首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mennechet FJ  Uzé G 《Blood》2006,107(11):4417-4423
The lambda interferons (IFN-lambdas), also known as IL-28 and IL-29, are coexpressed with IFN-beta after Toll-like-receptor (TLR) stimulation in human monocyte-derived dendritic cells (DCs). IFN-lambda shares with type I IFNs an intracellular signaling pathway that drives the expression of a common set of genes. However, IFN-lambda signaling is initiated through a membrane receptor system distinct from that of type I IFNs. Because IFNs produced by DCs in response to TLR stimulation are critical in the differentiation and maturation of DCs, we sought to investigate whether IFN-lambda exhibits specific effects on DC differentiation. In this work, we show that DCs acquire IFN-lambda responsiveness through the expression of the specific IFN-lambda receptor chain during their differentiation from monocytes. IFN-lambda-treated DCs express high levels of major histocompatibility complex class I (MHC class I) and MHC class II but low levels of costimulatory molecules. However, they express CCR7 and acquire the ability to migrate to lymph nodes when intravenously injected into SCID/Bg mice. In mixed lymphocyte reaction (MLR) cultures, IFN-lambda-treated DCs specifically induced IL-2-dependent proliferation of a CD4(+)CD25(+)Foxp3(+) T-cell subset with contact-dependent suppressive activity on T-cell proliferation initiated by fully mature DCs. IFN-lambdas are thus able to generate tolerogenic DCs, an activity that could thwart IFN-beta functions.  相似文献   

2.
OBJECTIVE: Dendritic cells (DCs) play a major role in regulating lymphocytes, including B cells, and defective DC functions have been implicated in lupus. The purpose of this study was to assess the contribution of DCs to B cell hyperactivity in the B6.Sle1.Sle2.Sle3 (B6.TC) murine lupus model. METHODS: We compared the effects of B6 and B6.TC bone marrow-derived DCs on naive B cells cocultured in the presence of lipopolysaccharide (LPS), anti-CD40, or anti-IgM. We measured the proliferation, antibody production, and expression of activation markers and chemokine receptors for the B cells, as well as DC cytokine production. B cell proliferation was also assessed in Transwell experiments and in response to activated DC supernatants or exosomes. The role of DC-produced cytokines was evaluated with blocking antibodies and transgenic mice. RESULTS: LPS-stimulated or anti-CD40-stimulated DCs from B6.TC mice increased B cell proliferation, antibody production, and chemokine receptor expression as compared with DCs from B6 mice. Cell-to-cell contact was not necessary for the augmented effect of the lupus-prone DCs. Anti-CD40 treatment induced a higher production of interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R), IL-10, and tumor necrosis factor alpha in B6.TC DCs. Blocking these individual cytokines, however, did not abrogate the effects of B6.TC DCs. Additional experiments also ruled out involvement of BAFF, IL-12, and interferon-alpha. CONCLUSION: Activated DCs from B6.TC mice directly increase B cell effector functions. This effect depends on soluble factors released by activated DCs, but none of the single major DC-produced cytokines known to affect B cells are necessary. Increased sIL-6R production suggests that increased sensitivity to IL-6 may be involved.  相似文献   

3.
Fujita S  Seino K  Sato K  Sato Y  Eizumi K  Yamashita N  Taniguchi M  Sato K 《Blood》2006,107(9):3656-3664
Bacterial infection triggers host inflammation through the activation of immune cells, leading to the elimination of bacteria. However, the regulatory mechanisms of the host inflammatory response remain unknown. Here we report that a subset of potent tolerogenic dendritic cells (DCs), regulatory DCs (DC(regs)), control the systemic inflammatory response. Unlike normal DCs, which produced proinflammatory cytokines in response to bacterial lipopolysaccharide (LPS), DC(regs) produced fewer proinflammatory cytokines and instead preferentially produced interleukin-10 (IL-10), and these events involved the expression of IkappaBNS and Bcl-3 as well as cyclic AMP (cAMP)-mediated activation of protein kinase A (PKA). In addition, DC(regs) not only suppressed LPS-induced production of proinflammatory cytokines in macrophages, but also reduced their serum levels in mice. Furthermore, DC(regs) protected mice against the lethality induced by experimental endotoxemia and bacterial peritonitis. The inhibitory effect of DC(regs) against inflammatory responses involved the production of IL-10. On the other hand, naturally existing tolerogenic DC subsets producing IL-10, CD11c(low)CD45RB(high) DCs, also suppressed LPS-induced host inflammatory responses. Thus, a subset of tolerogenic DCs act as potential regulators of the host inflammatory response, and they might have preventive and therapeutic potential for the treatment of systemic as well as local inflammatory diseases.  相似文献   

