首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of several lymphokines by freshly isolated CD4+ T cells has been analyzed at the single-cell level, after stimulation with staphylococcal enterotoxin B (SEB). High frequencies of cells producing interleukin-2 (IL-2) and interferon-γ (IFN-γ) were induced, but very low frequencies of CD4+ T cells produced IL-4, IL-5 or IL-10 in response to SEB. Exogenously added IL-4 markedly altered the lymphokine profile induced during primary SEB stimulation. IFN-γ production was reduced, while a high fraction of cells contained IL-10 and IL-4 after activation in the presence of IL-4. We further demonstrate that IL-4 and IL-10 or IFN-y production was selectively induced in resting, high-density CD4+ T cells during primary stimulation, by SEB + IL-4 or SEB. Under conditions where both IL-10 and IFN-γ were produced, most cells contained only one of the two lymphokines.  相似文献   

2.
CD4+8? or CD4?8+ thymocytes have been regarded as direct progenitors of peripheral T cells. However, recently, we have found a novel NK1.1+ subpopulation with skewed T cell antigen receptor (TcR) Vβ family among heat-stable antigen negative (HSA?) CD4+8? thymocytes. In the present study, we show that these NK1.1+ CD4+8? thymocytes, which represent a different lineage from the major NK1.1? CD4+8? thymocytes or CD4+ lymph node T cells, vigorously secrete interleukin (IL)-4 and interfron (IFN)-γ upon stimulation with immobilized anti-TcR-αβ antibody. On the other hand, neither NK1.1? CD4+8?thymocytes nor CD4+ lymph node T cells produced substantial amounts of these lymphokines. A similar pattern of lymphokine secretion was observed with the NK1.1+ CD4+ T cells obtained from bone marrow. The present findings elucidate the recent observations that HSA? CD4+8? thymocytes secrete a variety of lymphokines including IFN-γ, IL-4, IL-5 and IL-10 before the CD4+8? thymocytes are exported from thymus. Our evidence indicates that NK1.1+ CD4+8? thymocytes are totally responsible for the specific lymphokine secretions observed in the HSA- CD4+8? thymocytes.  相似文献   

3.
Although T helper cells play a critical role in human immunity against schistosomes, the properties of the T lymphocytes that govern resistance and pathogenesis in human schistosomiasis are still poorly defined. This work addresses the question as to whether human resistance to Schistosoma mansoni is associated with a particular T helper subset. Twenty-eight CD3+, CD4+, CD8? parasite-specific T cell clones were isolated from three adults with high degree of resistance to infection by S. mansoni. The lymphokine secretion profiles of these clones were determined and compared to those of 21 CD3+, CD4+, CD8? clones with unknown specificity, established from these same subjects in the same cloning experiment. Almost all parasite-specific clones produced interleukin (IL)-4 and interferon (IFN)-γ in large amounts. However, they generally produced more IL-4 than IFN-γ; variations in IL-4/IFN-γ ratios were accounted for by differences in IFN-γ production since IL-4 levels were comparable for the clones from the three subjects. T cell clones of unknown specificity produced significantly less IL-4 and more IFN-γ than parasite-specific T cell clones. Most clones produced IL-2, and IL-2 production did not differ between the two types of clones. Parasite-specific T cell clones from the resistant subjects were compared to specific T cell clones from a sensitized adult from a nonendemic area: T cell clones from this latter subject were the highest IFN-γ and the lowest IL-4 producers, compared to those of resistant subjects. Thus, parasite-specific T cell clones isolated from adults resistant to S. mansoni belong to the Th0 subset and produced more IL-4 than IFN-γ (Th0/2), whereas clones of a sensitized adult from a nonendemic area are also Th0, but produce more IFN-γ than IL-4 (Th0/1). These results support previous conclusions on the role of IgE in protection against schistosomes in humans, and may indicate that IFN-γ is required for full protection.  相似文献   

