首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeStudies conducted primarily among European ancestry women reported 12 breast cancer predisposition genes. However, etiologic roles of these genes in breast cancer among African ancestry women have been less well-investigated.MethodsWe conducted a case-control study in African American women, which included 1117 breast cancer cases and 2169 cancer-free controls, and a pooled analysis, which included 7096 cases and 8040 controls of African descent. Odds ratios of associations with breast cancer risk were estimated.ResultsUsing sequence data, we identified 61 pathogenic variants in 12 breast cancer predisposition genes, including 11 pathogenic variants not yet reported in previous studies. Pooled analysis showed statistically significant associations of breast cancer risk with pathogenic variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, TP53, NF1, RAD51C, and RAD51D (all P < .05). The associations with BRCA1, PALB2, and RAD51D were stronger for estrogen receptor (ER)-negative than for ER-positive breast cancer (P heterogeneity < .05), whereas the association with CHEK2 was stronger for ER-positive than for ER-negative breast cancer.ConclusionOur study confirmed previously identified associations of breast cancer risk with BRCA1, BRCA2, PALB2, ATM, TP53, NF1, and CHEK2 and provided new evidence to extend the associations of breast cancer risk with RAD51C and RAD51D, which was identified previously in European ancestry populations, to African ancestry women.  相似文献   

2.
RAD51C and RAD51D have been defined as susceptibility genes for hereditary breast and ovarian cancer syndrome in several studies. In the present study, a mutation analysis of these genes was performed on non BRCA1/2 families. RAD51C and RAD51D genes were analyzed in 141 and 77 families, respectively. The analysis included direct sequencing and multiple ligation probe analysis. The RAD51C pathogenic variant c.404G?>?A was identified in a breast and ovarian cancer family (0.7%), while the RAD51D pathogenic variant c.694C?>?T was described in an ovarian cancer family (1.3%). Moreover, three unknown clinical significance variants were detected: c.307T?>?G in RAD51C, and c.413A?>?G and c.715C?>?T in RAD51D. No large genomic rearrangements (LGRs) were found. RAD51D carriers suffered from premenopausal ovarian tumors. These results increase our knowledge about the RAD51C and RAD51D mutation spectrum and support the notion that these genes should be included in the gene panel testing performed on patients with hereditary breast and ovarian cancer syndrome.  相似文献   

3.
Gene‐panel sequencing allows comprehensive analysis of multiple genes simultaneously and is now routinely used in clinical mutation testing of high‐risk breast and ovarian cancer patients. However, only BRCA1 and BRCA2 are often analyzed also for large genomic changes. Here, we have analyzed 10 clinically relevant susceptibility genes in 95 breast or ovarian cancer patients with gene‐panel sequencing including also copy number variants (CNV) analysis for genomic changes. We identified 12 different pathogenic BRCA1, BRCA2, TP53, PTEN, CHEK2, or RAD51C mutations in 18 of 95 patients (19%). BRCA1/2 mutations were observed in 8 patients (8.4%) and CHEK2 protein‐truncating mutations in 7 patients (7.4%). In addition, we identified a novel duplication encompassing most of the RAD51C gene. We further genotyped the duplication in breast or ovarian cancer families (n = 1149), in unselected breast (n = 1729) and ovarian cancer cohorts (n = 553), and in population controls (n = 1273). Seven additional duplication carries were observed among cases but none among controls. The duplication associated with ovarian cancer risk (3/590 of all ovarian cancer patients, 0.5%, P = .032 compared with controls) and was found to represent a large fraction of all identified RAD51C mutations in the Finnish population. Our data emphasizes the importance of comprehensive mutation analysis including CNV detection in all the relevant genes.  相似文献   

