首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus (31P) T1 and T2 relaxation times in the resting human calf muscle were assessed by interleaved, surface coil localized inversion recovery and frequency‐selective spin‐echo at 3 and 7 T. The obtained T1 (mean ± SD) decreased significantly (P < 0.05) from 3 to 7 T for phosphomonoesters (PME) (8.1 ± 1.7 s to 3.1 ± 0.9 s), phosphodiesters (PDE) (8.6 ± 1.2 s to 6.0 ± 1.1 s), phosphocreatine (PCr) (6.7 ± 0.4 s to 4.0 ± 0.2 s), γ‐NTP (nucleotide triphosphate) (5.5 ± 0.4 s to 3.3 ± 0.2 s), α‐NTP (3.4 ± 0.3 s to 1.8 ± 0.1 s), and β‐NTP (3.9 ± 0.4 s to 1.8 ± 0.1 s), but not for inorganic phosphate (Pi) (6.9 ± 0.6 s to 6.3 ± 1.0 s). The decrease in T2 was significant for Pi (153 ± 9 ms to 109 ± 17 ms), PDE (414 ± 128 ms to 314 ± 35 ms), PCr (354 ± 16 ms to 217 ± 14 ms), and γ‐NTP (61.9 ± 8.6 ms to 29.0 ± 3.3 ms). This decrease in T1 with increasing field strength of up to 62% can be explained by the increasing influence of chemical shift anisotropy on relaxation mechanisms and may allow shorter measurements at higher field strengths or up to 62% additional signal‐to‐noise ratio (SNR) per unit time. The fully relaxed SNR increased by +96%, while the linewidth increased from 6.5 ± 1.2 Hz to 11.2 ± 1.9 Hz or +72%. At 7 T 31P‐MRS in the human calf muscle offers more than twice as much SNR per unit time in reduced measurement time compared to 3 T. This will facilitate in vivo 31P‐MRS of the human muscle at 7 T. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.

Purpose

To investigate high‐energy phosphate metabolism in striated skeletal muscle of patients with Maternally Inherited Diabetes and Deafness (MIDD) syndrome.

Materials and Methods

In 11 patients with the MIDD mutation (six with diabetes mellitus [DM] and five non‐DM) and eight healthy subjects, phosphocreatine (PCr) and inorganic phosphate (Pi) in the vastus medialis muscle was measured immediately after exercise using 31P‐magnetic resonance spectroscopy (MRS). The half‐time of recovery (t1/2) of monoexponentially fitted (PCr+Pi)/PCr was calculated from spectra obtained every 4 seconds after cessation of exercise. A multiple linear regression model was used for statistical analysis.

Results

Patients with the MIDD mutation showed a significantly prolonged t1/2 (PCr+Pi)/PCr after exercise as compared to controls (13.6±3.0 vs. 8.7±1.3 sec, P = 0.01). No association between the presence of DM and t1/2 (PCr + Pi)/PCr was found (P = 0.382).

Conclusion

MIDD patients showed impaired mitochondrial oxidative phosphorylation in skeletal muscle shortly after exercise, irrespective of the presence of DM. J. Magn. Reson. Imaging 2009;29:127–131. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Absolute metabolite concentrations were determined in four different brain regions using phosphorus magnetic resonance spectroscopy (31P MRS) on 10 healthy adult volunteers. Localized spectra were collected simultaneously from the cerebellum and the cerebrum and, later, from deep white matter and cortical gray matter by means of a two-volume lSlS pulse sequence and a Helmholtz-type RF-coil. Each brain spectrum was quantified with a calibration spectrum from a head-shaped simulation phantom. A time-domain fitting routine was used to process the fully relaxed data. Several metabolite concentrations (mmolAiter) differed significantly between the cerebrum and the cerebellum (PME = 3.2 f 0.3 and 4.0 & 0.6, PC:r = 2.9 & 0.3 and 3.9 f 0.4, NTP = 2.9 f 0.2 and 2.6 & 0.2, respectively) and between cortical gray matter and deep white matter (PME = 3.1 f 0.4 and 4.3 ± 0.8, PDE = 10.1 f 2.5 and 14.2 & 2.6, respectively). The concentration of free magnesium ion was found to be similar in all four brain regions (0.53 ± 0.21 mmol/liter) but the intracellular pH was significantly higher in the cerebellum (7.04 ± 0.03) than in the cerebrum (6.99 ± 0.02).  相似文献   

