首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty supressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD.  相似文献   

2.
The impact of a single seizure on cognition remains controversial. We hypothesized that a single early-life seizure (sELS) on rat Postnatal Day (P) 7 would alter only hippocampus-dependent learning and memory in mature (P60) rats. The Morris water maze, the novel object and novel place recognition tasks, and contextual fear conditioning were used to assess learning and memory associated with hippocampus/prefrontal cortex, perirhinal/hippocampal cortex, and amygdala function, respectively. The elevated plus maze and open-field test were used to assess anxiety associated with the septum. We report that sELS impaired hippocampus-dependent short-term memory, but not spatial learning or recall. sELS did not disrupt performance in the novel object and novel place recognition tasks. Contextual fear conditioning performance suggested intact amydgala function. sELS did not change anxiety levels as measured by the elevated plus maze or open-field test. Our data suggest that the long-term cognitive impact of sELS is limited largely to the hippocampus/prefrontal cortex.  相似文献   

3.
The impact of a single seizure on cognition remains controversial. We hypothesized that a single early-life seizure (sELS) on rat Postnatal Day (P) 7 would alter only hippocampus-dependent learning and memory in mature (P60) rats. The Morris water maze, the novel object and novel place recognition tasks, and contextual fear conditioning were used to assess learning and memory associated with hippocampus/prefrontal cortex, perirhinal/hippocampal cortex, and amygdala function, respectively. The elevated plus maze and open-field test were used to assess anxiety associated with the septum. We report that sELS impaired hippocampus-dependent short-term memory, but not spatial learning or recall. sELS did not disrupt performance in the novel object and novel place recognition tasks. Contextual fear conditioning performance suggested intact amydgala function. sELS did not change anxiety levels as measured by the elevated plus maze or open-field test. Our data suggest that the long-term cognitive impact of sELS is limited largely to the hippocampus/prefrontal cortex.  相似文献   

4.
The advantages of using predator-related odor stimuli to study emotional responses in laboratory tests depend on whether such stimuli do elicit a relatively complete pattern of emotionality. This has been confirmed for cat fur/skin odor stimuli, which elicit a range of defensive behaviors in rats that may be reduced by anxiolytic drugs, produce residual anxiety-like behavior in the elevated plus maze and support rapid aversive conditioning to the context in which they were encountered. Although the synthetic fox fecal odor, trimethylthiazoline (TMT), elicits avoidance similar to that seen in response to cat fur/skin odor, this avoidance does not respond to anxiolytic drugs. In addition, TMT does not produce residual anxiety-like behaviors in the elevated plus maze, nor does it support conditioning.

As natural cat feces also elicit avoidance but fail to support conditioning, it is possible that the ability of a predator-related odor to serve as an effective unconditioned stimulus (US) relates to its predictive status with reference to the actual presence of the predator. Avoidance per se may reflect that a stimulus is aversive but not necessarily capable of eliciting an emotional response. This view is consonant with findings in a Mouse Defense Test Battery (MDTB) measuring a wide range of defensive responses to predator exposure. A contextual defense measure that may reflect either conditioned or residual but unconditioned emotional responses was almost never reduced by drug effects unless these also reduced risk assessment or defensive threat/attack measures. However, reductions in contextual defense without changes in flight/avoidance measures were much more common.

These findings suggest that flight/avoidance, although it obviously may occur as one component of a full pattern of defensive and emotional behaviors, is also somewhat separable from the others. When—as appears to be the case with TMT—it is the major or perhaps only consistent defensive behavior elicited, this may reflect a stimulus that is aversive or noxious but with little ability to predict the presence of threat or danger. That such stimuli fail to support rapid aversive conditioning suggests the need for a reanalysis of the characteristics required for an effective aversive US.  相似文献   


