首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose. To compare the enthalpy relaxation of amorphous sucrose and co-lyophilized sucrose-additive mixtures near the calorimetric glass transition temperature, so as to measure the effects of additives on the molecular mobility of sucrose. Methods. Amorphous sucrose and sucrose-additive mixtures, containing poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl-acetate) (PVP/VA) dextran or trehalose, were prepared by lyophilization. Differential scanning calorimetry (DSC) was used to determine the area of the enthalpy recovery endotherm following aging times of up to 750 hours for the various systems. This technique was also used to compare the enthalpy relaxation of a physical mixture of amorphous sucrose and PVP. Results. Relative to sucrose alone, the enthalpy relaxation of co-lyophilized sucrose-additive mixtures was reduced when aged for the same length of time at a comparable degree of undercooling in the order: dextran PVP > PVP/VA > trehalose. Calculated estimates of the total enthalpy change required for sucrose and the mixtures to relax to an equilibrium supercooled liquid state (H) were essentially the same and were in agreement with enthalpy changes measured at longer aging times (750 hours). Conclusions. The observed decrease in the enthalpy relaxation of the mixtures relative to sucrose alone indicates that the mobility of sucrose is reduced by the presence of additives having a Tg that is greater than that of sucrose. Comparison with a physically mixed amorphous system revealed no such effects on sucrose. The formation of a molecular dispersion of sucrose with a second component, present at a level as low as 10%, thus reduces the mobility of sucrose below Tg, most likely due to the coupling of the molecular motions of sucrose to those of the additive through molecular interactions.  相似文献   

2.
PURPOSE: To understand the phase behavior and the degree and mechanism of the solid solubility in amorphous molecular dispersions by the use of thermal analysis. METHODS: Amorphous molecular dispersions of trehalose-dextran and trehalose-PVP were prepared by co-lyophilization. The mixtures were exposed to 23 degrees C, 40 degrees C, and 50 degrees C [75% relative humidity (RH)] and 23 degrees C (69% RH) storage conditions, respectively. Thermal analysis was conducted by modulated differential scanning calorimeter (MDSC). RESULTS: Upon exposure to moisture, two glass transition temperatures (TgS), one for phase-separated amorphous trehalose (Tg1) and the other for polymer-trehalose mixture (Tg2), were observed. With time, Tg2 increased and reached to a plateau (Tg(eq)), whereas Tg1 disappeared. The disappearance of Tg1 was attributed to crystallization of the phase-separated amorphous trehalose. It was observed that Tg(eq) was always less than Tg of pure polymer. The lower Tg(eq) when compared to Tg of pure polymer may be the result of solubility of a fraction of trehalose in the polymers chosen. The miscible fraction of trehalose was estimated to be 12% and 18% wt/wt in dextran at 50 degrees C/75% RH and 23 degrees C/75% RH, respectively, and 10% wt/wt in PVP at 23 degrees C/69% RH. CONCLUSIONS: Mixing behavior of trehalose-dextran and trehalose-PVP dispersions were examined both experimentally and theoretically. A method determining the "extent of molecular miscibility," referred to as "solid solubility," was developed and mechanistically and thermodynamically analyzed. Solid dispersions prepared at trehalose concentrations below the "solid solubility limit" were physically stable even under accelerated stability conditions.  相似文献   

3.
Tong  Ping  Zografi  George 《Pharmaceutical research》1999,16(8):1186-1192
Purpose. Having previously studied the amorphous properties of indomethacin (IN) as a model compound for drugs rendered amorphous during processing, we report on the formation and characterization of its sodium salt in the amorphous state and a comparison between the two systems. Methods. Sodium indomethacin (SI) was subjected to lyophilization from aqueous solution, rapid precipitation from methanol solution, and dehydration followed by grinding to produce, in each case, a completely amorphous form. The amorphous form of SI was analyzed using DSC, XRD, thermomicroscopy and FTIR. The method of scanning rate dependence of the glass transition temperature, Tg, was used to estimate the fragility of the SI system. Enthalpy relaxation experiments were carried out to probe the molecular mobility of the SI system below Tg. Results. The amorphous form of SI formed by different methods had a Tg equal to 121°C at a scanning rate of 20°C/min. This compares with a Tgfor indomethacin of 45°C. Estimation of fragility by the scanning rate dependence of Tg indicates no significant differences in fragility between ionized and unionized forms. Enthalpy relaxation measurements reveal very similar relaxation patterns between the two systems at the same degree of supercooling relative to their respective Tg values. Conclusions. The amorphous form of SI made by various methods has a Tg that is about 75°C greater than that of IN, most likely because of the greater density and hence lower free volume of SI. Yet, the change of molecular mobility as a function of temperature relative to Tgis not very different between the ionized and unionized systems.  相似文献   