4.
Cerebral apparent diffusion coefficients {ADCs) were determined in nine newborn piglets before and for 48 h after transient hypoxia-ischemia. Phosphorus MRS revealed severely reduced cerebral energy metabolism during the insult and an apparently complete recovery 2 h after resuscitation commenced. At this time, mean ADC over the imaging slice (ADCglobal) was 0.88 (0.04) × 10? 9 m2 · s? 1 (mean (SD}), which was close to the baseline value of 0.92 (0.4) × 10? 9 m2 · s? 1. In seven of the animals, a “secondary” failure of energy metabolism then evolved, accompanied by a decline in ADCglobal to 0.64 (0.17) × 10? 9 m2 · s? 1 at 46 h postresuscitation (P < 0.001 versus baseline). For these seven animals, ADCglobal correlated linearly with the concentration ratio [phosphocreatine (PCr)][inorganic phosphate (Pi)] (0.94 r < 0.99; P > 0.001). A nonlinear relationship was demonstrated between ADCglobal, and the concentration ratio [nucleotide triphosphate (NTP)]/ [Pi + PCr + 3 NTP]. The ADC reduction commenced in the parasagittal cortex before spreading in a characteristic pattern throughout the brain. ADC seems to be closely related to cerebral energy status and shows considerable potential for the assessment of hypoxic-ischemic injury in the newborn brain.  相似文献   

5.
The creatine kinase reaction has been studied by 31P NMR in exercising human calf muscle. Quantitative analysis of high energy phosphates and saturation transfer study of the creatine kinase flux in the direction of ATP synthesis (Vfor) were performed at rest and during exercise. As expected, exercise induced a [PCr] decrease (from 28.5 ± 0.9 to 21.9 ± 1.5 mM, P < 0.01) matched by a P1, increase (from 4.5 ± 0.2 to 8.9 ± 1.8 mM,P = 0.06). pHi and [ATP] remained unchanged. Vfor did not change from rest (12.4 ± 0.9 mM s?1) to moderate exercise and decreased at the highest exercise level (8.4 ± 1.4 mM s?1, P = 0.006). This observation differs from the prediction of the creatine kinase rate equation, showing an increase in the flux with exercise intensity. Computations suggest that this discrepancy arises from metabolite compartmentalization and/or from the reaction kinetics of a dead end complex stabilized by planar anions.  相似文献   

6.
PURPOSE: The purpose of this study was to measure noninvasively the absolute concentrations of muscle adenosine triphosphate [ATP], phosphocreatine [PCr], inorganic phosphate (Pi), and glycogen [Gly] of elite soccer players. METHODS: Magnetic resonance spectroscopy (31P- and 13C-MRS) was used to measure the concentrations of metabolites in the calf muscles of 18 young male players [age = 17.5 +/- 1.0 (SD) yr]. RESULTS: Average muscle [PCr] and [ATP] were 17.8 +/- 3.3 and 6.0 +/- 1.2 mmol x (kg wet weight)(-1), respectively. The ratios of Pi/PCr and PCr/ATP were 0.15 +/- 0.05 and 3.00 +/- 0.26, respectively. The muscle [Gly] was 144 +/- 54 mmol x (kg wet weight)(-1). There was a high correlation (r = 0.93, P < 0.0001) between muscle ATP and PCr concentrations, but there was no correlation between [Gly] and [PCr] or [ATP]. The concentrations of the different metabolites determined in the present study with noninvasive MRS methods were within the ranges of values reported in human muscle from biochemical analysis of muscle biopsies. CONCLUSION: MRS methods can be utilized to assess noninvasively the muscle energetic status of elite soccer players during a soccer season. The high correlation between ATP and PCr might be indicative of fiber type differences in the content of these two metabolites.  相似文献   

