首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel virulent enterobacteria phage, 4MG, which was isolated from soil near a sewer, belongs to the family Myoviridae, as it possesses an isometric head and a long contractile tail. The complete genome of 4MG consists of a double-stranded DNA with a length of 148,567 bp, a G + C content of 46.3 %, 271 open reading frames (ORFs), and 21 tRNAs. Bioinformatic analysis revealed that 4MG highly resembles “rV5-like viruses” but can be separated, together with Salmonella phage PVP-SE1 and Cronobacter sakazakii phage vB_CsaM_GAP31, as part of the subgroup “PVP-SE1-like phage”.  相似文献   

2.
A newly identified virulent Cronobacter sakazakii phage, ESSI-2, was isolated from fecal samples from swine. The morphological characteristics evident under a transmission electron microscope indicated that phage ESSI-2 belonged to the family Myoviridae. The genome of phage ESSI-2 comprised a double-stranded DNA of 28,765 bp with a G+C content of 55.17%. Bioinformatic analysis of the phage genome identified 36 putative open reading frames (ORFs). The genome of phage ESSI-2 was not significantly similar to that of a previously reported bacteriophage of the members of Enterobacteriaceae. A lysogeny module was found within the genome of this virulent phage.  相似文献   

3.
Bacteriophage TEM126, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild-type Staphylococcus aureus isolated from food, has an isometric head, a noncontractile tail, and a double-stranded DNA genome with a length of 33,540 bp and a G+C content of 33.94%. Bioinformatics analysis of the phage genome revealed 44 putative open reading frames (ORFs). Predicted protein products of the ORFs were determined and described. Temperate phage TEM126 can be classified as a member of the family Siphoviridae by morphology and genome structure. Temperate phage TEM126 showed 84% similarity with Staphylococcus phage phiNM1. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage TEM126 from a wild-type S. aureus isolated from foods in Korea.  相似文献   

4.
“Natto”, considered a traditional food, is made by fermenting boiled soybeans with Bacillus subtilis (natto), which is a natto-producing strain related to B. subtilis. The production of natto is disrupted by phage infections of B. subtilis (natto); hence, it is necessary to control phage infections. PM1, a phage of B. subtilis (natto), was isolated during interrupted natto production in a factory. In a previous study, PM1 was classified morphologically into the family Siphoviridae, and its genome, comprising approximately 50 kbp of linear double-stranded DNA, was assumed to be circularly permuted. In the present study, the complete nucleotide sequence of the PM1 genomic DNA of 50,861 bp (41.3 %G+C) was determined, and 86 open reading frames (ORFs) were deduced. Forty-one ORFs of PM1 shared similarities with proteins deduced from the genome of phages reported so far. Twenty-three ORFs of PM1 were associated with functions related to the phage multiplication process of gene control, DNA replication/modification, DNA packaging, morphogenesis, and cell lysis. Bacillus subtilis (natto) produces a capsular polypeptide of glutamate with a γ-linkage (called poly-γ-glutamate), which appears to serve as a physical barrier to phage adsorption. One ORF of PM1 had similarity with a poly-γ-glutamate hydrolase, which is assumed to degrade the capsular barrier to allow phage progenies to infect encapsulated host cells. The genome analysis of PM1 revealed the characteristics of the phage that are consistent as Bacillus subtilis (natto)-infecting phage.  相似文献   

5.
PM1, a novel virulent bacteriophage that infects Pectobacterium carotovorum subsp. carotovorum, was isolated. Its morphological features were examined by electron microscopy, which indicated that this phage belongs to the family Myoviridae. It has a 55,098-bp genome, including a 2,665-bp terminal repeat. A total of 63 open reading frames (ORFs) were predicted, but only 20 ORFs possessed homology with functional proteins. There is one tRNA coding region, and the GC-content of the genome is 44.9 %. Most ORFs in bacteriophage PM1 showed high homology to enterobacteria phage ΦEcoM-GJ1 and Erwinia phage νB EamM-Y2. Like these bacteriophages, PM1 encodes an RNA polymerase, which is a hallmark of T7-like phages. There is no integrase or repressor, suggesting that PM1 is a virulent bacteriophage.  相似文献   