4.
Purpose. The use of modulated differential scanning calorimetry (MDSC) as a novel means of characterising the glass transition of amorphous drugs has been investigated, using the protease inhibitor saquinavir as a model compound. In particular, the effects of measuring variables (temperature cycling, scanning period, heating mode) have been examined. Methods. Saquinavir samples of known moisture content were examined using a TA Instruments 2920 MDSC at a heating rate of 2°C/min and an amplitude of ± 0.159°C with a period of 30 seconds. These conditions were used to examine the effects of cycling between - 50°C and 150°C. A range of periods between 20 and 50 seconds were then studied. Isothermal measurements were carried out between 85°C and 120°C using an amplitude of ± 0.159°C with a period of 30 seconds. Results. MDSC showed the glass transition of saquinavir (0.98 ± 0.05%w/w moisture content) in isolation from the relaxation endotherm to give an apparent glass transition temperature of 107.0° C ± 0.4C. Subsequent temperature cycling gave reproducible glass transition temperatures of approximately 105°C for both cooling and heating cycles. The enthalpic relaxation peak observed in the initial heating cycle had an additional contribution from a Tg 'shift' effect brought about by the difference in response to the glass transition of the total and reversing heat flow signals. Isothermal studies yield a glass transition at 105.9°C ± 0.1°C. Conclusions. MDSC has been shown to be capable of separating the glass transition of saquinavir from the relaxation endotherm, thereby facilitating measurement of this parameter without the need for temperature cycling. However, the Tg 'shift' effect and the number of modulations through the transition should be taken into account to avoid drawing erroneous conclusions from the experimental data. MDSC has been shown to be an effective method of characterising the glass transition of an amorphous drug, allowing the separate characterisation of the Tg and endothermic relaxation in the first heating cycle.  相似文献   

5.
Purpose. The applicability of isothermal microcalorimetry (IMC) for evaluating enthalpy relaxation and recovery processes of amorphous material was assessed. Methods. A maltose-based formulation was prepared by freeze-dry method. Differential scanning calorimetry (DSC) was used to investigate its glass transition and relaxation behaviors. IMC was applied to quantitatively analyze the relaxation and the recovery processes. The IMC data were analyzed using a derivative of the Kohlrausch-Williams-Watts equation. Results. The glass transition temperature of the formulation and its fictive temperature stored at 15°C for 1 year were 62 and 32°C, respectively. DSC study showed that annealing below the fictive temperature increased the enthalpy recovery, but it was decreased by annealing at higher temperatures. IMC enabled direct observation of the heat flow during both the relaxation and the recovery processes. The decay constant for the recovery process (recovery time) was much smaller and less sensitive to the temperature than that for the relaxation process (relaxation time). Conclusions. IMC was successfully used to obtain quantitative information on both relaxation and recovery processes of amorphous material. The relaxation parameters obtained by this method could explain the thermodynamic behavior of the formulation.  相似文献   

6.
Purpose. To evaluate the use of Modulated Temperature DSC(MTDSC) as a means of assessing the relaxation behaviour ofamorphous lactose via measurement of the heat capacity, glasstransition (Tg) and relaxation endotherm. Methods. Samples of amorphous lactose were prepared by freezedrying. MTDSC was conducted using a TA Instruments 2920 MDSCusing a heating rate of 2°C/minute, a modulation amplitude of ±0.3°Cand a period of 60 seconds. Samples were cycled by heating to 140°Cand cooling to a range of annealing temperatures between 80°C and100°C, followed by reheating through the Tg region. Systems werethen recooled to allow for correction of the Tg shift effect. Results. MTDSC enabled separation of the glass transition from therelaxation endotherm, thereby facilitating calculation of the relaxationtime as a function of temperature. The relative merits of using MTDSCfor the assessment of relaxation processes are discussed. In addition,the use of the fictive temperature rather than the experimentally derivedTg is outlined. Conclusions. MTDSC allows assessment of the glass transitiontemperature, the magnitude of the relaxation endotherm and the valueof the heat capacity, thus facilitating calculation of relaxation times.Limitations identified with the approach include the slow scanningspeed, the need for careful choice of experimental parameters and theTg shift effect.  相似文献   