4.
The phenotype and function of murine dendritic cells (DCs) are primarily studied using bone-marrow-derived DCs (BM-DCs), but may be hampered by the heterogeneous phenotype of BM-DCs due to their differential state of maturation. Here we characterize a newly established murine DC line (SP37A3) of myeloid origin. During maintainance in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and M-CSF, SP37A3 cells resemble immature DCs characterized by low expression of major histocompatibility complex (MHC) II and costimulatory molecules and low T-cell stimulatory capacity. Upon stimulation, SP37A3 cells acquire a mature phenotype and activate naive T cells as potently as BM-DCs. Similar to BM-DCs, SP37A3 cells activated in the presence of dexamethasone-induced regulatory T cells, which were anergic upon restimulation and suppressed proliferation of naive T cells. This tolerogenic state was reflected by lower expression levels of costimulatory molecules and proinflammatory cytokines compared with mature cells, as well as up-regulated expression of FcgammaRIIB and interleukin-1RA (IL-1RA). SP37A3 cells were responsive to dexamethasone even when applied at later time points during activation, suggesting functional plasticity. Thus, DC line SP37A3 represents a suitable model to study functions of immature and mature as well as tolerogenic myeloid DCs, circumventing restrictions associated with the use of primary DCs and BM-DCs.  相似文献   

5.
Adenosine has been reported to stimulate or inhibit the release of angiogenic factors depending on the cell type examined. To test the hypothesis that differential expression of adenosine receptor subtypes contributes to endothelial cell heterogeneity, we studied microvascular (HMEC-1) and umbilical vein (HUVEC) human endothelial cells. Based on mRNA level and stimulation of adenylate cyclase, we found that HUVECs preferentially express A2A adenosine receptors and HMEC-1 preferentially express A2B receptors. Neither cells expressed A1 or A3 receptors. The nonselective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased expression of interleukin-8 (IL-8), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) in HMEC-1, but had no effect in HUVECs. In contrast, the selective A2A agonist 2-p-(2-carboxyethyl)phenylethylamino-NECA (CGS 21680) had no effect on expression of these angiogenic factors. Cotransfection of each type of adenosine receptors with a luciferase reporter in HMEC-1 showed that A2B receptors, but not A1, A2A, or A3, activated IL-8 and VEGF promoters. These effects were mimicked by constitutively active alphaG(q), alphaG12, and alphaG13, but not alphaG(s) or alphaG(i1-3). Furthermore, stimulation of phospholipase C indicated coupling of A2B receptors to G(q) proteins in HMEC-1. Thus, differential expression of adenosine receptor subtypes contributes to functional heterogeneity of human endothelial cells. A2B receptors, predominantly expressed in human microvascular cells, modulate expression of angiogenic factors via coupling to G(q), and possibly via G12/13.  相似文献   

6.
OBJECTIVE: Defective circulating dendritic cells (DCs) have been described in systemic lupus erythematosus (SLE) and correlated with high levels of interferon-alpha (IFNalpha). DCs are differentiated as being either myeloid or plasmacytoid, according to chemokine expression and the tendency to migrate toward inflamed tissue. We investigated the potential role of interleukin-18 (IL-18) in driving the glomerular migration of DCs in lupus nephritis (LN) and in affecting the ability of DCs to induce an imbalance in the Th1:Th2 ratio. METHODS: DC subsets were characterized by flow cytometry and defined as either myeloid or plasmacytoid according to the expression of CD11c/blood dendritic cell antigen 1 (BDCA-1) and CD123/BDCA-2, respectively. The serum Th1:Th2 profile was studied by enzyme-linked immunosorbent assay. IL-18 receptor (IL-18R) and other chemokine receptors were analyzed by flow cytometry. Glomerular levels of IL-18/IL-18R and the presence of plasmacytoid DCs and myeloid DCs were investigated by immunohistochemical analysis. RESULTS: The number of peripheral plasmacytoid DCs was decreased in patients with SLE compared with control subjects, and this defect in the number of DCs was correlated with LN. Patients with LN showed a prevalent Th1 response, with high production of IL-18, IL-12 and IFNgamma. Only plasmacytoid DCs expressed IL-18R. Patients with severe LN showed a high accumulation of IL-18 within glomeruli in association with the presence of plasmacytoid DCs, whereas myeloid DCs were almost absent. CONCLUSION: A deficient number of peripheral plasmacytoid DCs correlated with high levels of Th1 cytokines and was associated with LN. Both serum and glomerular IL-18 were increased in LN. It is suggested that the high level of expression of IL-18R by peripheral plasmacytoid DCs allows the DCs to relocate within glomeruli under IL-18 stimulation and triggers the resident T cells, thus promoting renal damage.  相似文献   