4.
CD4+ T cell clones derived from lymphocytes infiltrating four human melanomas specifically recognized melanoma-derived tumor epitopes as shown by secretion of tumor necrosis factor (TNF) in vitro upon interaction with autologous melanoma cells, whereas they did not recognize HLA class II-expressing autologous lymphoblasts or HLA class II mismatched allogeneic melanoma cells. Specificity was further established by demonstrating that TNF responses to tumor cells were inhibited by HLA-DR or HLA-DQ monoclonal antibodies. Most of these clones cross-reacted with allogeneic melanoma cells expressing a potentially restricting HLA allele or a structurally similar one. These data show that shared epitopes of human melanoma cells presented on HLA class II molecules are frequently recognized by autologous CD4+ T lymphocytes.  相似文献   

5.
Flow cytometric analysis of human peripheral blood T lymphocytes demonstrated that the majority of the CD4+ cells were CD29+ or CD45RO+ “mature” cells while the CD8+ cells were primarily CD45RA+ “naive” cells. After an initial separation into CD4+ and CD8+ cells and a secondary separation into CD45 subsets, lymphokine secretion was assessed after phorbol 12-myristate 13-acetate and ionomycin or fixed anti-CD3 stimulation. Within the respective CD45 subsets, CD4+ cells produced more interleukin (IL)-2, IL-4, and IL-6; but the CD8+ cells secreted more interferon-γ and granulocyte/macrophage-colony-stimulating factor. Tumor necrosis factor-α secretion was similar in the matched CD45 subsets. Northern analysis revealed a parallel pattern of lymphokine mRNA expression in the four lymphocyte subsets. These results suggest that human CD8+ peripheral blood lymphocytes have a significant capacity to secrete lymphokines, and that the low lymphokine production observed in unseparated CD8+ cells reflects the higher percentage of less functional CD45RA+ cells.  相似文献   

6.
7.
The immune response to Leishmania major has been the subject of many investigations. However, Leishmania includes many species with different clinical manifestations. In this report, we studied the Tcell response to L. mexicana amazonensis, a New World species, in a murine model. We found that, similar to L. major, an Old World species, resistant C57BL/6 mice produced a high level of IFN-γ and a low level of IL-4. Conversely, susceptible BALB/c mice produced a much lower level of IFN-γ and higher level of IL-4. Although IFN-γ is one of the important lymphokines that mediate macrophage activation and thus the destruction of the intracellular parasites, which lymphocyte subsets are producing the IFN-γ is still a controversy. Much evidence including the isolation of protective, IFN-γ-producing, CD4+ cell lines have confirmed the participation of CD4+ Thl cells unequivocally. However, both CD4+ and CD8+ cells produced IFN-γ. Recently, an increasing body of evidence has appeared suggesting that CD8+ cells also play a role in the resolution of murine L. major infection. We found that in the L. m. amazonensis model, when CD8+ lymphocytes from resistant C57BL/6 mice were eliminated by anti-CD8 antibody and complement-mediated lysis, the IFN-γ production was reduced by 77%. This indicated that CD8+ cells produced a significant amount of the IFN-γ. However, our results also indicate that IFN-γ production by CD8+ cells was dependent on CD4+ cells.  相似文献   

8.
Fresh postnatal thymocyte cell suspensions were directly cloned under limiting dilution conditions with either phytohemagglutinin or toxic shock syndrome toxin-1 (TSST-1), a bacterial superantigen. Cultures contained allogenic irradiated feeder cells and interleukin (IL)-2, in the absence or presence of exogenous IL-4, interferon (IFN)-γ or IL-12. The resulting CD4+ T cell clones generated under these different experimental conditions were then analyzed for their ability to produce IL-2, IL-4, IL-5, IL-10, IFN-γ and tumor necrosis factor (TNF)-β in response to stimulation with phorbol 12-myristate 13-acetate (PMA)+anti-CD3 monoclonal antibody or PMA + ionomycin. Different from T cell clones generated from peripheral blood, virtually all CD4+ T cell clones generated from human thymocytes produced high concentrations of IL-2, IL-4 and IL-5, but no IFN-γ, TNF-β or IL-10. Moreover, after activation, these clones expressed on their surface membrane both CD30 and CD40 ligand, but not the product of lymphocyte activation gene (LAG)-3, and provided strong helper activity for IgE synthesis by allogeneic B cells. The Th2 cytokine pattern could not be modified by the addition of IFN-γ. However, upon addition of exogenous IL-12, the resulting CD4+ thymocyte clones produced TNF-β, IFN-γ, and IL-10 in addition to IL-4 and IL-5. These results suggest that CD4+ human thymocytes have the potential to develop into cells producing the Th2 cytokines IL-4 and IL-5, whereas the ability to produce both Th1 cytokines and IL-10 is acquired only after priming with IL-12.  相似文献   