7.
Purpose. To study the molecular structure of indomethacin-PVP amorphous solid dispersions and identify any specific interactions between the components using vibrational spectroscopy. Methods. Solid dispersions of PVP and indomethacin were prepared using a solvent evaporation technique and IR and FT-Raman spectra were obtained. Results. A comparison of the carbonyl stretching region of indomethacin, known to form carboxylic acid dimers, with that of amorphous indomethacin indicated that the amorphous phase exists predominantly as dimers. The hydrogen bonding of indomethacin is not as dimers. Addition of PVP to amorphous indomethacin increased the intensity of the infrared band assigned to non-hydrogen bonded carbonyl. Con-comitantly, the PVP carbonyl stretch appeared at a lower wavenumber indicating hydrogen bonding. Model solvent systems aided spectral interpretation. The magnitude of the spectral changes were comparable for an indomethacin-PVP solid dispersion and a solution of indomethacin in methylpyrrolidone at the same weight percent. Conclusions. Indomethacin interacts with PVP in solid dispersions through hydrogen bonds formed between the drug hydroxyl and polymer carbonyl resulting in disruption of indomethacin dimers. PVP may influence the crystallisation kinetics by preventing the self association of indomethacin molecules. The similarity of results for solid dispersions and solutions emphasises the 'solution' nature of this binary amorphous state.  相似文献   

8.
Objective  Amorphous pharmaceuticals, a viable approach to enhancing bioavailability, must be stable against crystallization. An amorphous drug can be stabilized by dispersing it in a polymer matrix. To implement this approach, it is desirable to know the drug’s solubility in the chosen polymer, which defines the maximal drug loading without risk of crystallization. Measuring the solubility of a crystalline drug in a polymer is difficult because the high viscosity of polymers makes achieving solubility equilibrium difficult. Method  Differential Scanning Calorimetry (DSC) was used to detect dissolution endpoints of solute/polymer mixtures prepared by cryomilling. This method was validated against other solubility-indicating methods. Results  The solubilities of several small-molecule crystals in polymers were measured for the first time near the glass transition temperature, including d-mannitol (β polymorph) in PVP, indomethacin (γ polymorph) in PVP/VA, and nifedipine (α polymorph) in PVP/VA. Conclusion  A DSC method was developed for measuring the solubility of crystalline drugs in polymers. Cryomilling the components prior to DSC analysis improved the uniformity of the mixtures and facilitated the determination of dissolution endpoints. This method has the potential of providing useful data for designing physically stable formulations of amorphous drugs.  相似文献   

9.
Purpose. The purpose of this study was to compare the structural relaxation and molecular mobility of amorphous celecoxib (CEL) with that of CEL amorphous mixtures consisting of various excipients and to study the effect of different excipients on the relaxation of high-energy amorphous systems. Methods. The measurement of glass transition temperatures (Tg) and enthalpy relaxation were performed using differential scanning calorimetry. The interactions between drug and excipients and the absence of crystalline forms were further confirmed by conducting Fourier transform infrared spectroscopic and X-ray powder diffraction studies on same samples. Results. All samples exhibited a single Tg value. Polymers had a prominent effect on the lowering of the relaxation rate in amorphous CEL. The lowering of the rate of relaxation was directly dependent on the concentration and type of polymer used. The total enthalpy required for relaxation was same, although additives affected the rate of relaxation. Conclusions. In absence of any specific interactions during Fourier transform infrared studies, it was concluded that the antiplasticizing activity of polymers is responsible for the stabilization of CEL amorphous systems. Glassy amorphous dispersions of CEL exhibited a complex type of relaxation pattern, which failed to fit in Kohlrausch-Williams-Watts equation with respect to calculation of relaxation time constants.  相似文献   

10.
Generation of amorphous forms of a poorly soluble drug by solid dispersion techniques has been a subject of intensive research for decades. Apart from the stability of the dispersions, development of a suitable production technology is a major challenge to the successful commercialization of these products. Coprocessing of celecoxib (CEL), poly(vinyl pyrrolidone), and meglumine by spray drying resulted in an amorphous drug product that provided enhanced solubility and stability to an otherwise poorly soluble crystalline form of CEL. The spray-drying process parameters were optimized to provide an amorphous product with required characteristics. The product was stable for 3 months under the accelerated stability storage conditions. This technique can serve as a suitable means for generating a ready-to-formulate amorphous drug-additive(s) composite that can be directly filled into hard gelatin capsules.  相似文献   