4.
Several genes might explain BRCA1/2 negative breast and ovarian family cases. Deleterious mutations in few genes involved in the Fanconi complex are responsible for Fanconi anemia at the homozygous state and breast cancer (BC) susceptibility at the heterozygous state (BRCA2, PALB2, BRIP1). RAD51C plays an important role in the double‐strand break repair pathway and a biallelic missense mutation in the RAD51C gene was found in a Fanconi anemia‐like disorder. Subsequently, six monoallelic pathogenic mutations were identified after screening 480 BRCA1/2 negative breast and ovarian cancer (BC/OC) pedigrees. Several reports were unsuccessful to replicate these results. To investigate whether germline mutations in RAD51C are associated with an increased risk of developing BC/OC, we screened, by Sanger sequencing of the coding sequence, 117 index cases of breast and ovarian families from French or European origin, and negative for BRCA1/2 mutations. In our study, we found 3 pathogenic mutations among 117 families screened which corresponds to a 2.6% frequency. Our results confirm that RAD51C is a susceptibility gene for ovarian and BC and that this gene should be screened for mutations in families with multiple BC/OC.  相似文献   

5.
Inherited biallelic pathogenic variants (PVs) in BRCA2 cause Fanconi Anemia complementation group D1 (FA-D1), a severe pediatric bone marrow failure and high-risk cancer syndrome. We identified biallelic BRCA2 PVs in a young adult with multiple basal cell carcinomas, adult-onset colorectal cancer and small cell neuroendocrine carcinoma, without bone marrow failure. No PVs were identified in any other known cancer susceptibility gene, and there was no evidence of reversion mosaicism. The proband's deceased sister had a classic FA-D1 presentation and was shown to carry the same biallelic BRCA2 PVs. A lymphoblastoid cell line derived from the proband demonstrated hypersensitivity to DNA damaging agents, and bone marrow showed aberrant RAD51 staining. Family expansion demonstrated the presence of BRCA2 related cancers in heterozygous family members. Our data highlight the striking phenotypic differences which can be observed within FA-D1 families and expands the clinical spectrum of FA-D1 to include adult presentation with a constellation of solid tumors not previously thought of as characteristic of Fanconi Anemia. Early recognition of this syndrome in a family could prevent further morbidity and mortality by implementation of hereditary breast and ovarian cancer screening and treatment strategies for heterozygous family members.  相似文献   

6.
Recent studies suggest that genetic polymorphisms of the DNA repair genes have been implicated in breast cancer risk. BRCA1 and BRCA2 , two breast cancer susceptibility genes, are essential to maintain chromosomal integrity. This is mediated via regulation of RAD51 during homologous recombination. Dinucleotide polymorphism repeats in the 15q14–21, 17q21 and 13q12–13 regions, where the RAD51 , BRCA1 and BRCA2 genes are located, respectively, have been evaluated. The polymorphism was determined using the following microsatellite markers: D15S118, D15S214, D15S1006, D17S855, D17S1323, D13S260 and D13S290. Genotypes containing the (CA)17 or (CA)19 alleles in the RAD51 region were found to be associated with a decreased breast cancer risk. Genotype containing the (CA)17 allele in the 13q12–13 region was found to be associated with an increased breast cancer risk. The results indicate that dinucleotide CA repeat polymorphism at RAD51 and BRCA2 gene regions might be associated with genetic susceptibility to breast cancer.  相似文献   

7.
Much of the observed familial clustering of breast and ovarian cancer cannot be explained by mutations in BRCA1 and BRCA2. Several other cancer susceptibility genes have been identified, but their value in routine clinical genetic testing is still unclear. Germline mutations in RAD51C have been identified in about 1% of hereditary breast and ovarian cancer families. RAD51C mutations are predominantly found in families with a history of ovarian cancer and are rare in families with a history of breast cancer alone. RAD51C is primarily an ovarian cancer susceptibility gene. A mutation is present in approximately 1% of unselected ovarian cancers. Among mutation carriers, the lifetime risk of ovarian cancer is approximately 9%. The average age at onset is approximately 60 years; this suggests that preventive oophorectomy can be delayed until after natural menopause. Under current guidelines, genetic testing for RAD51C is expected to have a limited impact on ovarian cancer incidence at a population level. This is because the penetrance is 9% to age 80; the great majority of families with mutations would be represented by a single case of ovarian cancer, these are potentially preventable through population screening but not through screening of established ovarian cancer families.  相似文献   