7.
Nuclear Overhauser effect (NOE) enhancements and relaxation times of 31P metabolites in human calf were measured in 12 volunteers (4 men and 8 women) at 1.5 T using a dual tuned four-ring birdcage. The NOE enhancements of inorganic phosphate (P1), phosphocreatine (PCr), γ-, α-, and β-nucleoside triphosphate (NTP) from 19 measurements were 0.51 ± 0.10, 0.64 ± 0.03, 0.53 ± 0.03, 0.56 ± 0.08, and 0.47 ± 0.05, respectively. The relaxation times were independent of proton irradiation and from 23 measurements were 3.49 ± 0.35, 4.97 ± 0.58, 4.07 ± 0.36, 2.90 ± 0.25, and 3.61 ± 0.25 s for P1, PCr, γ-, α-, and β-NTP, respectively. No significant differences between gender and age were observed for either NOE enhancements or relaxation times. Also, among nine volunteers, we observed no significant differences in T1 between the coupled and decoupled cases.  相似文献   

8.
Purpose During [90Y]DOTATOC therapy, for determination of kidney doses a conventional approach using co-injected [111In]DOTATOC was evaluated for validity, reliability and reproducibility as well as for the influence of methodological variations and bremsstrahlung. Biologically effective doses were estimated by calculating the relative effectiveness (RE) of kidney doses.Methods Fractionated [90Y]DOTATOC therapy (n=20 patients, 3.1±0.7 GBq/therapy cycle, 45 therapy cycles) included co-injection of 157±37 MBq [111In]DOTATOC and a nephroprotective infusion regimen. From serial gamma camera/probe measurements, individual region of interest (ROI) sets were established and kidney doses were determined according to MIRDOSE3 (corrected for individual kidney mass) by use of three methodological variants: (1) correction for interfering organs (liver/spleen) and background activity, (2) correction for interfering organs alone and (3) no corrections. A phantom study was performed with 111 In alone and with 111In +90Y to estimate the influence of 90Y bremsstrahlung.Results Mean kidney dose (method 1, n=20 patients, 20 therapy cycles) was 1.51±0.60 Gy/GBq [90Y]DOTATOC (1.41±0.48 Gy/GBq for n=20 patients, 45 therapy cycles). With partial correction (method 2) or no correction (method 3) for interfering activity, kidney doses increased significantly, to 2.71±1.26 Gy/GBq and 3.15±1.22 Gy/GBq, respectively. The span of REs ranged from 1.02 to 1.24. Inter-observer variability was as high as ±32% (±2SD). 90Y bremsstrahlung accounted for a 4–11% underestimation of obtained target activity.Conclusion The obtained kidney doses are highly influenced by methodological variations. Full correction for interfering activity clearly underestimates kidney doses. By comparison, 90Y bremsstrahlung and variability in the relative effectiveness of kidney doses cause minor bias. Inter-observer variability must be considered when interpreting kidney doses.  相似文献   

9.
The intrinsic phosphocreatine (PCr) T1 values measured by time-dependent magnetization transfer in isolated perfused rat, hamster, and turkey hearts were indistinguishable. The value of 3.5 ± 0.3 s for the rat heart is similar to values measured by other magnetization transfer methods. Irreversibly inhibiting the phosphoryl exchange between PCr and ATP in the rat heart using iodoacetamide changed the apparent T1 values of the two exchanging species when measured by inversion recovery: The apparent T1 of PCr increased from 1.92 ± 0.06 s to 3.55 ± 0.06 s, in excellent agreement with the intrinsic T1, measured by magnetization transfer. The apparent T1 of [γ-P]ATP decreased from 0.92 ± 0.07 s to 0.44 ± 0.03 s. The value for the T1 of [γ-P]ATP in hearts with inhibited phosphoryl exchange was similar to T1 values for [α-P]ATP and [β-P]ATP, which remained unchanged. This illustrates that apparent T1 values for PCr and [γ-P]ATP measured by inversion recovery in the presence of exchange are average T1 values in between the intrinsic values. The large differences between the intrinsic T1 measured by magnetization transfer and the T1 measured by inversion recovery makes the use of the appropriate value in different applications quantitatively important.  相似文献   