11.
The crystallization of a model compound, sucrose, from the amorphous solid state has been studied non-isothermally using differential scanning calorimetry to determine crystallization temperature, Tc, and isothermally at 30°C by subjecting samples to 32.4% relative humidity and gravimetrically monitoring water vapor uptake and subsequent loss with time due to crystallization. From the measurement of glass transition temperature, Tg, and melting temperature, Tm, for sucrose alone and in the presence of absorbed water it was possible to predict Tc and thus to directly relate the plasticizing effects of water to its tendency to promote crystallization. Colyo-philization of sucrose with lactose, trehalose, and raffinose, all having Tg values greater than that of sucrose, increased Tc significantly, even at levels as low as 1 – 10% w/w. In the isothermal studies the time required for crystallization to commence, due to the plasticizing effects of water, i.e., the induction time, assumed to be mostly affected by rates of nucleation, was greatly increased by the presence of the additives at these low levels, with raffinose producing a greater effect than lactose and trehalose. Similarly, these additives reduced the rate of water loss, i.e., the rate of crystal growth, but now no significant differences were noted between the three additives. The possible relationships of nucleation and crystal growth and the effects of additives on molecular mobility are discussed.  相似文献   

12.
An amorphous sugar matrix, after drying from an organic solvent, was investigated for use as a method for dispersing hydrophobic drugs (solid dispersion). However, the amorphous sugar, originally contained in the organic solvent, had a significantly low glass transition temperature (Tg), thus rendering it physically unstable. In this study, we examined the physicochemical properties of a sugar in a dried matrix and in an organic solvent, using α-maltose and methanol as a representative sugar and organic solvent. The apparent molar volume of α-maltose was ∼30% smaller in methanol than in water. The methanol-originated amorphous α-maltose exhibited a much greater degree of hydrogen bonding than the water-originated one. Considering these findings, we conclude that the α-maltose maintained its compact conformation in the dried state and consequently caused the markedly low Tg. Second, it was found that heating under appropriate conditions resulted in an increase in the Tg of the methanol-originated amorphous α-maltose as well as a decrease in the level of hydrogen bonding. The aqueous dissolution of 2 model hydrophobic drugs (indomethacin and ibuprofen) from the solid dispersion was also improved as the result of the heat treatment, whereas, to the contrary, the dissolution of another model drug (curcumin) was lowered.  相似文献   

13.
PURPOSE: To explore using thermally stimulated depolarization current (TSDC), in comparison to differential scanning calorimetry (DSC), for the characterization of molecular mobility of an amorphous pharmaceutical new chemical entity (LAB687), an amorphous polymer (PVPK-30), and their combination as solid dispersions at different % drug loadings. METHODS: Amorphous drug was prepared by quenching from the melt. Solid dispersions containing 10-60% of drug in polymer were prepared by solvent evaporation method. Glass transition temperatures (Tg) were determined by DSC and TSDC. RESULTS: In comparison to a single T. obtained from DSC for the drug substance, TSDC shows two overlapping relaxations. Both peaks correspond to a-relaxations that are associated with the glass transition, with the second peak corresponding to the rigid fraction that is difficult to be detected by DSC because it is associated with only small changes in heat capacity. Two overlapping relaxations were also observed for the polymer vs. one Tg by DSC. The lower temperature relaxation is believed to be a beta-relaxation, whereas the higher temperature transition corresponds to an alpha-relaxation. For the solid dispersions, one single peak was obtained for each of the 20% and 30% dispersions in excellent agreement with the DSC results. However, at the 40% drug load, a small shoulder was observed by TSDC at the low temperature of the main peak. This shoulder becomes more pronounced and overlaps with the main peak as the drug load increases to 50% and 60%. Agreement between the Tg values calculated by the Gordon-Taylor equation and the DSC and TSDC experimental data, especially for the 20% and 30% drug loading, indicate ideal miscibility. At higher drug loads, only by TSDC was it possible to detect the saturation level of the drug in the polymer. CONCLUSIONS: TSDC proved to be very sensitive in detecting small reorientational motions in solids and in separating overlapping events with only slight differences in molecular motion exhibited as broad events in DSC. This allowed for detection of the rigid fraction of the amorphous drug, the sub-glass transition beta- relaxation in the polymer, and the limit of miscibility between the drug and the polymer in the solid dispersions.  相似文献   

