首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
影像引导放射治疗(IGRT)是近年来放射肿瘤学领域最先进的治疗技术。通过新型IGRT系统,将影像获取、治疗计划设计、CT模拟定位及加速器治疗完美地整合到一套放疗系统之中,以精确实施放射治疗。目前IGRT设备主要有传统直线加速器结合影像系统、断层放射治疗机和影像引导的立体定向治疗机。现就该类新技术及其临床应用作一综述。  相似文献   

2.
2011年中国大陆地区第六次放疗人员及设备调查   总被引:1,自引:0,他引:1  
目的 中华医学会放射肿瘤学分会为了解当前中国大陆地区放疗人员及设备情况,进行了第6次调查.方法 采用了第5次调查表,仍是通过信件,电子邮件,电话及传真发送表格的方法.结果 截至2011年8月31日中国大陆地区共有放疗单位1162个.(1)人员:共3万985位,其中放射肿瘤科医师9895位(副主任医师以上3253位),技术员6103位,护士1万1689位,物理师1887位,维修工程技术人员1411位.(2)设备:直线加速器1296台,60Co远距离治疗机286台,深部线机81台,模拟定位机1040台,CT模拟定位机376台,近距离治疗机317台,治疗计划系统1427套,剂量仪1041台,X刀410台,γ刀230台(头部γ刀122台,体部γ刀108台).(3)治疗:病床5万6847张(其中4家未提供病床数),每日治疗5万8069人次(其中9家未提供数字).每年收治新患者56万9056人(其中38家未提供数字).结论 5年来,中国放疗学又有了明显的发展,人员、设备、新技术应用都有了长足进步,但离癌症患者需求还差距甚远,需要进一步努力.此外本调查还缺之质量保证与控制方面的资料.  相似文献   

3.
目的中华放射肿瘤学会成立及第1次调查至今已20年。为了解20年来我国放疗的发展及现状,中华放射肿瘤学会在2006年对我国放疗人员及设备进行了第5次调查。方法采用了第4次调查表,仍是通过中华放射肿瘤学会各位委员将表发至各放疗单位,各单位填写后直接寄回,也有的省市由委员将调查表汇总后寄回。结果截至2006年9月30日全国共有放疗单位952个。人员共18992位,其中放射肿瘤科医师5247位(包括住院医师2110位),技术员4559位,护士6 864位,物理师1181位,维修工程技术人员1141位。设备中直线加速器918台,~(60)Co远距离治疗机472台,深部X线治疗机146台,模拟定位机827台,CT模拟定位机214台,近距离治疗机400台,治疗计划系统851台,剂量仪796台,X刀467台,γ刀149台(头部γ刀74台,体部γ刀75台)。病床数35503张(其中35家未提供病床数)。每日治疗42109人次,每年收治新患者409440人(其中49家未提供数字)。结论近5年来,我国放疗无论是数量还是质量都有了高速发展,不少单位还采用了最新技术,但与我国人口相比还是不足。今后在建立新放疗单位同时应保证放疗质量;开展再培训,特别是实际工作中再培训;制定适合我国情况的放疗质量保证及质量控制系统并贯彻执行。  相似文献   

4.
张烨  易俊林  姜威 《中国肿瘤》2020,29(5):321-326
[目的]了解我国大陆地区放疗人才及设备情况。[方法]2019年4月10日至9月20日期间,中华医学会放射肿瘤治疗学分会通过线上问卷的形式进行了全国第九次行业调查,调查2018年度全国各个医院从事放疗的人员、设备、技术、年放疗人次以及主要放疗病种等数据。[结果]本次问卷回收率100%,所有放疗单位数据通过各省医学会再次确认。中国大陆地区放疗单位1463家。从事放疗的工作人员共29096人,其中放疗医师14575人、物理师4172人、技师8940人、维修师1409人。共有直线加速器2021台(含进口和国产),钴60远距离治疗机66台,近距离治疗机339台,质子重离子机5台,常规模拟机1453台,CT模拟机355台。能开展二维放疗1002家,三维适形放疗1272家,静态调强放疗1121家,Rapid Arc145家,容积旋转调强放疗279家,立体定向放射治疗297家,近距离治疗273家,全身X线治疗75家,全身电子线治疗73家,Tomo治疗38家,质子/重离子治疗5家。病床数97836张(含综合医院肿瘤科病床),放疗年治疗人数1259602人。[结论]中国大陆地区放疗单位数目缓慢增长,放疗从业人员较前稍减少,开展放疗新技术单位逐年增加,全国每百万人口放疗设备(加速器+钴60)仅1.5,仍低于WHO的要求。  相似文献   

