibroblast growth factors (FGFs) is increased in a substantial fraction of human prostate cancers in vivo and in prostate cancer cell lines. Altered FGF signaling can potentially have a variety of effects, including stimulating cell proliferation and inhibiting cell death. To determine the biologic significance of altered FGF signaling in human prostate cancer, we disrupted signaling by expression of a dominant-negative (DN) FGF receptor in prostate cancer cell lines. METHODS: PC-3, LNCaP, and DU145 prostate cancer cells were stably transfected with DN FGFR constructs, and LNCaP and DU145 cells were infected with a recombinant adenovirus expressing DN FGFR-1. The effect of DN FGFR-1 expression was assessed by colony-formation assays, cell proliferation assays, flow cytometry, and cytogenetic analysis. Key regulators involved in the G(2)-to-M cell cycle transition were assessed by western blotting to examine cyclin B1 expression and by in vitro kinase assay to assess cdc2 kinase activity. RESULTS: Stable transfection of the DN FGFR-1 construct inhibited colony formation by more than 99% in all three cell lines. Infection of LNCaP and DU145 prostate cancer cells with adenovirus expressing DN FGFR-1 led to extensive cell death within 48 hours. Flow cytometry and cytogenetic analysis revealed that the DN FGFR-1 receptor led to arrest in the G(2) phase of the cell cycle before cell death. Cyclin B1 accumulated in DN FGFR-1-infected LNCaP cells, but cdc2 kinase activity was decreased. CONCLUSIONS: These findings reveal an unexpected dependence of prostate cancer cells on FGF receptor signal transduction to traverse the G(2)/M checkpoint. The mechanism for the G(2) arrest is not clear. Our results raise the possibility that FGF-signaling antagonists might enhance the cell death induced by other prostate cancer therapies.  相似文献   

16.
目的:探讨死亡相关蛋白激酶1(death-associated protein kinase 1,DAPK1)在胰腺癌(pancreatic cancer,PaC)细胞放射敏感性中的作用,验证miR-324-5p通过靶向调控DAPK1影响胰腺癌细胞放射敏感性的机制。方法:通过生物信息学预测靶向DAPK1的miRNAs,并利用双荧光素酶报告基因检测miR-324-5p对DAPK1的调控作用。在PANC-1和MIA PaCa-2细胞中过表达miR-324-5p和DAPK1或抑制miR-324-5p后,对各细胞株进行放射诱导,检测细胞增殖和凋亡情况,以及凋亡相关分子的表达情况。结果:GEO数据集结果显示,胰腺癌组织中miR-324-5p的表达水平高于正常组织。与正常胰腺导管上皮细胞系(HPDE6-C7)相比,胰腺癌细胞系(Capan-1、Bxpc-3、PANC-1和MIA PaCa-2)中miR-324-5p表达水平更高(P均<0.001)。双荧光素报告基因检测结果表明,miR-324-5p靶向DAPK1的3' UTR,并且可下调DAPK1的表达。细胞实验结果证实,过表达miR-324-5p通过靶向调控DAPK1降低放射诱导的细胞凋亡和DNA的损伤,进而降低了胰腺癌细胞的放射敏感性。结论:miR-324-5p通过负调控DAPK1降低胰腺癌细胞对放射的敏感性,从而影响DNA修复和细胞凋亡。miR-324-5p/DAPK1途径可能为胰腺癌的靶向治疗提供了潜在的治疗靶点。  相似文献   

17.
PURPOSE: Hepatocellular carcinoma (HCC) is the fifth most common primary neoplasm; surgery is the only curative option but 5-year survival rates are only 25% to 50%. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) are known to be involved in growth and neovascularization of HCC. Therefore, agents that target these pathways may be effective in the treatment of HCC. The aim of this study was to determine the antineoplastic activity of brivanib alaninate, a dual inhibitor of VEGF receptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.  相似文献   

18.
Members of the fibroblast growth factor (FGF) family, which normally control cerebellar neuronal maturation, may represent more natural and less toxic tools with which to target medulloblastoma (MB), an embryonal brain tumor thought to arise from cerebellar neuronal precursors. In support of this, we found previously basic FGF/FGF-2 can inhibit MB progression by inducing neuronal-like differentiation, slowing the growth, and triggering apoptosis of a MB cell line we established from a histopathologically classic tumor (R. L. Kenigsberg et al., Am. J. Pathol., 151: 867-881, 1997). In the present study, the usefulness of this approach is additionally investigated. We report that of the five FGFs found in the developing cerebellum, only two, FGF-2 and FGF-9, possess antitumoral activity for MB. This activity is only noted for cell lines that originate from classic (UM-MB1 and SYR) rather than desmoplastic (HSJ) tumors. Whereas these FGFs inhibit proliferation of both classic cell lines, they only advance neuronal differentiation and induce apoptosis of one, UM-MB1. Consistent with these responses, after FGF treatment, levels of neurofilaments and the proapoptotic modulator Bax only increase in UM-MB1, whereas the cyclin-dependent kinase inhibitor p27/Kip1 (p27), which accumulates in cerebellar neuronal precursors before they exit the cell cycle, goes up in both UM-MB1 and SYR. Finally, although the histological variant of MB may help predict the sensitivity of MB to the FGFs, the selectivity, specificity, and type of response elicited may be dictated by, as evident by immunoprecipitation and Western blot analyses, the expression of certain FGF receptor types.  相似文献   

19.
Polypeptide growth factors mediate their cellular responses by binding to and activating specific cell surface receptors. Monoclonal antibody (MAb) VBS-1, produced against native fibroblast growth factor receptor-1 (FGFR-1), inhibited the binding of fibroblast growth factor-2 (FGF-2) to its receptor on coronary venular endothelial cells (CVECs) as determined by 125I-FGF-2 Scatchard analysis and [3H]thymidine uptake assays (ED50 = 80 ng/mL). Enzyme studies demonstrated that MAb VBS-1 binds to a protein epitope. Proteolytic mapping of the CVEC-FGFR established that a 52 kDa doublet contained the FGF binding site and the MAb VBS-1 antigenic epitope. N-glycanase digestion suggested the presence of a 50 kDa core protein for the CVEC-FGFR. Tunicamycin treatment resulted in the loss of expression of the core protein and the mature receptor, indicating the importance of CVEC-FGFR n-linked glycosylation. By Northern blot analysis, it was determined that CVECs express fgfr-1 and not fgfr-2. VBS-1 recognized FGFR-1 (140 kDa) and crossreacted weakly with FGFR-2 (135 kDa). Using a combination of affinity crosslinking, proteolytic mapping and Mab VBS-1 binding studies, we have located the FGF binding site near the NH2-terminal domain of the receptor close to the highly acidic box.  相似文献   

20.
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号