6.
A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.  相似文献   

7.
Yoon BH  Jang SH  Chang HI 《Archives of virology》2011,156(9):1681-1684
Bacteriophage Sha1, a newly isolated temperate phage from a mitomycin-C-induced lysate of Lactobacillus plantarum isolated from Kimchi, has an isometric head (58 nm × 60 nm) and a long tail (259 nm × 11 nm). The double-strand DNA genome of the phage Sha1 was 41,726 base pairs (bp) long, with a G+C content of 40.61%. Bioinformatic analysis of Sha1 shows that this phage contains 58 putative open reading frames (ORFs). Sha1 can be classified as a member of the large family Siphoviridae by genomic structure and morphology. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage Sha1 from wild-type L. plantarum isolated from kimchi in Korea.  相似文献   

8.
Bovine mastitis is one of the most costly diseases in dairy cows worldwide. It can be caused by over 150 different microorganisms, where Staphylococcus aureus is the most frequently isolated and a major pathogen responsible for heavy economic losses in dairy industry. Although antibiotic therapy is most widely used, alternative treatments are necessary due to the increasing antibiotic resistance. Using phage for pathogen control is a promising tool in the fight against antibiotic resistance. Mainly using high-throughput sequencing, bioinformatics and our proposed phage termini identification method, we have isolated and characterized a novel virulent phage, designated as vB_SauS_IMEP5, from manure collected from dairy farms in Shihezi, Xinjiang, China, for use as a biocontrol agent against Staphylococcus aureus infections. Its latent period was about 30 min and its burst size was approximately 272PFU/cell. Phage vB_SauS_IMEP5 survives in a wide pH range between 3 and 12. A treatment at 70 °C for 20 min can inactive the phage. Morphological analysis of vB_SauS_IMEP5 revealed that phage vB_SauS_IMEP5 morphologically resembles phages in the family Siphoviridae. Among our tested multiplicity of infections (MOIs), the optimal multiplicity of infection (MOI) of this phage was determined to be 0.001, suggesting that phage vB_SauS_IMEP5 has high bacteriolytic potential and good efficiency for reducing bacterial growth. The complete genome of IME-P5 is a 44,677-bp, linear, double-stranded DNA, with a G+C content of 34.26%, containing 69 putative ORFs. The termini of genome were determined with next-generation sequencing data using our previously proposed termini identification method, which suggests that this phage has non-redundant termini with 9nt 3′ protruding cohesive ends. The genomic and proteomic characteristics of IMEP5 demonstrate that this phage does not belong to any of the previously recognized Siphoviridae Staphylococcus phage groups, suggesting the creation of a new lineage, thus adding to the knowledge on the diversity of Staphylococcus phages. An N-acetylmuramoyl-l-alanine amidase gene and several conserved genes were predicted, while no virulence or antibiotic resistance genes were identified. This study isolated and characterized a novel S. aureus phage vB_SauS_IMEP5, and our findings suggest that this phage may be potentially utilized as a therapeutic or prophylactic candidate against S.aureus infections.  相似文献   

9.
A novel bacteriophage, JX01, specifically infecting bovine Streptococcus agalactiae was isolated from milk of mastitis-affected cattle. The phage morphology showed that JX01 belongs to the family Siphoviridae, and this phage demonstrated a broad host range. Microbiological characterization demonstrated that nearly 90 % of JX01 phage particles were adsorbed after 2.5 min of incubation, that the burst size was 20 virions released per infected host cell, and that there was a latent period of 30 min. JX01 was thermal sensitive and showed acid and alkaline resistance (pH 3–11). The genome of JX01 was found to consist of a linear, double-stranded 43,028-bp DNA molecule with a GC content of 36.81 % and 70 putative open reading frames (ORFs) plus one tRNA. Comparative genome analysis revealed high similarity between JX01 and the prophage 315.2 of Streptococcus pyogenes.  相似文献   