5.
影像引导放射治疗系统   总被引:2,自引:0,他引:2  
影像引导放射治疗(IGRT)是近年来放射肿瘤学领域最先进的治疗技术。通过新型IGRT系统,将影像获取、治疗计划设计、CT模拟定位及加速器治疗完美地整合到一套放疗系统之中,以精确实施放射治疗。目前IGRT设备主要有传统直线加速器结合影像系统、断层放射治疗机和影像引导的立体定向治疗机。现就该类新技术及其临床应用作一综述。  相似文献   

6.
图像引导放射治疗(IGRT)是近年来放射肿瘤学领域最先进的治疗技术.通过新型IGRT系统,将影像获取、治疗计划设计、CT模拟定位及加速器治疗完美地整合到一套放疗系统之中,以精确实施放射治疗.文章就该类新技术及其应用作一综述和展望.  相似文献   

7.
图像引导放射治疗的发展(Image-guided radiation therapy,IGRT)是以图像引导设备的发展为基础的.随着放射物理学、医学影像学及计算机科学的快速发展,IGRT必将开创精确放疗的新时代.本文将对IGRT的设备和技术进行论述,并展望未来发展趋势.  相似文献   

8.
王宁  祁宁  张义钊 《中国肿瘤》2021,30(10):767-771
摘 要:[目的]调查和分析甘肃省放射治疗人员及设备情况。[方法]2021年2月15日至2021年3月25日期间,基于甘肃省物理技术学组成立调查小组,完善调查表信息内容,通过该学组发放调查表到各医疗单位负责人,调查甘肃省内各放疗机构人员配置、设备、开展的技术以及年度治疗人次等信息。[结果] 本次问卷回收率100.00%,所有放疗数据通过回访并由学组成员审核汇总。甘肃省内放疗机构共有23家(包括即将投入使用的单位)。从事放疗工作人员共383人,其中放疗医师177人(高级职称占比35.03%),物理师61人(高级职称占比6.56%),技师124人(高级职称占比5.64%),维修工程师21人(高级职称占比9.52%)。共有加速器32台(含进口和国产),近距离治疗机8台,重离子2台,普通模拟定位机6台,放疗专用CT模拟定位机 8台,核磁模拟定位机1台。开展二维放疗19家,三维适形放疗18家,静态调强放疗11家,开展图像引导放射治疗4家,容积旋转调强治疗3家,立体定向放射治疗1家,Cyber Knife放射治疗1家,重离子治疗1家。病床数716张(含综合医院肿瘤科病床),年度放疗人次9 474人。[结论] 甘肃省放疗单位及放疗人员数量持续增长,但物理技术高素质人才依旧缺乏。开展新技术的放疗机构逐年增加,放疗设备和验证设备增加明显,但放疗资源依旧不足,且各区域有较大的差异。需通过持续不断努力,合理进行资源优化配置,促进新技术的应用和普及,缩小差距,切实提高甘肃省的放射治疗水平。  相似文献   

9.
经我分会最新统计,目前全省共有16所医院(研究所)设有放射治疗科,从事故疗工作的总人数为375人,其中临床医师129人,故疗技术人员76人,放射物理人员3人,维修人员12人,放射生物人员2人,护理人员153人。放疗设备中,医用直线加速器2台,~(50)钴治疗机17台,深部X线6台,后装机19台,模拟定位机5台,治疗计划系统(TPS)2台,剂量仪9套。  相似文献   

10.
2015年中国大陆放疗基本情况调查研究   总被引:3,自引:0,他引:3  
目的 为进一步了解当前中国大陆地区放疗基本情况,合理配置放疗人才及设备资源,有效促进中国放疗发展,中华医学会肿瘤放疗学分会进行了第7次调查。方法 2015年10月8日到2015年12月期间,专门成立放疗基本信息调查办公室,通过各省主委提供本省放疗单位、名单及联系方式,采用专用数据填报系统通过互联网完整、快速、高效的完成调查。结果 截至2016年1月20日(1)单位:1413家;(2)人员:52496人,其中放疗医师15841人(高级职称4824人)、技师8454人(高级职称260人)、物理师3294人(高级职称562人)、维修师938人(高级职称120人);(3)放疗设备:直线加速器1931台,60Co远距离治疗机96台,X刀171台,γ刀210台,近距离治疗机439台,X线模拟定位机1051台,CT 1353台,MRI 642台,MLC 978套,TPS 1922套,放疗网络974家;(4)质控设备:剂量仪1729台,电离室2143台,二维矩阵935台,三维剂量验证仪540台,三维水箱596台,仿真体摸844套,等效水体摸1168套;(5)治疗情况:病床数102171张(含综合医院肿瘤科病床),每日治疗76612人次,每年治疗919339人次。结论 调查结果显示中国大陆地区近年来放疗单位、放疗人员和设备均呈明显增加,放疗单位及设备分布、放疗人员结构趋于合理,但局部地区仍存在放疗设备尚不能满足医疗需求、专业技术人员缺乏等现实问题。  相似文献   