5.
The behavioural indices of anxiety/fear/panic range from freezing/inhibition of ongoing behaviour to active defence strategies i.e. fight/flight, depending on the proximity or intensity of the aversive stimulus. However, evidence suggests that when the initial stressor is sufficiently intense, the neural defence circuitry may undergo a long-term increase in sensitivity. Such sensitization has been evoked to explain the chronically hyper-aroused fight/flight state of patients suffering from extreme anxiety states. The purpose of this study was to establish whether direct activation of the rodent midbrain defence system could result in a similar long-term alteration of the animal's responses to subsequent stressful events. This was achieved by studying the behaviour of animals in a threatening environment after repetitive electrical stimulation of the superior colliculus. Animals were then placed on an unstable, elevated and exposed plus maze and their behaviour recorded. Testing was carried out regularly over 3 months. Stimulated animals reliably exhibited significantly increased levels of behaviours designed to escape the aversive conditions of the unstable plus maze. These included visual scanning, end-reaching, preparing to jump, and jumping off the apparatus. Unstimulated control animals, on the other hand, exhibited decreased levels of these behaviours post-stimulation. In contrast, the experimental animals' performance on standard anxiety tests did not differ from controls. These results demonstrate that repetitive tactile stimulation can produce a long-term change in reactions to threat, and is proposed as a functional model of extreme anxiety.  相似文献   

6.
Zinc-enriched (ZEN) neurons are distributed widely throughout the brain and spinal cord. Synaptic vesicle zinc in these neurons is thought to function as a neuromodulator upon its release into the synaptic cleft. Consistent with this possibility, zinc or zinc chelators can alter spatial learning, working memory, and nociception in rodents. Here we use zinc transporter-3 (ZnT3) knockout mice, which are depleted of synaptic vesicle zinc, to assess the consequences of removing this potential neuromodulator on the behavior of adult mice. ZnT3 knockout mice performed equally as well as wild-type mice in the rotarod, pole, and cagetop tests of motor coordination. They exhibited normal thermal nociception in the hot-plate and tail-flick tests, and had similar olfactory, auditory and sensorimotor gating capabilities as wild-type mice. ZnT3 knockout mice behaved similarly as wild-type mice in the open field test and in the elevated plus maze test of anxiety. They exhibited normal learning and memory in the passive avoidance, Morris water maze, and fear conditioning tasks, and normal working and reference memory in a water version of the radial arm maze. We conclude that synaptic vesicle zinc is not essential for mice to be able to perform these tasks, despite the abundance of ZEN neurons in the relevant regions of the CNS. Either the neuromodulatory effects of zinc are not relevant for the tasks tested here, or mice are able to compensate easily for the absence of synaptic vesicle zinc.  相似文献   

7.
Central serotonin [5-hydroxytryptamine (5-HT)] is involved in the aetiology of numerous disease states, including depression and anxiety disorders. Studies have shown that exposure of rats to animal tests of anxiety increases extracellular 5-HT in the cortex or hippocampus determined by in vivo microdialysis. To discriminate whether this increase is caused by the aversive conditions of an animal test for anxiety or by an unconditioned stressor evoking mainly arousal, the present study investigates the effects of an unconditioned acoustic stimulus and exposure to the elevated plus maze (X-maze), respectively, on the release of 5-HT in the ventral hippocampus compared with hippocampal 5-HT release in the home cage and in a non-aversive unfamiliar environment in freely moving rats. Our results showed a distinct pattern of 5-HT release in the ventral hippocampus depending on the stimulus used. Exposure to the X-maze for 20 min was accompanied by an 'anxious' behaviour in the rats and increased extracellular 5-HT to 165% of basal release, whereas exposure to a less aversive 'deactivated' plus maze (115+/-6%) or to white noise for 20 min in the familiar surroundings of the home cage (98+/-6%) did not change hippocampal 5-HT release significantly, despite similar behavioural activation indicated by increased locomotor activity. While both the X-maze and white noise may model anxiety and stress to a certain extent, it seems that the X-maze is more aversive. The results suggest a close relationship between anxiety-related behaviour, but not arousal/non-specific behavioural activation, and 5-HT release in the ventral hippocampus.  相似文献   