10.
A virulent Aeromonas veronii biovar sobria and the corresponding novel, lytic bacteriophage (VTCCBPA5) were isolated from village pond water. The phage was found to belong to family Podoviridae. PCR analysis of major capsid protein gene confirmed its classification to T7-like genus. The protein profiling by SDS-PAGE indicated the major structural protein to be ~ 45 kDa. The phage (VTCCBPA5) is host specific and is stable over a range of pH (6–10) and temperatures (4–45 °C). On the basis of restriction endonuclease analysis combined with prediction mapping, it was observed to vary significantly from previously reported podophages of Aeromonas sp., viz. phiAS7 and Ahp1. The phylogenetic analysis on the basis of PCR-amplified segment of DNA polymerase gene of phage revealed it being an outgroup from podophages of Klebsiella sp. and Pseudomonas sp. though a small internal fragment (359 bp) showed the highest identity (77%) with Vibrio sp. phages. Thus, this is the first report of a novel Podoviridae phage against A. veronii. It expands the assemblage of podophages against Aeromonas sp. and BPA5 could be potentially useful in biocontrol of environmentally acquired Aeromonas veronii infections.  相似文献   

11.
Bacillus cereus causes food poisoning, resulting in vomiting and diarrhea, due to production of enterotoxins. As a means of controlling this food-borne pathogen, the virulent bacteriophage B4 was isolated and characterized. Bacterial challenge assays showed that phage B4 effectively inhibited growth of members of the B. cereus group as well as B. subtilis, and growth inhibition persisted for over 20 h. One-step growth analysis also revealed the host lysis activity of phage B4, with relatively short eclipse/latent times (10/15 min) and a large burst size (>200 PFU). The complete genome of phage B4, containing a 162-kb DNA with 277 ORFs, was analyzed. The endolysin encoded by the phage B4 genome accounts for the cell lysis activity of this phage. These results suggest that phage B4 has potential as a biological agent to control B. cereus propagation.  相似文献   

12.
Bacteriophage ΦMH1, a newly isolated temperate phage from a UV-induced lysate of Leuconostoc pseudomesenteroides, has an isometric head, a noncontractile tail, and a double-stranded DNA genome with a length of 38709 bp. Bioinformatic analysis of the phage genome revealed 65 putative open reading frames (ORFs). Predicted protein products of the ORFs were determined and described. ΦMH1 can be classified as a member of the family Siphoviridae by morphology and genome structure. The phage did not show any significant similarity to other previously reported bacteriophages of Leuconostoc species. To our knowledge, this is the first report of genomic sequencing and characterization of a L. pseudomesenteroides temperate phage.  相似文献   

13.
For molecular study of marine bacteria Pseudoalteromonas phenolica using bacteriophage, a novel bacteriophage, TW1, belonging to the family Siphoviridae, was isolated, and its genome was completely sequenced and analyzed. The phage TW1 genome consists of 39,940-bp-length double-stranded DNA with a GC content of 40.19 %, and it was predicted to have 62 open reading frames (ORFs), which were classified into functional groups, including phage structure, packaging, DNA metabolism, regulation, and additional function. The phage life style prediction using PHACTS showed that it may be a temperate phage. However, genes related to lysogeny and host lysis were not detected in the phage TW1 genome, indicating that annotation information about P. phenolica phages in the genome databases may not be sufficient for the functional prediction of their encoded proteins. This is the first report of a P. phenolica-infecting phage, and this phage genome study will provide useful information for further molecular research on P. phenolica and its phage, as well as their interactions.  相似文献   