8.
Cancer is a multifactorial disorder; however, 5–10% of all cancers show hereditary background. In recent years many targeted next generation sequencing panels comprising cancer predisposition genes have been developed and used for diagnostic purposes in patients with increased cancer risk. Screening multiple genes at a time allows multiple variants in different genes to be detected as well. This study aims to determine the cases with concurrent mutations in different hereditary cancer predisposition genes and how they are clinically affected. Here, we screened 1090 index cases by next generation sequencing based hereditary cancer panels and evaluated the reflection of multiple variations on the phenotype. We detected 11 (1%) cases with pathogenic variants in more than one gene. These concurrent variations occurred mostly in BRCA1/2 (7/11) accompanied with MUTYH, ATM, CHECK2, NBN, and RAD50. In addition, MUTYH&ATM, NBN&MSH6, MUTYH&CHEK2 double heterozygous cases were detected. Moreover, we identified a case with three heterozygous variations in CDH1, MUTYH, and CHEK2. These patients presented malignancies that were mostly related to pathogenic variations they carried. Although they are rare, defining double heterozygous cases is important for managing appropriate therapy and accurate genetic consulting for the patients and family members.  相似文献   

9.
Background: Breast cancer is the leading cause of cancer death in women in Algeria. The contribution of BRCA1 and BRCA2 mutations to hereditary breast/ovarian cancer in Algerian population is largely unknown. Here, we describe analysis of BRCA1 and BRCA2 genes in 86 individuals from 70 families from an Algerian cohort with a personal and family history suggestive of genetic predisposition to breast cancer. Methods: The approach used is based on BRCA1 and BRCA2 mutations screening by High-Resolution Melting (HRM) curve analysis followed by direct sequencing. All samples for which no pathogenic mutation was found were analyzed by MLPA for large deletions or duplications. Results: Three distinct pathogenic mutations c.83_84delTG, c.181T>G, c.798_799delTT and two large rearrangements involving deletion of exon 2 and exon 8 respectively, were detected in BRCA1 gene. Moreover 17 unclassified variants and polymorphisms were detected in BRCA1 gene (6 described for the first time). Two pathogenic mutations, c.1310_1313delAAGA and c.5722_5723delCT and 40 unclassified variants and polymorphisms (14 never described before) were identified in BRCA2 gene. Conclusions: For the first time, we used HRM and MLPA to identify BRCA1 and BRCA2 mutations in Algerian patients with a personal and family history suggestive of genetic predisposition to breast cancer. The implications of these new findings in regard to genetic testing and counseling are substantial for the Algerian population.  相似文献   

10.
Identification of Rad51 alteration in patients with bilateral breast cancer   总被引:9,自引:0,他引:9  
The human Rad51 gene, HsRAD51, is a homolog of RecA of Escherichia coli and functions in recombination and DNA repair. BRCA1 and BRCA2 proteins form a complex with Rad51, and these genes are thought to participate in a common DNA damage response path-way associated with the activation of homologous recombination and double-strand break repair. Additionally, we have shown that the pattern of northern blot analysis of the Rad51 gene is closely similar to those of the BRCA1 and BRCA2 genes. It is therefore possible that alterations of the Rad51 gene may be involved in the development of hereditary breast cancer. To investigate this possibility, we screened Japanese patients with hereditary breast cancer for Rad51 mutations and found a single alteration in exon 6. This was determined to be present in the germline in two patients with bilateral breast cancer, one with synchronous bilateral breast cancer and the other with synchronous bilateral multiple breast cancer. In both patients, blood DNAs showed a G-to-A transition in the second nucleotide of codon 150, which results in the substitution of glutamine for arginine. As this alteration was not present in any patients with breast or colon cancer examined, we assume that this missense alteration is likely to be a disease-causing mutation. Received: November 9, 1999 / Accepted: December 16, 1999  相似文献   