9.
10.
A fraction of activated CD8+ T cells expresses CD40 ligand (CD40L), a molecule that plays a key role in T cell-dependent B cell stimulation. CD8+ T cell clones were examined for CD40L expression and for their capacity to allow the growth and differentiation of B cells, upon activation with immobilized anti-CD3. According to CD40L expression, CD8+ clones could be grouped into three subsets. CD8+ T cell clones expressing high levels of CD40L (≥80% CD40L+ cells) were equivalent to CD4+ T cell clones with regard to induction of tonsil B cell proliferation and immunoglobulin (Ig) production, provided the combination of interleukin (IL)-2 and IL-10 was added to cultures. CD8+ T cell clones, with intermediate levels of CD40L expression (10 to 30% CD40L+ cells), also stimulated B cell proliferation and Ig secretion with IL-2 and IL-10. B cell responses induced by these CD8+ T cell clones were neutralized by blocking monoclonal antibodies specific for either CD40L or CD40. By contrast, CD40L?? T cell clones (?5 % CD40L+ cells), only induced marginal B cell responses even with IL-2 and IL-10. All three clone types were able to activate B cells as shown by up-regulation of CD25, CD80 and CD86 expression. A neutralizing anti-CD40L antibody indicated that T cell-dependent B cell activation was only partly dependent on CD40-CD40L interaction. These CD40L?? clones had no inhibitory effects on B cell proliferation induced by CD40L-expressing CD8+ T cell clones. Taken together, these results indicate that CD8+ T cells can induce B cell growth and differentiation in a CD40L-CD40-dependent fashion.  相似文献   

11.
Ligation of CD28 provides a costimulatory signal to T cells necessary for their activation resulting in increased interleukin (IL)-2 production in vitro, but its role in IL-4 and other cytokine production and functional differentiation of T helper (Th) cells remains uncertain. We studied the pattern of cytokine production by highly purified human adult and neonatal CD4+ T cells activated with anti-CD3, phorbol 12-myristate 13-acetate (PMA) and ionomycin, or phytohemagglutinin (PHA) in the presence or absence of anti-CD28 in repetitive stimulation-rest cycles. Initial stimulation of CD4+ cells with anti-CD3 (or the mitogens PHA or PMA+ionomycin) and anti-CD28 monoclonal antibodies induced IL-4, IL-5 and interferon-γ (IFN-γ) production and augmented IL-2 production (6- to 11-fold) compared to cells stimulated with anti-CD3 or mitogen alone. The anti-CD28-induced cytokine production corresponded with augmented IL-4 and IL-5 mRNA levels suggesting increased gene expression and/or mRNA stabilization. Most striking, however, was the progressively enhanced IL-4 and IL-5 production and diminished IL-2 and IFN-γ production with repetitive consecutive cycles of CD28 stimulation. The enhanced Th2-like response correlated with an increased frequency of IL-4-secreting cells; up to 70% of the cells produced IL-4 on the third round of stimulation compared to only 5% after the first stimulation as determined by ELISPOT. CD28 activation also promoted a Th2 response in naive neonatal CD4+ cells, indicating that Th cells are induced to express a Th2 response rather than preferential expansion of already established Th2-type cells. This CD28-mediated response was IL-4 independent, since enhanced IL-5 production with repetitive stimulation cycles was not affected in the presence of neutralizing anti-IL-4 antibodies. These results indicate that CD28 activation may play an important role in the differentiation of the Th2 subset in humans.  相似文献   