8.
The present study tested whether individual differences in anxiety- and fear-related behaviour are associated with between-subjects variation in postmortem brain levels of selected neurotrophic factors. Na?ve C57BL6/J mice of both sexes were subjected either to an elevated plus maze test or to a Pavlovian fear conditioning paradigm. Two days after behavioural assays, the mice were sacrificed for postmortem quantification of the protein levels of brain derived neurotrophic factors (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the hippocampus and amygdala. Significant correlations between behavioural measures and postmortem regional neurotrophic factor contents were revealed. The magnitude of anxiety-like behaviour in the elevated plus maze was positively related to dorsal hippocampal BDNF levels, but negatively related to NGF levels in dorsal hippocampus and in the amygdala. On the other hand, the expression of conditioned fear is positively related to amygdala BDNF and NGF levels, and to dorsal hippocampal NGF levels. Our results add to existing reports in human as well as in animals of correlation between anxiety trait and gross measures of hippocampal volume or activation levels. Moreover, a distinction between spontaneous and learned (or conditioned) anxiety/fear would be relevant to the identification of neurotrophin signalling mechanisms in the hippocampus and amygdala implicated in anxiety and related psychopathology.  相似文献   

9.
The experiments examined the release of 5-hydroxytryptamine using in vivo microdialysis methods in the hippocampus of freely moving rats following Pavlovian aversive conditioning to discrete and contextual stimuli. Differential conditioning was achieved by manipulating the interval between the offset of a discrete auditory ‘clicker’stimulus and the onset of a mild foot-shock reinforcer (0.5 mA, 0.5 s). Foot-shock occurred either simultaneously with the last second of the discrete auditory stimulus (in short-trace subjects) or 60 s later (long-trace subjects). In this way, subjects were preferentially conditioned to the discrete stimulus and background ‘contextual’stimuli respectively. During conditioning subjects also received two identical unpaired visual stimuli. At test, dialysates were collected and behavioural measures taken as all animals experienced (i) the aversive and two other ‘neutral’environments, and (ii) the discrete unconditioned and conditioned stimuli presented in both aversive and neutral environments. Exposure to the aversive environment, but not to either of the two neutral environments, was associated with significantly increased hippocampal 5-hydroxytryptamine release in long-trace subjects. There was also a small but non-significant increase in 5-hydroxytryptamine release in short-trace animals. In contrast, hippocampal 5-hydroxytryptamine release was unaffected by presentation of either of the discrete stimuli under all conditions. The last result was obtained despite robust behavioural responses (freezing) to the discrete conditioned stimulus. These data do not agree with the hypothesis that aversive cues generally activate 5-hydroxytryptamine function in the hippocampus. Rather, they suggest a degree of specificity whereby 5-hydroxytryptamine release in the hippocampus was determined primarily by other qualitative properties of the conditioned aversive stimulus, namely whether the aversive cue was discrete or contextual, as well as by the magnitude of conditioning.  相似文献   

10.
We have investigated the biochemical, physiological, and behavioral properties of transgenic mice overexpressing the full-length neurotrophin receptor trkB (trkB.TK+). The highest trkB.TK+ mRNA overexpression was achieved in the cerebral cortex and hippocampal subfields, both areas also showing strongly increased trkB.TK+ receptor protein expression and phosphorylation. Furthermore, as a result of trkB.TK+ overexpression, partial activation of trkB downstream signaling was observed. Phosphorylation of phospholipaseCgamma-1 was increased but unexpectedly, the expression and phosphorylation levels of signaling molecules Shc and mitogen-activated protein kinase (MAPK) were unaltered. Behavioral studies revealed improved learning and memory in the water maze, contextual fear conditioning, and conditioned taste aversion tests, and reduced anxiety in the elevated plus maze (EPM) and light-dark exploration tests in trkB.TK+ transgenic mice. Electrophysiological studies revealed a reduced long-term potentiation (LTP) at the Schaffer collateral-CA1 synapse in trkB.TK+ mice. Altogether, overexpression of the trkB.TK+ receptor postnatally leads to selective activation of trkB signaling pathways and enhanced learning and memory.  相似文献   