10.
In the conclusion of this series of reports, the application of 31P/2H NMR to investigate the pathophysiology of sepsis in rat hindlimb muscle is demonstrated. Sepsis decreased muscle [PCr] by 18%, 18 +/- 4 SD vs 22 +/- 4 SD mmol/kg tissue wet wt (P = 0.01) in control rats but [ATP] was unchanged, 6 mmol/kg tissue wet wt (P = 0.2). The derived free cytosolic [ADP] in the two groups was similar, [ADP]septic = 0.023 +/- 0.004 SD and [ADP]control = 0.021 +/- 0.003 SD mmol/kg tissue wet wt, and not statistically different (P = 0.14). Likewise [Pi] in the septic and control groups was not statistically different, [Pi]septic = 1.1 +/- 0.5 SD and [Pi]control = 1.2 +/- 0.4 SD mmol/kg tissue wet wt (P = 0.2). Septic rats presented the symptom of respiratory alkalosis evidenced by elevated blood pH. Sepsis decreased muscle blood flow by 33%, P = 0.003, but examination of individual subjects did not demonstrate a correlation with the reduction in [PCr]. Thus, a metabolic energy deficit caused by cellular ischemia/hypoxia is not a likely cause of cellular abnormality in rat hindlimb muscle during sepsis.  相似文献   

11.
The effects of various fast spin-echo (FSE) magnetic resonance (MR) imaging parameters and artifact reduction techniques on FSE image contrast and quality were studied. The authors performed 139 abdominal MR examinations, comparing standard FSE images (echo train length [ETL] = 8, echo space [E-space] = 17 msec, bandwidth = ±16-kHz) with FSE images with an ETL of 16 (n = 22) or FSE images with a ±32-kHz bandwidth and an E-space of 11-14 msec (n = 22). FSE artifact reduction techniques were evaluated with spectral fat saturation (n = 40) or with a new flow compensation FSE sequence (n = 55). Images of liver lesions were reviewed qualitatively and with contrast-to-noise ratio (C/N) measurements. Decreasing the time of echo train sampling produced superior image quality, with increased anatomic sharpness, less image artifact, and improved liver-lesion C/N. Images obtained with an ETL of 16 showed more image blurring and a 23% decrease in relative contrast and 28% decrease in relative C/N for liver tumors. Increasing the bandwidth reduced E-space, producing a 12% decrease in background noise. Artifact reduction with fat saturation or flow compensation produced images with less ghosting artifact and superior overall image quality, with 39% and 20% increases in liver-tumor C/N, respectively. FSE image quality and contrast in the depiction of hepatic disease can be optimized with careful selection of imaging parameters and the use of artifact reduction techniques.  相似文献   

12.
The principal aim of these studies was to evaluate the utility of isoflurane and halothane for NMR investigations of tumor physiology. In vivo 31P and 2H NMR were used to examine RIF-1 tumors before, during, and (for 31P) after anesthesia. In tumors, halothane decreases blood flow, [PCR]:[NTP], and pH indicated by the P1 chemical shift (pHnmr), while it increases [P1:[NTP]; effects consistent with well-established cardiovascular effects of halothane. Isoflurane does not affect tumor blood flow or [PCr]:[NTP], but increases tumor [P1:[NTP] and decreases tumor pHnmr. In vivo 31P NMR measurements of normal mouse liver (upper abdomen) indicate that isoflurane has a similar effect in the liver. Although the mechanism for these effects is unknown, observation of a split P1 peak during isoflurane anesthesia suggests that a pool of P1 in a lower pH environment may become evident under isoflurane anesthesia. Regardless of the cause for increased [P1:[NTP] and decreased pHnmr the utility of isoflurane anesthesia for 31P NMR studies of energy metabolism is limited.  相似文献   