14.
In present work, a correlationship among quantitative drug-polymer miscibility, molecular relaxation and phase behavior of the dipyridamole (DPD) amorphous solid dispersions (ASDs), prepared with co-povidone (CP), hydroxypropyl methylcellulose phthalate (HPMC P) and hydroxypropyl methylcellulose acetate succinate (HPMC AS) has been investigated. Miscibility predicted using melting point depression approach for DPD with CP, HPMC P and HPMC AS at 25 °C was 0.93% w/w, 0.55% w/w and 0.40% w/w, respectively. Stretched relaxation time (τβ) for DPD ASDs, measured using modulated differential scanning calorimetry (MDSC) at common degree of undercooling, was in the order of DPD- CP > DPD-HPMC P > DPD-HPMC AS ASDs. Phase behavior of 12 months aged (25 ± 5 °C and 0% RH) spray dried 60% w/w ASDs was tracked using MDSC. Initial ASD samples had homogeneous phase revealed by single glass transition temperature (Tg) in the MDSC. MDSC study of aged ASDs revealed single-phase DPD-CP ASD, amorphous-amorphous and amorphous-crystalline phase separated DPD-HPMC P and DPD-HPMC AS ASDs, respectively. The results were supported by X-ray micro computed tomography and confocal laser scanning microscopy studies. This study demonstrated a profound influence of drug-polymer miscibility on molecular mobility and phase behavior of ASDs. This knowledge can help in designing “physical stable” ASDs.  相似文献   

15.
Purpose Use RH-perfusion microcalorimetry and other analytical techniques to measure the interactions between water vapor and amorphous pharmaceutical solids; use these measurements and a mathematical model to provide a mechanistic understanding of observed calorimetric events.Materials Isothermal microcalorimetry was used to characterize interactions of water vapor with a model amorphous system, spray-dried raffinose. Differential scanning calorimetry was used to measure glass transition temperature, T g. High-sensitivity differential scanning calorimetry was used to measure enthalpy relaxation. X-ray powder diffraction (XRPD) was used to confirm that the spray-dried samples were amorphous. Scanning electron microscopy (SEM) was used to examine particle morphology. Gravimetric vapor sorption was used to measure moisture sorption isotherms. Thermogravimetric analysis (TGA) was used to measure loss on drying.Results A moisture-induced thermal activity trace (MITAT) provides a rapid measure of the dependence of molecular mobility on moisture content at a given storage temperature. At some relative humidity threshold, RHm, the MITAT exhibits a dramatic increase in the calorimetric rate of heat flux. Simulations using calorimetric data indicate that this thermal event is a consequence of enthalpy relaxation.Conclusions RH-perfusion microcalorimetry is a useful tool to determine the onset of moisture-induced physical instability of glassy pharmaceuticals and could find a broad application to determine appropriate storage conditions to ensure long-term physical stability. Remarkably, thermal events measured on practical laboratory timescales (hours to days) are relevant to the stability of amorphous materials on much longer, pharmaceutically relevant timescales (years). The mechanistic understanding of these observations in terms of enthalpy relaxation has added further value to the use of RH-perfusion calorimetry as a rapid means to characterize the molecular mobility of amorphous solids.  相似文献   

16.
Purpose. To measure the molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures (Tg), using indomethacin, poly (vinyl pyrrolidone) (PVP) and sucrose as model compounds. Methods. Differential scanning calorimetry (DSC) was used to measure enthalpic relaxation of the amorphous samples after storage at temperatures 16-47 K below Tg for various time periods. The measured enthalpy changes were used to calculate molecular relaxation time parameters. Analogous changes in specimen dimensions were measured for PVP films using thermomechanical analysis. Results. For all the model materials it was necessary to cool to at least 50 K below the experimental Tg before the molecular motions detected by DSC could be considered to be negligible over the lifetime of a typical pharmaceutical product. In each case the temperature dependence of the molecular motions below Tg was less than that typically reported above Tg and was rapidly changing. Conclusions. In the temperature range studied the model amorphous solids were in a transition zone between regions of very high molecular mobility above Tg and very low molecular mobility much further below Tg. In general glassy pharmaceutical solids should be expected to experience significant molecular mobility at temperatures up to fifty degrees below their glass transition temperature.  相似文献   