11.
Thyroid hormones play critical roles in brain maturation and cognitive functions. The present study investigated the role of thyroid hormone in emotional learning and memory using trace and delay contextual and cued fear conditioning tasks, respectively. Rats were administered triiodothyronine (T3) into the dorsal hippocampal area 10 min before training or immediately after training, and were scored for freezing behaviour in the same context and in a novel context with and without an auditory cue that had been paired previously with an aversive stimulus, a foot shock. Rats administered T3 before and after training both exhibited significantly increased long-term fear memory in the trace cued and the delay contextual fear conditioning procedures compared to their control groups. The T3-administered rats were not significantly different from their respective controls on the acquisition and short-term fear memory in the trace and delay fear conditioning tasks. No significant difference on long-term trace contextual and delay cued fear memory, respectively, was found. These results indicate that the observed T3-induced enhancement of long-term contextual and cued fear memory was specific to the hippocampus-dependent conditioning tasks. These findings are the first to demonstrate that infusion of T3 into the dorsal hippocampus can improve performance on an emotional memory task.  相似文献   

12.
Runyan JD  Dash PK 《Hippocampus》2005,15(3):333-339
Transition of short-term to long-term memory is referred to as consolidation and the process is dependent on protein synthesis. Recently, several studies have shown that expression of consolidated memory for simple forms of learning tasks (e.g., delay conditioning, contextual fear, inhibitory avoidance) becomes vulnerable to disruption by inhibition of protein synthesis when administered shortly after recall. In the present study, we address whether recall-induced dependence on protein synthesis is a fundamental property that can be applied to a form of memory requiring attentional awareness or is specific to memories for simple forms of conditioning. Trace fear conditioning is a form of learning that requires an active memory trace to associate a conditioned stimulus (CS) with an unconditioned stimulus (US) separated by time. Our data demonstrate that whether a CS-alone recall trial in a novel context acts as an extinction or reactivation trial depends on the strength of the original memory. Inhibition of protein synthesis following the recall trial in animals receiving one trace conditioning training session (that gives rise to weak memory) resulted in enhanced CS-elicited freezing compared with vehicle control, as a result of impaired extinction memory, but had no effect on contextual memory. However, inhibition of hippocampal protein synthesis following the recall trial in animals receiving two trace conditioning training sessions (that gives rise to stronger memory) resulted in impaired retention of both trace CS-US associative and contextual memory despite that the context-US association was not directly reactivated. This provides evidence that, for a robust memory, the CS-alone recall trial results in the reactivation of an episodic-like memory, including trace CS- and contextual-memory, and that hippocampal information storage for the memory as a whole is returned to a labile state requiring de novo protein synthesis. This and other studies are consistent with the role of the hippocampus in coordinating episodic memory retrieval.  相似文献   

13.
Aversive conditioning has been proposed as an important etiologic mechanism in social phobia; however, empirical evidence is scarce and has not relied on a detailed analysis of the acquisition and extinction of the conditioned emotional response.Fourteen men sustaining generalized social phobia and 19 healthy control subjects participated in differential aversive conditioning with two neutral faces as conditioned stimuli and an aversive odor as unconditioned stimulus. Subjective and peripheral physiological responses were obtained.Both groups were successfully conditioned as reflected by differential subjective (valence, arousal, subjective unconditioned stimulus expectancy) and peripheral physiological responses (skin conductance, startle response). There was no evidence for an enhanced conditionability in the social phobics; however, they showed an enhanced unconditioned stimulus expectancy, especially for the nonreinforced conditioned stimuli during acquisition, and a delayed extinction of the conditioned skin conductance response as well as a certain dissociation between subjective and physiological responses.The enhanced unconditioned stimulus expectancy during acquisition and the overall elevated subjective arousal suggest that, under threat, subjects with generalized social phobia may be more prone to associate neutral social cues and an aversive outcome. Furthermore, delayed extinction of the conditioned response seems to contribute to the etiology and maintenance of generalized social phobia.  相似文献   