7.
8.
9.
Dendritic cells (DCs) are the most effective antigen-presenting cells for inducing cell-mediated immune responses; it is thus important to investigate the role played by lung DCs in the pathogenesis of paracoccidioidomycosis (PCM) and their potential to initiate an immune response in mice susceptible (B10.A) and resistant (A/J) to PCM. Initially, we observed that lung DCs from susceptible mice were more phagocytic than cells from resistant mice, and we observed that phagocytosis in the presence of laminarin was inhibited only in DCs from susceptible mice. DCs from resistant mice produced a low concentration of interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)- alpha . In contrast, DCs from susceptible mice produced high concentrations of TNF- alpha and IL-10, but IL-10 production was significantly inhibited in the presence of laminarin. We also observed that DCs from Toll-like receptor (TLR)-2 knockout mice displayed defective production of IL-10. After 15 days of Paracoccidioides brasiliensis infection, DCs from susceptible mice produced IL-10 and expressed costimulatory molecules at a low level. We found that expression of the gene for TLR-2 is increased after infection in susceptible, but not resistant, mice. In conclusion, our data suggest that P. brasiliensis induces regulatory DCs in susceptible mice, which promotes IL-10 production and contributes to the susceptibility of mice to P. brasiliensis infection.  相似文献   

10.
Previous studies suggested a functional impairment of dendritic cells (DCs) in patients with chronic hepatitis C. To investigate whether this effect was mediated by a direct interaction of hepatitis C virus (HCV) with DCs, we studied the effects of infectious cell culture-produced hepatitis C virus (HCVcc) on peripheral blood mononuclear cells (PBMCs), ex vivo isolated plasmacytoid, and myeloid DCs and in vitro generated monocyte-derived DCs of healthy blood donors. HCVcc inhibited toll-like receptor (TLR)-9 (CpG and herpes simples virus)-mediated interferon alpha (IFN-alpha) production by peripheral blood mononuclear cells (PBMC) and plasmacytoid DCs. This inhibitory effect was also observed in response to ultraviolet (UV)-inactivated, noninfectious HCVcc, and it was not abrogated by neutralizing antibodies, and thus did not appear to require DC infection. Influenza A virus restored maturation and TLR9-mediated IFN-alpha production. In contrast to its effect on plasmacytoid DCs, HCVcc did not inhibit TLR3-mediated and TLR4-mediated maturation and interleukin (IL)-12, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha) production by myeloid DCs and monocyte-derived DCs. Likewise, HCVcc did neither alter the capacity of myeloid DCs nor monocyte-derived DCs to induce CD4 T cell proliferation. Whereas phagocytosis of apoptotic hepatoma cells resulted in DC maturation, this effect was independent of whether the phagocytosed Huh7.5.1 cells were infected with HCVcc. In contrast to HCVcc, vaccinia virus inhibited maturation and TNF-alpha expression of myeloid DC as well as maturation and IL-6 and IL-10 production of monocyte-derived DC. CONCLUSION: HCVcc inhibited plasmacytoid DCs but not myeloid-derived and monocytoid-derived DCs via a direct interaction that did not require infection. The response of plasmacytoid DCs to influenza A virus infection was not impaired.  相似文献   