17.
Amorphous solid dispersions (ASDs) consisting of acetaminophen (APAP) and copovidone were systematically studied to identify effects of drug loading and moisture content on mechanical properties, thermal properties, and tableting behavior. ASDs containing APAP at different levels were prepared by film casting and characterized by differential scanning calorimetry and nanoindentation. The glass transition temperature (Tg) continuously decreased with increasing amount of APAP, but the hardness of ASDs was increased at a low APAP content and reduced at high APAP content. This in turn significantly influenced tablet quality. Water reduced both the hardness and Tg of ASDs, and the APAP loading level corresponding to the transition to the softening mechanism was lower at a higher relative humidity. Overall, the mechanical properties, rather than the thermal properties, better represent the plasticization/antiplasticization effect of small molecule to ASDs.  相似文献   

18.
The glass transition temperature of an amorphous pharmaceutical solid is a critical physical property which can dramatically influence its chemical stability, physical stability, and viscoelastic properties. Water frequently acts as a potent plasticizer for such materials, and since many amorphous solids spontaneously absorb water from their surroundings the relationship between the glass transition temperature and the water content of these materials is important. For a wide range of amorphous and partially amorphous pharmaceutical solids, it was found that there is a rapid initial reduction in the glass transition temperature from the dry state as water is absorbed, followed by a gradual leveling off of the response at higher water contents. This plasticization effect could generally be described using a simplified form of the Gordon–Taylor/ Kelley–Bueche relationships derived from polymer free volume theory. Most of the systems considered showed a nearly ideal volume additivity and negligible tendency to interact. This is consistent with the hypothesis that such mixtures behave as concentrated polymer solutions and indicates that water acts as a plasticizer in a way similar to that of other small molecules and not through any specific or stoichiometric interaction process(es).  相似文献   

19.
Purpose To present a calorimetry-based approach for estimating the initial (at the onset of annealing) relaxation time (τ 0) of organic amorphous solids at relatively low temperatures, and to assess the temperature where molecular mobility of the amorphous drug is reduced to a level comparable with the desired shelf-life of the product.Materials and Methods Values of τ 0 for six amorphous pharmaceutical compounds were estimated based on the nonlinear Adam–Gibbs equation. Fragility was determined from the scanning rate-dependence of the glass transition temperature (T g). The initial enthalpic and entropic fictive temperatures were obtained from the T g and the heat capacities (C p) of the amorphous and crystalline forms.Results At a relatively low temperature (∼40°C or more below T g), τ 0 for the different compounds varies by over an order of magnitude. For some materials, the practical storage temperature at T g − 50 K was found to be still too high to ensure long-term stability. The estimated τ 0 is highly sensitive to the fragility of the material and the C p of the crystalline and amorphous forms. Materials with high fragility or greater C p differences between crystalline and amorphous forms tend to have longer τ 0.Conclusions The proposed method can be used to estimate molecular mobility at relatively low temperatures without having to conduct enthalpy recovery experiments. An accurate τ 0 determination from this method relies on faithful fragility measurements.  相似文献   

20.
Purpose To develop a calorimetry-based model for estimating the time-dependence of molecular mobility during the isothermal relaxation of amorphous organic compounds below their glass transition temperature (T g).Methods The time-dependent enthalpy relaxation times of amorphous sorbitol, indomethacin, trehalose and sucrose were estimated based on the nonlinear Adam‐Gibbs equation. Fragility was determined from the scanning rate dependence of T g. Time evolution of the fictive temperature was determined from T g, the heat capacity of the amorphous and crystalline forms, and from the enthalpy relaxation data.Results Relaxation time changes significantly upon annealing for all compounds studied. The magnitude of the increase in relaxation time does not depend on any one parameter but on four parameters: T g, fragility, and the crystal–liquid and glass–liquid heat capacity differences. The obtained mobility data for indomethacin and sucrose, both stored at T g−16 K, correlated much better with their different crystallization tendencies than did the Kohlrausch‐Williams‐Watts (KWW) equation.Conclusions The observed changes in relaxation time help explain and address the limitations of the KWW approach. Due consideration of the time-dependence of molecular mobility upon storage is a key element for improving the understanding necessary for stabilizing amorphous formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号