13.
31P spin-lattice relaxation times (T1) of metabolites in rat calf muscle at 1.9 Tesla and the forward rate through the creatine kinase (CK) reaction have been measured using a new method based on modeling progressive saturation explicitly incorporating the effect of chemical exchange. In a separate series of experiments, we compared our method with inversion recovery both in vitro and in vivo, finding agreement between the techniques. We found that the T1 values of phosphocreatine (PCr) (6.6 ± 0.3 s), γ-ATP (2.6 ± 0.6 s), α-ATP (2.4 ± 0.4 s) and β-ATP (2.2 ± 0.2 s) are unchanged by stimulation of sufficient intensity to induce a 32% drop in PCr level. The errors in T1 values which arise when chemical exchange is neglected are calculated. These are found to be on the order of 20% for PCr and 30–50% for γ-ATP under typical conditions. Use of longer repetition times results in larger errors in measured values of T1. This source of error can be effectively eliminated by use of sufficiently short repetition times. We found that the rate constant of the forward CK reaction was increased 60% by stimulation, from 0.20 ± 0.03 s−1 to 0.32 ± 0.03 s−1, but that the phosphorus flux did not change.  相似文献   

14.
After injection of Gd-EOB-DTPA, T1 and T2 were determined on a clinical MR scanner (1.5 T) in the liver and kidneys of sacrificed but intact guinea pigs with normal and obstructed biliary systems and in bile, urine, and blood collected postmortem. Tissue [Gd] was determined by radioassay of 153Gd and relaxivities (R1 and R2; units of s?1·mmol?1·kg) of Gd-EOB-DTPA calculated. Compared with R1 in 2% agarose gel (4.49 ± 0.03), in normal animals R1 was increased in liver (9.3 ± 0.5), similar in kidney cortex (4.1 ± 0.5), but reduced in kidney medulla (2.5 ± 0.4) and papilla (2.7 ± 0.4). Chronic biliary obstruction did not change R1 in liver (9.7 ± 4.3) but reduced R1 further in kidney tissues (1.0–0.4). In normal animals, R2 values of all tissues (9.5–18.4) were greater than R2 in gel (5.72 ± 0.12). Biliary obstruction possibly elevated R2 in liver (40.1 ± 63.5), severely depressed R2 in kidney cortex (?4.2 ± 6.2) and medulla (?2.3 ± 5.4), and reduced R2 in papilla (5.4 ± 4.6). Obstruction had little effect on R1 and R2 in bile and urine. Water content, macromolecular binding, microviscosity, compartmentalization, and susceptibility effects can readily account for the R1 and R2 observed in liver and kidney. Negative R2 could be a result of several factors, including reduced endogenous magnetic field gradients due to “susceptibility matching” as [Gd] increased, changes in tissue T2 with period of ligation, or a physiological effect of EOB-DTPA. These results show that disease can alter both R1 and R2 from their values in normal tissues.  相似文献   