12.
Interleukin (IL)-13 is a cytokine originally identified as a product of activated T cells. Little is known, however, about IL-13 production by human T cells and its modulation by other cytokines. Here, we show that IL-13 is produced by activated human CD4+ and CD8+ CD45R0+ memory T cells and CD4+ and CD8+ CD45RA+ naive T cells. In contrast, IL-4, which shares many biological activities with IL-13, is only produced by CD45R0+ T cells following activation. Analysis of intracellular cytokine production by single CD45RA+ and CD45R0+ T cells indicated that IL-13 continued to be produced for more than 24 h after stimulation, whereas IL-4 could not be detected after 24 h. These data were confirmed by measurement of specific mRNA and suggest that IL-13, unlike IL-4, but like interferon-γ (IFN-γ), is a cytokine with long-lasting kinetics. The majority of human CD45R0+ T cells produced IL-4 and IL-13 simultaneously. In contrast, IFN-γ protein was generally not co-expressed with IL-4 or IL-13. IL-4 added to primary cultures of highly purified peripheral blood T cells activated by the combination of anti-CD3+anti-CD28 mAb enhanced IL-13 production by CD45RA+ and to a lesser extent by CD45R0+ T cells. Under these conditions, however, IL-12 inhibited IL-13 production by CD45RA+ T cells and to a lesser extent by CD45R0+ T cells in a dose-dependent fashion. These inhibiting effects were not related to enhanced IFN-γ production induced by IL-12, since IFN-γ by itself did not affect IL-13 production. Collectively, our data indicate that IL-13 is produced by peripheral blood T cells which also produce IL-4, but not IFN-γ, and by naive CD45RA+ T cells which, in contrast, fail to produce IL-4. These observations, together with the long-lasting production of IL-13, suggest that IL-13 may have IL-4-like functions in situations where T cell-derived IL-4 is still absent or where its production has already been down-regulated.  相似文献   

13.
Human Toxoplasma gondii (Tg)-specific T cell clones were raised by infecting peripheral blood mononuclear cells (MNC) from two healthy, latently infected individuals with Tg trophozoites. All of the clones had a CD4+ immunophenotype and produced simultaneously interleukin (IL)-2, interferon (IFN)-γ, IL-4 and IL-5 upon mitogen or antigen stimulation. Tg-specific T cell clones were classified as T helper of type 0 (ThO) since most of them released roughly comparable amounts of IFN-γ and IL-4. In some clones, a trend to an increased production of IFN-γ following antigen-specific as compared to non-specific stimulation was observed. The ThO phenotype was also expressed by T cell clones that had been raised from bulk cultures performed in the presence of IL-4 or IFN-γ. All of the Tg-specific T cell clones were cytolytic in a non-specific assay which involves the triggering of the CD3-T cell receptor (TcR) complex. Some clones specifically lysed an autologous lymphoblastoid cell line (LCL) that had been infected with Tg trophozoites. Finally, most of the Tg-specific T cell clones produced IL-10, irrespective of whether they had been raised from bulk cultures incubated in the presence or absence of IL-4 or IFN-γ. Taken together, these findings suggest that Tg-specific ThO helper cell clones from healthy, latently infected individuals, beside activating toxoplasmacidal mechanisms through IFN-γ release, might limit the magnitude of the immune response to the parasite by killing Tg-infected antigen-presenting cells and by releasing IL-10.  相似文献   

14.
Development of distinct CD4+ T cell cytokine phenotypes may be conditioned by the anatomic site in which activation occurs. A double-label in situ hybridization technique was used to characterize co-expression of cytokine mRNA in antigen-specific responses of Peyer's patch (PP), lamina propria (LP), and splenic (SP) CD4+ T cells isolated from αβ T cell receptor-transgenic mice. Interleukin (IL)-2 was the dominant cytokine expressed by antigen-stimulated PP and SP populations, though it was expressed by a minority of the activated T cells. Cells that expressed interferon (IFN)-γ were less frequent, and IL-4, IL-5, and IL-10 were infrequent. In contrast, cells that expressed IFN-γ or IL-10 were most frequent in the LP population, with lower frequencies of IL-2, and few IL-4- and IL-5-positive cells. Co-expression of two cytokines by the same cell was the exception, regardless of the anatomic site from which the T cells were isolated. The surface phenotype of transgene-positive T cells isolated from each anatomic site was distinct, despite the absence of in vivo exposure to antigen for which the transgenic T cell receptor is specific. These data suggest that the cytokine responses of CD4+ T cells may be conditioned by the microenvironment, independently of specific antigen, and that the LP CD4+ T population has a distinct cytokine expression pattern with counter-regulatory properties that may be important for homeostasis in mucosal immune tissues.  相似文献   