11.
Breast cancer is the most common malignancy in women in the Western world. Except for the high breast cancer risk in BRCA1 and BRCA2 mutation carriers as well as the risk for breast cancer in certain rare syndromes caused by mutations in TP53, STK11, PTEN, CDH1, NF1 or NBN, familial clustering of breast cancer remains largely unexplained. Despite significant efforts, BRCA3 could not be identified, but several reports have recently been published on genes involved in DNA repair and single nucleotide polymorphisms (SNPs) associated with an increased breast cancer risk. Although candidate gene approaches demonstrated moderately increased breast cancer risks for rare mutations in genes involved in DNA repair (ATM, CHEK2, BRIP1, PALB2 and RAD50), genome-wide association studies identified several SNPs as low-penetrance breast cancer susceptibility polymorphisms within genes as well as in chromosomal loci with no known genes (FGFR2, TOX3, LSP1, MAP3K1, TGFB1, 2q35 and 8q). Some of these low-penetrance breast cancer susceptibility polymorphisms also act as modifier genes in BRCA1/BRCA2 mutation carriers. This review not only outlines the recent key developments and potential clinical benefit for preventive management and therapy but also discusses the current limitations of genetic testing of variants associated with intermediate and low breast cancer risk.  相似文献   

12.
Ovarian cancer is the fourth most common cause of cancer-related death in women in the developed world, and one of the most heritable cancers. One of the most significant risk factors for epithelial ovarian cancer (EOC) is a family history of breast and/or ovarian cancer. Combined risk factors can be used in models to stratify risk of EOC, and aid in decisions regarding risk-reduction strategies. Germline pathogenic variants in EOC susceptibility genes including those involved in homologous recombination and mismatch repair pathways are present in approximately 22% to 25% of EOC. These genes are associated with an estimated lifetime risk of EOC of 13% to 60% for BRCA1 variants and 10% to 25% for BRCA2 variants, with lower risks associated with remaining genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) thought to explain an additional 6.4% of the familial risk of ovarian cancer, with 34 susceptibility loci identified to date. However, an unknown proportion of the genetic component of EOC risk remains unexplained. This review comprises an overview of individual genes and SNPs suspected to contribute to risk of EOC, and discusses use of a polygenic risk score to predict individual cancer risk more accurately.  相似文献   

13.
《Genetics in medicine》2018,20(12):1677-1686
PurposeIntegration of gene panels in the diagnosis of hereditary breast and ovarian cancer (HBOC) requires a careful evaluation of the risk associated with pathogenic or likely pathogenic variants (PVs) detected in each gene. Here we analyzed 34 genes in 5131 suspected HBOC index cases by next-generation sequencing.MethodsUsing the Exome Aggregation Consortium data sets plus 571 individuals from the French Exome Project, we simulated the probability that an individual from the Exome Aggregation Consortium carries a PV and compared it to the estimated frequency within the HBOC population.ResultsOdds ratio conferred by PVs within BRCA1, BRCA2, PALB2, RAD51C, RAD51D, ATM, BRIP1, CHEK2, and MSH6 were estimated at 13.22 [10.0117.22], 8.61 [6.7810.82], 8.22 [4.9113.05], 4.54 [2.557.48], 5.23 [1.4613.17], 3.20 [2.144.53], 2.49 [1.423.97], 1.67 [1.182.27], and 2.50 [1.124.67], respectively. PVs within RAD51C, RAD51D, and BRIP1 were associated with ovarian cancer family history (OR = 11.36 [5.7819.59], 12.44 [2.9433.30] and 3.82 [1.667.11]). PALB2 PVs were associated with bilateral breast cancer (OR = 16.17 [5.4834.10]) and BARD1 PVs with triple-negative breast cancer (OR = 11.27 [3.3725.01]). Burden tests performed in both patients and the French Exome Project population confirmed the association of PVs of BRCA1, BRCA2, PALB2, and RAD51C with HBOC.ConclusionOur results validate the integration of PALB2, RAD51C, and RAD51D in the diagnosis of HBOC and suggest that the other genes are involved in an oligogenic determinism.  相似文献   