11.
Cheng P  Nefedova Y  Miele L  Osborne BA  Gabrilovich D 《Blood》2003,102(12):3980-3988
The Notch family of receptors plays an important role in regulation of cell differentiation via direct contact between hematopoietic progenitor cells (HPCs) and bone marrow stroma (BMS). However the precise contribution of Notch in dendritic cell (DC) differentiation is controversial. In 2 different experimental systems using Notch-1-null embryonic stem cells and Notch-1-deficient HPCs we have found that Notch-1 is necessary for DC differentiation. However, activation of Notch-1 and Notch-2 with cell-bound Notch ligand did not result in differentiation of mature DCs or macrophages. Instead, it caused accumulation of immature myeloid cells. Removal of feeder cells resulted in rapid differentiation of DCs and macrophages. Addition of interleukin 4 (IL-4) into the culture dramatically increased accumulation of functionally potent DCs. Lipopolysaccharide was not able to reproduce this effect. Thus, these data indicate that Notch signaling prevents differentiation of mature myeloid cells. Instead, it results in accumulation of precursors readily able to differentiate into mature DCs once the Notch signal is stopped (eg, after cell emigration from bone marrow) and in the presence of other additional differentiation signals provided by IL-4. Thus, Notch is required but not sufficient for DC differentiation.  相似文献   

12.
The aim of this study was to evaluate the nonchemotactic function of CCL18 on human dendritic cells (DCs). In different protocols of DC differentiation, CCL18 was highly produced, suggesting that it may constitute a mandatory mediator of the differentiation process. Differentiation of monocytes from healthy subjects in the presence of granulocyte-macrophage colony-stimulating factor and CCL18 led to the development of DCs with a semimature phenotype, with intermediate levels of costimulatory and MHC class II molecules, increased CCR7 expression, which induced, in coculture with allogenic naive T cells, an increase in IL-10 production. The generated T cells were able to suppress the proliferation of effector CD4(+)CD25(-) cells, through a cytokine-dependent mechanism, and exhibited characteristics of type 1 T regulatory cells. The generation of tolerogenic DCs by CCL18 was dependent on the production of indoleamine 2,3-dioxigenase through an interleukin-10-mediated mechanism. Surprisingly, when DCs originated from allergic patients, the tolerogenic effect of CCL18 was lost in relation with a decreased binding of CCL18 to its putative receptor. This study is the first to define a chemokine able to generate tolerogenic DCs. However, this function was absent in allergic donors and may participate to the decreased tolerance observed in allergic diseases.  相似文献   

13.
Schnurr M  Toy T  Shin A  Wagner M  Cebon J  Maraskovsky E 《Blood》2005,105(4):1582-1589
The interleukin-12 (IL-12) cytokine family plays important roles in the orchestration of innate and adaptive immunity by dendritic cells (DCs). The regulation of IL-12 expression has been thoroughly studied, but little is known about factors governing the expression of IL-23 and IL-27, 2 novel IL-12 family members acting on memory and naive T cells, respectively. We report that the expression of these cytokines by DCs was critically dependent on the mode of activation. DC activation by CD40L predominantly induced IL-12. Ligands of the Toll-like receptor (TLR) 3 and TLR4 induced IL-12 and IL-27, whereas exposure to intact Escherichia coli resulted in high expression of IL-12, IL-27, and IL-23. The nucleotide adenosine triphosphate (ATP) has been shown to inhibit IL-12 production by P2 receptors. We found that ATP also inhibited IL-27 expression but enhanced IL-23 expression. Interestingly, the reciprocal regulation of IL-12/IL-27 and IL-23 by ATP was mediated by 2 distinct P2 receptors and was also induced by prostaglandin E(2) by cyclic adenosine monophosphate (cAMP)-elevating EP2/EP4 receptors. As a consequence, DCs were selectively impaired in their ability to induce interferon-gamma (IFN-gamma) in naive T cells but continued to promote IFN-gamma and IL-17 production in memory T cells. These studies identify P2 receptors as promising targets for the design of novel strategies to manipulate specific stages of T-cell responses and to treat IL-12- and IL-23-mediated disorders.  相似文献   

14.
Adenosine is released during tissue injury, ischemia and tumor growth, and promotes angiogenesis. Because mast cells accumulate in the proximity of new blood vessel development, we examined if they may contribute to adenosine-induced angiogenesis. We found that HMC-1 human mast cells express A2A, A2B, and A3 adenosine receptors. The adenosine agonist NECA (100 micromol/L) increased interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and angiopoietin-2 mRNA expression. NECA-induced secretion of IL-8 and VEGF was verified by ELISA. A2B receptors mediate VEGF and IL-8 secretion because neither CGS21680 (selective A2A agonist) nor IB-MECA (selective A3 agonist) produced this effect, and it was inhibited by the selective A2B antagonist IPDX but not by the selective A2A antagonist SCH58261 or the selective A3 antagonist MRS1191. In contrast, the selective A3 agonist IB-MECA (EC50 1 nmol/L) stimulated angiopoietin-2 expression. Conditioned media from NECA-activated HMC-1 stimulated human umbilical vein endothelial cell proliferation and migration, and induced capillary tube formation. Capillary formation induced by mast cell-conditioned media was maximal if both HMC-1 A2B and A3 receptors were activated, whereas activation of A2B receptor alone was less effective. Thus, adenosine A2B and A3 receptors act in a functional cooperative fashion to promote angiogenesis by a paracrine mechanism involving the differential expression and secretion of angiogenic factors from human mast cells.  相似文献   