14.
Mice are favourite subjects in molecular and genetic memory research and frequently studied with classical fear conditioning paradigms that use an auditory cue (conditioned stimulus, CS(+)) to predict an aversive, unconditioned stimulus (US). Yet the conditions that control fear memory specificity and generalisation and their behavioural expression in such conditioned mice have not been analysed systematically. In the current study we addressed these issues in the most widely used mouse strain of behavioural genetics, C57Bl/6. In keeping with findings in other species we demonstrate the dependence of fear memory generalisation on training intensity (i.e. both US intensity and the number of CS(+) and US applied) after both excitatory (explicitly paired presentation of CS(+) and US) and inhibitory training (explicitly unpaired presentation of CS(+) and US). Furthermore, inhibitory overtraining was associated with changes of uncued anxiety-like behaviour in a light/dark exploration test, indicative of an emotional sensitisation reaction as consequence of a lack of US predictability. Together our results describe the qualitatively and quantitatively different increases of defensive behaviour in response to conditioned stimuli of different salience and identify training conditions that lead to fear memory generalisation and emotional sensitisation in C57Bl/6 inbred mice.  相似文献   

15.

Background

Exposure-based therapies are used to treat a variety of trauma- and anxiety-related disorders by generating successful extinction following cue exposure during treatment. The development of adjuvant strategies that accelerate extinction learning, improve tolerability, and increase efficiency of treatment could increase the efficacy of exposure-based therapies. Vagus nerve stimulation (VNS) paired with exposure can enhance fear extinction, in rat models of psychiatric disorders, and chronic administration of VNS reduces anxiety in rats and humans. Objective: We tested whether VNS, like other cognitive enhancers, could produce generalization of extinction for stimuli that are not presented during the extinction sessions, but are associated with the fear event.

Methods

Male Sprague Dawley rats underwent auditory fear conditioning with two easily discriminable auditory stimuli. Following fear conditioning, extinction training consisted of exposure to only one of the conditioned sounds. Half of the rats received VNS and half received sham stimulation during with sound presentations. VNS effects on anxiety were examined in a separate study where VNS was administered prior to testing on the elevated plus maze.

Results

Sham stimulated rats given 20 presentations of a conditioned stimulus (CS) during the extinction session showed performance that was matched to VNS-treated rats given only 4 presentations of the CS. Despite comparable levels of freezing to the presented CS, only the VNS-treated rats showed a significant decrease in freezing to the CS that was not presented. VNS-induced generalization of extinction was observed only when the two sounds were paired with footshock within the same fear conditioning session; VNS did not promote generalization of extinction when the two sounds were conditioned on different days or in different contexts. On the anxiety test, VNS administration significantly increased time spent in the open arms of the elevated plus maze.

Conclusion

These results provide evidence that VNS can promote generalization of extinction to other stimuli associated with a specific fear experience. Furthermore, non-contingent VNS appears to reduce anxiety. The ability to generalize extinction and reduce anxiety makes VNS a potential candidate for use as an adjunctive strategy to improve the efficacy and tolerability of exposure-based therapies.  相似文献   

16.
Functional abnormalities in the dorsal-anterior-cingulate-cortex (dACC) underlie anxiety disorders and specifically post-traumatic stress disorder (PTSD). Promising and common behavioral approaches have limited effectiveness and many subjects exhibit spontaneous recovery of fear, as also evident in animal models following extinction training. Here, we use low-frequency stimulation (LFS), a protocol shown to induce long-term depression, with the aim of affecting synaptic plasticity induced by fear acquisition and extinction. We use aversive conditioning of either tone or visual stimuli paired with an aversive air-puff to the eye in a trace-conditioning paradigm. We find that LFS in the nonhuman primate (Macaca fascicularis) dACC, when combined with extinction training, was successful in preventing spontaneous recovery of the memory 24-72 h following extinction. We simultaneously record single-units and local-field-potentials across the dACC, and show that LFS gradually depressed evoked responses. Moreover, this decrease in neural excitability predicted the successful reduction of overnight spontaneous recovery on a day-by-day basis. Finally, we show that this effect occurs when using either visual or auditory modality as the conditioned stimulus, and that the reduction was specific to the conditioned modality. Our results suggest that the primate dACC is actively involved in maintaining the original aversive memory, and propose that a combination of LFS with behavioral therapy might significantly improve treatment in severe cases.  相似文献   