14.
Although an association between protein‐truncating variants and breast cancer risk has been established for 11 genes, only alterations in BRCA1, BRCA2, TP53 and PALB2 have been reported in Asian populations. Given that the age of onset of breast cancer is lower in Asians, it is estimated that inherited predisposition to breast cancer may be more significant. To determine the potential utility of panel testing, we investigated the prevalence of germline alterations in 11 established and 4 likely breast cancer genes in a cross‐sectional hospital‐based cohort of 108 moderate to high‐risk breast cancer patients using targeted next generation sequencing. Twenty patients (19%) were identified to carry deleterious mutations, of whom 13 (12%) were in the BRCA1 or BRCA2, 6 (6%) were in five other known breast cancer predisposition genes and 1 patient had a mutation in both BRCA2 and BARD1. Our study shows that BRCA1 and BRCA2 account for the majority of genetic predisposition to breast cancer in our cohort of Asian women. Although mutations in other known breast cancer genes are found, the functional significance and breast cancer risk have not yet been determined, thus limiting the clinical utility of panel testing in Asian populations.  相似文献   

15.
NF1 mutations predispose to neurofibromatosis type 1 (NF1) and women with NF1 have a moderately elevated risk for breast cancer, especially under age 50. Germline genomic analysis may better define the risk so screening and prevention can be applied to the individuals who benefit the most. Survey conducted in several neurofibromatosis clinics in the United States has demonstrated a 17.2% lifetime risk of breast cancer in women affected with NF1. Cumulated risk to age 50 is estimated to be 9.27%. For genomic profiling, fourteen women with NF1 and a history of breast cancer were recruited and underwent whole exome sequencing (WES), targeted genomic DNA based and RNA‐based analysis of the NF1 gene. Deleterious NF1 pathogenic variants were identified in each woman. Frameshift mutations because of deletion/duplication/complex rearrangement were found in 50% (7/14) of the cases, nonsense mutations in 21% (3/14), in‐frame splice mutations in 21% (3/14), and one case of missense mutation (7%, 1/14). No deleterious mutation was found in the following high/moderate‐penetrance breast cancer genes: ATM, BRCA1, BRCA2, BARD1, BRIP1, CDH1, CHEK2, FANCC, MRE11A, NBN, PALB2, PTEN, RAD50, RAD51C, TP53, and STK11. Twenty‐five rare or common variants in cancer related genes were discovered and may have contributed to the breast cancers in these individuals. Breast cancer predisposition modifiers in women with NF1 may involve a great variety of molecular and cellular functions.  相似文献   

16.
The identification and interpretation of germline BRCA1/2 variants become increasingly important in breast and ovarian cancer (OC) treatment. However, there is no comprehensive analysis of the germline BRCA1/2 variants in a Chinese population. Here we performed a systematic review and meta‐analysis on such variants from 94 publications. A total of 2,128 BRCA1/2 variant records were extracted, including 601 from BRCA1 and 632 from BRCA2. In addition, 414, 734, 449, and 307 variants were also recorded in the BIC, ClinVar, ENIGMA, and UMD databases, respectively, and 579 variants were newly reported. Subsequent analysis showed that the overall germline BRCA1/2 pathogenic variant frequency was 5.7% and 21.8% in Chinese breast and OC, respectively. Populations with high‐risk factors exhibited a higher pathogenic variant percentage. Furthermore, the variant profile in Chinese is distinct from that in other ethnic groups with no distinct founder pathogenic variants. We also tested our in‐house American College of Medical Genetics‐guided pathogenicity interpretation procedure for Chinese BRCA1/2 variants. Our results achieved a consistency of 91.2–97.6% (5‐grade classification) or 98.4–100% (2‐grade classification) with public databases. In conclusion, this study represents the first comprehensive meta‐analysis of Chinese BRCA1/2 variants and validates our in‐house pathogenicity interpretation procedure, thereby providing guidance for further PARP inhibitor development and companion diagnostics in the Chinese population.  相似文献   