15.
CD4+ T cells of the Th17 subtype are over-represented in the aged immune system. Dendritic cells (DC) play a critical role in naïve CD4+ T cell differentiation. However, expression of cytokines by aged DC that promote differentiation or survival of Th17 cells has not been extensively investigated. Using bone marrow-derived DC from C57BL/6 mice of different ages we compared cytokine production after DC activation by Toll-like receptor agonists for TLR4 and/or TLR7/8. DC-derived TNF-α and IL-12p70 production and expression of DC co-stimulatory molecules did not vary significantly by age indicating that TLR expression, function and signal transduction were intact in aged DC. There were relatively minor age-related changes in TGF-β and IL-6 which promote Th17 differentiation, but IL-23, a Th17-suvival cytokine, increased more than 40-fold across the lifespan. DC-derived prostaglandin E2 (PGE2) also increased with age and the up-regulation of IL-23 expression by aged DC was blocked by indomethacin that prevents PGE2 production, and by antagonists of PGE2 receptors. Exogenous PGE2 added to DC cultures further enhanced IL-23 production from aged but not young DCs. These data indicate that age-related changes in DC PGE2 production are necessary, but not sufficient to induce DC IL-23 production. Such changes may play a role in the expansion of Th17 cells in the aged immune system.  相似文献   

16.
We describe a new B220+ subpopulation of immaturelike dendritic cells (B220+ DCs) with low levels of expression of major histocompatibility complex (MHC) and costimulatory molecules and markedly reduced T-cell stimulatory potential, located in the thymus, bone marrow, spleen, and lymph nodes. B220+ DCs display ultrastructural characteristics resembling those of human plasmacytoid cells and accordingly produce interferon-alpha after virus stimulation. B220+ DCs acquired a strong antigen-presenting cell capacity on incubation with CpG oligodeoxynucleotides, concomitant with a remarkable up-regulation of MHC and costimulatory molecules and the production of interleukin-12 (IL-12) and IL-10. Importantly, our data suggest that nonstimulated B220+ DCs represent a subset of physiological tolerogenic DCs endowed with the capacity to induce a nonanergic state of T-cell unresponsiveness, involving the differentiation of T regulatory cells capable of suppressing antigen-specific T-cell proliferation. In conclusion, our data support the hypothesis that B220+ DCs represent a lymphoid organ subset of immature DCs with a dual role in the immune system-exerting a tolerogenic function in steady state but differentiating on microbial stimulation into potent antigen-presenting cells with type 1 interferon production capacity.  相似文献   

17.
Background: Dendritic cells, (DCs) as one of the important immune cell populations, are responsible for the initiation, development, and control of acquired immune responses. Myeloid dendritic cells can be used as a vaccine for several autoimmune diseases and cancers. Tolerogenic probiotics with regulatory properties can affect the maturation and development of immature dendritic cells (IDC) into mature DCs with certain immunomodulatory effects.Objective: To assess the immunomodulatory effect of Lactobacillus rhamnosus and Lactobacillus delbrueckii, as two tolerogenic probiotics, in the differentiation and maturation of myeloid dendritic cells.Methods: The IDCs were derived from the healthy donors in GM-CSF and IL 4 medium. Mature DCs (MDC) were produced with L. delbrueckii, L. rhamnosus, and LPS from IDCs. Real-Time PCR and flow cytometry were used to confirm the DC maturation and to determine DC markers as well as IDO, IL10, and IL12 expression levels, respectively.Results: Probiotic-derived DCs showed a significant reduction in the level of HLA-DR (P≤0.05), CD86 (P≤0.05), CD80 (P≤0.001), CD83 (P≤0.001), and CD1a. Also, the expression of IDO (P≤0.001) and IL10 increased while IL12 expression decreased (P≤0.001).Conclusion: Our findings revealed that tolerogenic probiotics could induce regulatory DCs by reducing co-stimulatory molecules along with increasing the expression of IDO and IL10 during the differentiation process. Therefore, the induced regulatory DCs probably can be used in the treatment of various inflammatory diseases.  相似文献   