15.
Phosphorus metabolite ratios were measured using 31P magnetic resonance spectroscopy shortly before measurement of cell survival and radiobiologic hypoxic fraction (HF) in EMT6/SF tumors, transplanted into a hindlimb of Balb/c mice. A total of 58 tumors with a volume range of 180 to 1250 mm3 were examined in experiments entailing no anesthesia. Postirradiation tumor cell viability was measured using an in vitro clonogenic assay. Correlations between tumor volume, surviving fraction (SF), HF, phosphorus metabolite ratios, and intracellular pH were computed. Both SF and HF increased significantly with tumor volume as did the metabolite ratios of inorganic phosphorus and phosphomonoesters to nucleoside triphosphates (Pi/NTP and PME/NTP, respectively), as well as Pi to phosphocreatine (Pi/PCr). In comparison to HF, the ratios of Pi/NTP, Pi/PCr, and PME/NTP each yielded significant positive correlations (Kendall correlation coefficients(tau) = 0.25 to 0.33). However, these were not significantly stronger than the correlation between HF and volume (tau = 0.21). Apparent values of tumor pH did not correlate with any other measured parameter. While these results indicate a statistical relationship between HF and the measured metabolite ratios, the widely scattered data, as reflected by magnitude of tau less than 0.35, made metabolite ratios poor predictors of HF in individual tumors.  相似文献   

16.
Purpose Hypoxia is an important negative prognostic factor for radiation treatment of head and neck cancer. This study was performed to evaluate the feasibility of use of 18F-labelled fluoroazomycin arabinoside ([18F]FAZA) for clinical PET imaging of tumour hypoxia. Methods Eleven patients (age 59.6 ± 9 years) with untreated advanced head and neck cancer were included. After injection of approximately 300 MBq of [18F]FAZA, a dynamic sequence up to 60 min was acquired on an ECAT HR+ PET scanner. In addition, approximately 2 and 4 h p.i., static whole-body PET (n = 5) or PET/CT (n = 6) imaging was performed. PET data were reconstructed iteratively (OSEM) and fused with CT images (either an external CT or the CT of integrated PET/CT). Standardised uptake values (SUVs) and tumour-to-muscle (T/M) ratios were calculated in tumour and normal tissues. Also, the tumour volume displaying a T/M ratio >1.5 was determined. Results Within the first 60 min of the dynamic sequence, the T/M ratio generally decreased, while generally increasing at later time points. At 2 h p.i., the tumour SUVmax and SUVmean were found to be 2.3 ± 0.5 (range 1.5–3.4) and 1.4 ± 0.3 (range 1.0–2.1), respectively. The mean T/M ratio at 2 h p.i. was 2.0 ± 0.3 (range 1.6–2.4). The tumour volume displaying a T/M ratio above 1.5 was highly variable. At 2 h p.i., [18F]FAZA organ distribution was determined as follows: kidney > gallbladder > liver > tumour > muscle > bone > brain > lung. Conclusion [18F]FAZA PET imaging appears feasible in head and neck cancer patients, and the achieved image quality is adequate for clinical purposes. Based on our initial results, [18F]FAZA warrants further evaluation as a hypoxia PET tracer for imaging of cancer.  相似文献   

17.
Alternate methods to quantify mitochondrial activity or function have been extensively used for studying insulin resistance and type 2 diabetes mellitus, namely saturation transfer and phosphocreatine (PCr) recovery. As these methods are in fact determining different parameters, this study aimed to compare saturation transfer results to PCr recovery measurements within the same group. Fifteen subjects underwent saturation transfer and ischemic exercise‐recovery experiments. PCr decrease during ischemia (Q), induced by cuff inflation, served as an additional measure of resting ATP (adenosine triphosphate) production. ATP synthetic rate (fATP) measured by saturation transfer (0.234 ± 0.043 mM/s) was greater than (Q = 0.0077 ± 0.0011 mM/s), but correlated well with Q (r = 0.63 P = 0.013). Parameters of PCr recovery correlated well with fATP (Qmax,lin: r = 0.71, P = 0.003, Qmax,ADP: r = 0.66, P = 0.007) and Q (Qmax,lin: r = 0.92, P = 0.000002, Qmax,ADP: r = 0.76, P = 0.001). In conclusion, although saturation transfer yields higher ATP synthetic rates than PCr decrease during ischemia, their significant correlation indicates that fATP can be used as a marker of mitochondrial activity. The finding that both Q and fATP correlate with PCr recovery kinetics suggests that skeletal muscle with greater maximal aerobic ATP synthetic rates is also metabolically more active at rest. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
An improved production procedure and formulation method for the carbon-11 radiolabeled phytohormone, 3-indolyl-[l-11C]acetic acid ([11C]IAA), was developed by modifying selected original reaction parameters. This updated procedure both doubled the yield (from 25.9±6.7% (n=12) to 61.0±0.3% (n=10)) and increased the concentration (0.2–0.4 GBq/0.15–0.3 mL), enabling us to provide the radiotracer [11C]IAA suitable for in vivo phyto-PET-imaging studies. The specific activity was improved by more than a factor of three (26.7±5.6 GBq/µmol to 82.5±36.1 GBq/µmol). The total synthesis time for both production and formulation was 81.8±3.0 min (n=10). In addition, a streamlined semi-remote controlled production system, containing five processing modules, was designed and built for routine [11C]IAA production. This integrated system facilitated routine high radiation level production of [11C]IAA while minimizing radiation exposure to the production chemists.  相似文献   