17.
Germline mutations in either of the two major breast cancer predisposition genes, BRCA1 and BRCA2, account for a significant proportion of hereditary breast/ovarian cancer. Identification of breast cancer patients carrying mutations of these genes is primarily based on a positive family history of breast/ovarian cancer or early onset of the disease or both. In the course of mutation screening of the BRCA1 and BRCA2 genes in a hospital based series of patients with risk factors for hereditary breast/ovarian cancer, we identified a germline mutation in the BRCA2 gene (3034del4) in a patient with early onset breast cancer and no strong family history of the disease. Subsequent molecular analysis in her parents showed that neither of them carried the mutation. Paternity was confirmed using a set of highly polymorphic markers, showing that the proband carried a de novo germline mutation in the BRCA2 gene. Interestingly, 3034del4 is a recurrent mutation occurring in a putative mutation prone region of the BRCA2 gene. Our study presents the first case in which a de novo germline mutation in the BRCA2 gene has been identified, and supports previous results of haplotype studies, confirming that the 3034del4 mutation has multiple independent origins.


Keywords: breast cancer; BRCA2 gene; de novo mutation  相似文献   

18.
It is not clear if hereditary site-specific ovarian cancer exists as a genetic entity distinct from the hereditary breast-ovarian cancer syndrome. We have identified a large Ashkenazi Jewish kindred with 8 cases of ovarian carcinoma and no cases of breast cancer. Initially, linkage analysis for this kindred generated a negative LOD score to BRCA1, but subsequent mutation and haplotype analysis of key individuals demonstrated a BRCA1 185delAG mutation segregating with all but 1 of the ovarian cancer cases. This observation has important implications for genetic counselling of families with site-specific ovarian cancer. Hereditary site-specific ovarian cancer is likely to be a variant of the hereditary breast-ovarian cancer syndrome, attributable to either BRCA1 or BRCA2. We consider women from these families to be at increased risk of breast cancer and counsel them accordingly. Am. J. Med. Genet. 75:55–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Fifteen years ago BRCA1 and BRCA2 were reported as high penetrant breast cancer predisposing genes. However, mutations in these genes are found in only a fraction of high risk families. BARD1 is a candidate breast cancer gene, but only a limited number of missense mutations with rather unclear pathogenic consequences have been reported.We screened 196 high risk breast cancer families for the occurrence of BARD1 variants. All genetic variants were analyzed using clinical information as well as IN SILICO predictive tools, including protein modeling. We found three candidate pathogenic mutations in seven families including a first case of a protein truncating mutation (p.Glu652fs) removing the entire second BRCT domain of BARD1. In conclusion, we provide evidence for an increased breast cancer risk associated to specific BARD1 germline mutations. However, these BARD1 mutations occur in a minority of hereditary breast cancer families. ©2010 Wiley‐Liss, Inc.  相似文献   

20.
Currently, hereditary breast cancer is being attributed to more than 20 genes of differing penetrance. Although BRCA1 and BRCA2 are still the genes of reference for breast cancer susceptibility, extreme breast cancer phenotypes may be the result of deleterious alleles of other genes. Here, we report three families with early‐onset breast cancer that were initially referred for BRCA1/BRCA2 genetic testing. They were diagnosed with breast cancer at an extraordinarily early age. On the basis of their extensive family history, which included multiple cancer types, and their Her2 status, they were suspected for Li–Fraumeni syndrome. Indeed, all three probands were found to harbor TP53 tumor suppressor gene mutations. These included p.C275X, described here for the first time, as well as p.R213X and p.Y220C, which have been described in the past. Our conclusion is that decisions on genetic analysis for inherited early onset breast cancer should always be based on detailed pedigree information, combined with Her2 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号