18.
Dendritic cells (DCs) express functional purinergic type 1 receptors, but the effects of adenosine in these antigen-presenting cells have been only marginally investigated. Here, we further characterized the biologic activity of adenosine in immature DCs (iDCs) and lipopolysaccharide (LPS)-matured DCs (mDCs). Chronic stimulation with adenosine enhanced the macropinocytotic activity and the membrane expression of CD80, CD86, major histocompatibility complex (MHC) class I, and HLA-DR molecules on iDCs. Adenosine also increased LPS-induced CD54, CD80, MHC class I, and HLA-DR molecule expression in mDCs. In addition, adenosine dose-dependently inhibited tumor necrosis factor alpha and interleukin-12 (IL-12) release, whereas it enhanced the secretion of IL-10 from mDCs. The use of selective receptor agonists revealed that the modulation of the cytokine and cell-surface marker profile was due to activation of A(2) adenosine receptor. Functionally, adenosine reduced the allostimulatory capacity of iDCs, but not of mDCs. More important, DCs matured in the presence of adenosine had a reduced capacity to induce T helper 1 (Th1) polarization of naive CD4(+) T lymphocytes. Finally, adenosine augmented the release of the chemokine CCL17 and inhibited CXCL10 production by mDCs. In aggregate, the results provide initial evidence that adenosine diminishes the capacity of DCs to initiate and amplify Th1 immune responses.  相似文献   

19.
Tolerogenic dendritic cells (DCs) may be valuable in transplantation for silencing immune reaction. Macrophage colony-stimulating factor (M-CSF)/IL-4 induces differentiation of cord blood (CB) monocytes into DCs (M-DCs) with tolerogenic phenotype/function. We assessed whether factors produced by tolerogenic DCs could modulate hematopoiesis. TGF-beta1 added to CB M-DC cultures induced bona fide DC morphology (TGF-M-DCs), similar to that of DCs generated with TGF-beta and granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-4 (TGF-GM-DCs). Of conditioned media (CM) produced from TGF-M-DCs, TGF-GM-DCs, M-DCs, and GM-DCs, TGF-M-DC CM was the only one that enhanced SCF, Flt3 ligand, and TPO expansion of myeloid progenitor cells ex vivo. This effect was blocked by neutralizing anti-M-CSF Ab, but protein analysis of CM suggested that M-CSF alone was not manifesting enhanced expansion of myeloid progenitors. LPS-stimulated TGF-M-DCs induced T-cell tolerance/anergy as effectively as M-DCs. TGF-M-DCs secreted significantly lower concentrations of progenitor cell inhibitory cytokines and were less potent in activating T cells than TGF-GM-DCs. Functional differences between TGF-M-DCs and TGF-GM-DCs included enhanced responses to LPS-induced ERK, JNK, and P38 activation in TGF-M-DCs and their immune suppressive-skewed cytokine release profiles. TGF-M-DCs appear unique among culture-generated DCs in their capability for silencing immunity while promoting expansion of myeloid progenitors, events that may be of therapeutic value.  相似文献   

20.
Dendritic cells (DCs) are involved in the initiation and regulation of innate and adaptive immune responses. Several molecular mechanisms regulate these diverse DC functions, and we have previously reported that mouse dendritic cells (mDCs) can produce interleukin-2 (IL-2) in vitro and in vivo, in response to microbial activation and T-cell-mediated stimuli. This property is shared by different DC subtypes, including Langerhans cells. Here we show that, on appropriate stimulation, human DCs, both plasmacytoid and myeloid subtypes, also express IL-2. Interestingly, the production of IL-2 by myeloid DCs is induced by T-cell-mediated stimuli and depends on the presence of IL-15. The key role of this cytokine in regulating IL-2 production was also confirmed in the mouse system. In particular, we could show that DCs from IL-15-deficient mice were strongly impaired in the ability to produce IL-2 after interactions with different microbial stimuli. Our results indicate that DC-produced IL-2 is tightly coregulated with the expression of IL-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号