14.
Little is known about lytic bacteriophages infecting plant-pathogenic Dickeya spp. These bacteria cause economically significant losses in arable crops and ornamental plant production worldwide. At present, there is no effective control of diseases caused by Dickeya spp. A novel bacteriophage, ?D5, belonging to the family Myoviridae, order Caudovirales, that could be used to control these bacteria was isolated previously. This report provides information on its characterization. The ?D5 genome consists of 155,346-bp-length double-stranded DNA with a GC content of 49.7 % and is predicted to have 196 open reading frames (ORFs) with an average length of 711 nucleotides each. The ORFs were classified into functional groups, including phage structure, packaging, DNA metabolism, regulation, and additional functions. The phage lifestyle predicted from PHACTS indicated that ?D5 may be a lytic phage and therefore can efficiently kill plant-pathogenic Dickeya spp.  相似文献   

15.
GBK2 is a bacteriophage, isolated from a backyard compost pile, that infects the thermophile Geobacillus kaustophilus. GBK2 has a circularly permuted genome of 39,078 bp with a G+C content of 43 %. Annotation of the genome reveals 62 putative open reading frames (ORFs), 25 of which (40.3 %) show homology to known proteins and 37 of which (59.7 %) are proteins with unknown functions. Twelve of the identified ORFs had the greatest homology to genes from the phage SPP1, a phage that infects the mesophile Bacillus subtilis. The overall genomic arrangement of GBK2 is similar to that of SPP1, with the majority of GBK2 SPP1-like genes coding for proteins involved in DNA replication and metabolism.  相似文献   

16.
17.
Garneau JE  Tremblay DM  Moineau S 《Virology》2008,373(2):298-309
The virulent lactococcal phage 1706, isolated in 1995 from a failed cheese production in France, represents a new lactococcal phage species of the Siphoviridae family. This phage has a burst size of 160 and a latent period of 85 min. Its linear double-stranded DNA genome was composed of 55,597 bp with a 33.7% G+C content. Its deduced proteome (76 ORFs) shared limited similarities to other known phage proteins. SDS-PAGE coupled with LC-MS/MS analyses led to the identification of 15 structural proteins. The most striking feature of the 1706 proteome was that 22 ORFs shared similarities with proteins deduced from the genome of either Ruminococcus torques and/or Clostridium leptum. Both are Firmicutes bacteria found in the gut flora of humans. We also identified a four-gene module in phage 1706, most likely involved in host recognition that shared similarities with lactococcal prophages. We propose that the virulent phage 1706 infected another bacterial genus before picking up a lactococcal host recognition module.  相似文献   

18.
19.
A novel virulent phage named JL1 against Escherichia coli O157:H7 was isolated from raw sewage. It was found that JL1 has an icosahedral head and a long flexible non-contractile tail. The complete genome of JL1 is composed of a linear double-stranded DNA of 43,457 base pairs in length, with 54.77 % G+C content and 60 putative open reading frames. Morphology and bioinformatics analysis revealed that phage JL1 is a member of the family Siphoviridae of the order Caudovirales. It is different from previously reported phages of E. coli O157:H7 but is homologous to Sodalis phage SO-1, Shigella phage EP23, Escherichia phage HK578 and Escherichia phage SSL-2009a.  相似文献   

20.
Yoon BH  Chang HI 《Archives of virology》2011,156(10):1909-1912
Bacteriophage LF1, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild type Lactobacillus fermentum, was found to contain a double-strand DNA of 42,606 base pairs (bp) with a G+C content of 45%. Bioinformatic analysis of the phage genome revealed 57 putative open reading frames (ORFs). The predicted protein products of ORFs were determined and described. According to morphological analysis by transmission electron microscopy (TEM), LF1 has an isometric head and a non-contractile tail, indicating that it belongs to the family Siphoviridae. The temperate phage LF1 has a good genetic mosaic relationship with ΦPYB5 in the packaging module. To our knowledge, this is first report of genomic sequencing and characterization of temperate phage LF1 from wild-type L. fermentum isolated from Kimchi in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号