15.
There is a growing body of evidence which suggests that CD8+ T cells play an important part in regulating the IgE response to non-replicating antigens. In this study we have systematically investigated their role in the regulation of IgE and of CD4+ T cell responses to ovalbumin (OVA) by CD8+ T cell depletion in vivo. Following intraperitoneal immunization with alum-precipitated OVA, OVA-specific T cell responses were detected in the spleen and depletion of CD8+ T cells in vitro significantly enhanced the proliferative response to OVA. Depletion of CD8+ T cells in vivo 7 days after immunization failed to enhance IgE production, while depletion of CD8+ T cells on days 12–18 greatly enhanced the IgE response, which rose to 26 μ/ml following a second injection of anti-CD8 on day 35 and remained in excess of 1 μ/ml over 300 days afterwards. Reconstitution on day 21 of rats CD8-depleted on day 12 with purified CD8+ T cells from animals immunized on day 12 completely inhib ited the IgE response. This effect was antigen specific; CD8+ T cells from OVA-primed animals had little effect on the IgE response of bovine serum albumin immunized rats. In vivo, CD8+ T cell depletion decreased interferon (IFN)-γ production but enhanced interleukin (IL)-4 production by OVA-stimulated splenic CD4+ T cells. Furthermore, CD8+ T cell depletion and addition of anti-IFN-γ antibody enhanced IgE production in vitro in an IL-4-supplemented mixed lymphocyte reaction. These data clearly show that antigen-specific CD8+ T cells inhibit IgE in the immune response to non-replicating antigens. The data indicate two possible mechanisms: first, CD8+ T cells have direct inhibitory effects on switching to IgE in B cells and second, they inhibit OVA-specific IL-4 production but enhance IFN-γ production by CD4+ T cells.  相似文献   

16.
Abstract

Two pathways for the activation of lymphokine synthesis in murine T cell clones and polyclonal T cell blast populations were identified. One was induced by ligands of the T cell receptor (TCR) and led to high production of GM-CSF, IFN-γ, and IL-3. The other was induced by IL-2 and led to production of lower levels of GM-CSF and IFN-γ with relatively little IL-3 synthesis. Cyclosporin A (CsA) markedly inhibited TCR-independent production of lymphokine mRNA and protein at concentrations where IL-2-dependent stimulation of lymphokine production and proliferation was unaffected. Stimulation of lymphokine synthesis by phorbol myristate acetate (PMA) and the Ca2+ ionophore ionomycin, or by ionomycin alone, mimicked the TCR-dependent response. PMA on its own was a preferential stimulus for GM-CSF production, but, whereas CsA did not inhibit PMA stimulation of polyclonal T cell blasts, T cell clones displayed a biphasic response in which CsA only inhibited stimulation by high PMA concentrations. The data suggest that Ca2+-independent (CsA-resistant) T cell activation induces synthesis of GM-CSF and IFN-γ but is a poor stimulus for IL-3 production. On the other hand, when Ca2+-dependent (CsA-sensitive) pathways are activated by TCR binding or by a Ca2+ ionophore, production of high levels of all three lymphokines can be induced.  相似文献   