19.
Slackline training (balancing on nylon ribbons) has been shown to improve neuromuscular performance in children and adults. Comparable studies in seniors are lacking. Thus, 32 seniors were randomly assigned [strata: age, gender, physical activity (PA)] to an intervention [INT; n = 16, age: 65 ± 4 years, PA: 9 ± 5 h/week] or control [CON, n = 16, age: 63 ± 4 years, PA: 8 ± 4 h/week] group. Slackline training was given for 6 weeks (3 times per week, attendance 97%). Static and slackline standing balance performance, force development, and maximal strength of the ankle muscles were assessed before and after slackline training. Muscle activity (lower limb and trunk) was recorded during balance testing. Moderate to large group × time interactions (0.02 < P < 0.04, 0.11 < ηp2 < 0.17) in favor of INT were found for slackline standing times (INT: left, +278%, P = 0.02; right, +328%, P = 0.03; tandem, +94%, P = 0.007) and muscle activity during single‐limb slackline standing [INT: right: rectus abdominis (RA), P = 0.003, ?15%; multifidus (MF), P = 0.01, ?15%; left: tibialis anterior (TIB), P = 0.03, ?12%; soleus (SOL), P = 0.006, ?18%; RA, P = 0.04, ?11%; MF, P = 0.01, ?16%; gastrocnemius medialis (GM), P = 0.02, ?19%]. Static balance performance, ankle strength, and power were not affected. Slackline training induced large task‐specific improvements of slackline standing performance accompanied with reductions of lower limb and trunk muscle activity. Transfer effects to static balance and strength measures seem limited.  相似文献   

20.
Although both aging and hypertrophy are extremely important factors for cardiac performance, their influence on cardiac metabolism, especially that of high-energy phosphates, has not been fully elucidated as yet. Quantitative measurements of high-energy phosphates were attempted by comparing myocardial 31P NMR spectra with an external reference using depth-resolved surface-coil spectroscopy. The voxel size of the region of interest (ROI) was disk-shaped with 15-cm diameter and 25-mm thickness, but the left ventricular weight actually involved in the ROI was estimated to be between 22 and 66 g using MRI. Myocardial phosphocreatine (PCr) content and adenosine triphosphate (ATP) content for the 30 normal volunteers showed significant age dependence since both decreased in relation to increasing age. Myocardial PCr content and ATP content in patients with hypertension did not differ significantly from the age-matched control group. PCr content (6.1 ± 2.2 μmol/g wet tissue, n=10) and ATP content (4.1 ±1.3 μmol/g wet tissue) in patients with hypertrophic cardiomyopathy were less than the age-matched control group (n = 15; PCr: 9.7 ± 2.5 μmol/g wet tissue, P <0.01; ATP: 6.4 ±1.8 μmol/g wet tissue, P <0.05), respectively. These results indicate that quantitative 31P MRS may be valuable in the assessment of changes in high-energy phosphate metabolism caused by aging or hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号