17.
In rodents, working memory is a representation of an object, stimulus, or spatial location that is typically used within a testing session, but not between sessions, to guide behaviour. In this review we consider a number of the tasks used to assess this type of memory in the rodent, and highlight some of their limitations. Although the concept of working memory as applied to rodents has its origin in the experiments of David Olton and Werner Honig in the 1970s, many earlier experiments assessed the same type of memory under the guise of delayed reaction or alternation paradigms. We revisit these early tasks, and also consider the nature of working memory used on maze tasks, operant box based tasks, and non-spatial delayed non-matching to sample paradigms.  相似文献   

18.
Oxytocin is believed to attenuate the response of the hypothalamic-pituitary-adrenal axis to stress and to be anxiolytic. Stressors with a psychological component evoke both central and peripheral secretion of oxytocin in laboratory rodents. Oxytocin gene deletion mice provide a novel way to understand the role of oxytocin in stress and anxiety-related behaviours. We present our experience with female oxytocin deficient mice that were tested in an elevated plus maze (EPM), a behavioural test of anxiety, or exposed to psychogenic stressors (platform shaker or novel environment). Oxytocin-deficient mice not only displayed more anxiety-related behaviour, but also released more corticosterone after a psychogenic stressor and manifested greater stress-induced hyperthermia compared to wild-type mice. The diurnal variation of corticosterone and the response of corticosterone to corticotropin-releasing factor were not significantly different between genotypes. We also measured Fos-immunoreactive protein, an index of neuronal activation, in the medial amygdala of female mice after EPM testing. The medial amygdala is important for processing of psychogenic stress and anxiety and also contains oxytocin pathways and oxytocin receptors. The expression of Fos in the medial amygdala of mice not exposed to the EPM was not different between genotypes. Following EPM exposure, Fos expression was greater in oxytocin null compared to wild-type mice. Our findings support the hypothesis that central oxytocin is anxiolytic, and attenuates the stress response to psychogenic provocation in female mice.  相似文献   

19.
J L Armony  R J Dolan 《Neuroreport》2001,12(15):3407-3411
Responses to a stimulus signaling danger depend not only on the nature of that stimulus, but also on the context in which it is presented. A large body of work has been conducted in experimental animals investigating the neural correlates of contextual modulation of fear responses. However, much less is known about this process in humans. In this study we used functional MRI in a fear conditioning paradigm to explore this phenomenon. Responses to acoustic conditioned stimuli in auditory cortex were modulated by the presence of a visual context which signaled the likelihood of receiving an aversive unconditioned stimulus. Furthermore, the presence of the aversive visual context was associated with enhanced activity in parietal cortex, which may reflect an increase in attention to the presence of environmental threat stimuli.  相似文献   

20.
The objective of this study was to investigate the role of corticotropin-releasing factor receptors 1 (CRF(1)) and 2 (CRF(2)) in anxiety-like behavior and learning of C57BL/6J mice after exposure to a stressful stimulus. When C57BL/6J mice were exposed to immobilization (1 h) serving as stressful stimulus, context- and tone-dependent fear conditioning were impaired if the training followed immediately after immobilization. The stress-induced impairment of context-dependent fear conditioning was prevented by specific blockade of CRF(2) of the lateral septum (LS) with anti-sauvagine-30. Immobilization did not only affect conditioned fear, but also enhanced, through CRF(2) of the LS, anxiety-like behavior determined with the elevated plus maze. Recovery from stress-induced anxiety and impairment of context-dependent fear conditioning was observed after 1 h delay of training and required hippocampal CRF(1), as indicated by the finding that this recovery was prevented by blockade of intrahippocampal CRF(1). It was concluded that exposure to a stressor initially affected both anxiety-like behavior and contextual conditioned fear through septal CRF(2), while the later activation of hippocampal CRF(1) resulted in the return to baseline levels of both processes. Intraventricular injection of mouse urocortin 2, a CRF(2)-selective agonist, removed the stress-induced anxiety and learning impairment, but did not reduce the activation of the hypothalamic pituitary adrenal axis indicative of the hormonal stress response. We propose that the enhanced anxiety is the component of the stress response responsible for the memory deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号