17.
The role of human T cells in the induction and regulation, upon cell/cell contact, of inflammatory responses by monocytic cells was investigated. The production of interleukin (IL)-1β and IL-1 receptor antagonist (IL-1Ra) by the monocytic THP-1 cell line was measured upon contact with either Th1 or Th2 cell clones. CD4+ T cell clones specific for purified protein derivative of Mycobacterium tuberculosis, predominantly Th1 [high interferon (IFN)-γ and low IL-4 producers], or tetanus toxoid, predominantly Th2 (low IFN-γ and high IL-4 producers), were generated. Cell membranes from antigen-stimulated, but not from resting T cell clones induced dose-dependent cytokine production by THP-1 cells. Th1 clones induced higher levels of IL-1β production (484–806 pg/ml) than did Th2 clones (21–114 pg/ml). In contrast, Th1 clones induced lower levels of IL-1Ra (0.9–7.8 ng/ml) than did Th2 clones (7.0–49.6 ng/ml). Similar results were obtained when T cell clones were activated by cross-linked CD3 and CD28. IL-1β production by THP-1 cells correlated with IFN-γ production by T cell clones but was unaffected by IFN-γ neutralization. IL-1Ra production by THP-1 cells correlated with IL-4 production by T cells and was partially inhibited by IL-4 neutralization. These data indicate that activated Th1 and Th2 cells express different molecules on the cell surface able to induce distinct pro-inflammatory (IL-1β) or anti-inflammatory (IL-1Ra) responses in monocytes. This differential induction of molecules with opposite effects on inflammation stresses the functional heterogeneity in CD4+ T cells.  相似文献   

18.
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-γ (IFN-γ) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-γ dependent. Treatment of resistant C57BL/6 mice with anti-IFN-γ allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in Vβ8, 7, 2? CD4+ cells in BALB/c mice and NK1.1? CD4+ cells in anti-IFN-γ treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.  相似文献   

19.
We have measured by flow cytometry the ability of subsets of CD8+ CD3+ lymphocytes within mononuclear cell preparations to make intracellular cytokines (IL-2, tumour necrosis factor-alpha (TNF-α) and IFN-γ) on stimulation in vitro with phorbol myristate acetate (PMA) and ionomycin for 16 h. These CD8+ subsets were defined by the presence or absence of CD28 or HLA-DR. Subsets of normal CD8+ cells were compared with cells from the antibody deficiency disease common variable immunodeficiency (CVID). In CVID there was a significant increase in the production of IFN-γ in the CD8+ CD28+ subset (‘cytotoxic’). This reflects a shift in this disease towards an excessive Th1 response away from B cell help. Paradoxically, some CVID patients also showed a reduction in IFN-γ production in the CD8+ CD28? subset (‘suppressor’) which was associated with a failure of these cells to maintain a state of activation after a stimulus in vitro. The B cell problem in this disease is known to be related to a failure of T cell help shown by an inability to produce the antigen-specific CD4+ memory T cells needed for successful B cell maturation. The two pathological CD28 subsets of CD8+ cells we have found in CVID may both be detrimental to a normal CD4-dependent immune response. The CD28? suppressor subset expands and is unable to maintain activation and cytokine secretion, and the CD28+ cytotoxic subset is over-producing the Th1 cytokine IFN-γ.  相似文献   

20.
An antibody reactive with CD38 revealed both phenotypic and functional heterogeneity amongst CD45RBlow cells. Functional analysis of the CD38+ and CD38 fractions showed that the latter contained T cells which responded to recall antigens and produced high levels of cytokine in response to polyclonal stimulation. In contrast, the CD38+ population failed to proliferate or to produce detectable levels of cytokines. Despite appearing unresponsive, the CD38+ population significantly inhibited anti-CD3-induced proliferation and cytokine secretion by the reciprocal CD38 population. Immune suppression required stimulation through the TCR and was dependent on a physical interaction between regulatory and responding CD4+ populations. It did not involve killing of the responding T cells or secretion of IL-10 or TGF-β. Despite some similarities there is no direct correlation between the in vitro suppression characteristic of the CD38+ CD45RBlow subset and in vivo suppression which has been shown to be mediated by unseparated CD45RBlow CD4+ T cells. However, these results demonstrate that two functionally distinct subsets of T cells reside within the antigen-exposed or CD45RBlow CD4+ T cell population and are thus generated in vivo: (1) conventional memory T cells which proliferate and secrete cytokines in response to activation and (2) a population of regulatory T cells which inhibit T cell activation in vitro. Antibodies reactive with CD38 may provide a useful tool with which to study the role of these T cell subsets in the induction and regulation of the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号