11.
12.
邵雨卉  付杰 《中国癌症杂志》2014,24(12):951-955
调强放射治疗(intensity-modulated radiation therapy,IMRT)是头颈部恶性肿瘤的重要治疗方法之一。但在IMRT过程中,摆位误差、解剖结构的移位及变形、肿瘤退缩或进展及形状改变等,可导致靶区和危及器官的照射剂量和体积出现“偏差”,影响IMRT的精确性。图像引导的放射治疗(image-guidedradiotherapy,IGRT)可部分纠正摆位误差,从而提高放疗精度,但不能解决非刚性误差以及解剖结构变化带来的剂量差异。自适应放射治疗(adaptive radiation therapy,ART)是在IMRT和IGRT基础上出现的新型放疗技术,能修正IMRT和IGRT靶区和危及器官的偏差。通过患者图像、剂量等反馈信息对原治疗计划重新优化和调整,这是一种基于反馈控制理论的治疗策略。其目的是使放射治疗更加精确化、个体化。  相似文献   

13.
Cancer control and toxicity outcomes are the mainstay of evidence-based medicine in radiation oncology. However, radiotherapy is an intricate therapy involving numerous processes that need to be executed appropriately in order for the therapy to be delivered successfully. The use of image-guided radiation therapy (IGRT), referring to imaging occurring in the radiation therapy room with per-patient adjustments, can increase the agreement between the planned and the actual dose delivered. However, the absence of direct evidence regarding the clinical benefit of IGRT has been a criticism. Here, we dissect the role of IGRT in the radiotherapy (RT) process and emphasize its role in improving the quality of the intervention. The literature is reviewed to collect evidence that supports that higher-quality dose delivery enabled by IGRT results in higher clinical control rates, reduced toxicity, and new treatment options for patients that previously were without viable options.  相似文献   

14.
The meticulous selection and utilisation of image-guided radiotherapy (IGRT) are essential for optimal radiotherapy treatment delivery when using highly conformal treatment techniques in pelvic radiotherapy. Pelvic IGRT has several general IGRT issues to consider (such as choice of match strategy, prioritisation between multiple treatment targets and margin estimates) as well as issues specific to pelvic radiotherapy, in particular large inter-fraction organ variation. A range of interventions, including adaptive treatment strategies, have been developed to address these challenges. This review covers general considerations for the clinical implementation of pelvic IGRT in routine practice and provides an overview of current knowledge regarding pelvic inter-fraction organ motion. Published IGRT evidence for each of the major tumour sites (gynaecological, prostate, bladder, rectal and anal cancer) is summarised, as are state-of-the-art adaptive approaches. General recommendations for the implementation of an institutional pelvic IGRT strategy include.•Ensuring consistency between treatment intent and the IGRT approach utilised.•Ensuring minimum national and international IGRT guidance is followed while considering the benefit of daily volumetric IGRT.•Ensuring the appropriate allied health professionals (namely therapy radiographers/radiation therapists) lead on undertaking IGRT.•Ensuring the IGRT workflow procedure is clear and includes an escalation process for difficult set-ups.•Ensuring a robust IGRT service is in place before implementing advanced adaptive approaches.  相似文献   

15.

BACKGROUND:

Image‐guided radiation therapy (IGRT) is a novel array of in‐room imaging modalities that are used for tumor localization and patient setup in radiation oncology. The prevalence of IGRT use among US radiation oncologists is unknown.

METHODS:

A random sample of 1600 radiation oncologists was surveyed by Internet, e‐mail and fax regarding the frequency of IGRT use, clinical applications, and future plans for use. The definition of IGRT included imaging technologies that are used for setup verification or tumor localization during treatment.

RESULTS:

Of 1089 evaluable respondents, 393 responses (36.1%) were received. The proportion of radiation oncologists using IGRT was 93.5%. When the use of megavoltage (MV) portal imaging was excluded from the definition of IGRT, the proportion using IGRT was 82.3%. The majority used IGRT rarely (in <25% of their patients; 28.9%) or infrequently (in 25%‐50% of their patients; 33.1%). The percentages using ultrasound, video, MV‐planar, kilovoltage (kV)‐planar, and volumetric technologies were 22.3%, 3.2%, 62.7%, 57.7%, and 58.8%, respectively. Among IGRT users, the most common disease sites treated were genitourinary (91.1%), head and neck (74.2%), central nervous system (71.9%), and lung (66.9%). Overall, 59.1% of IGRT users planned to increase use, and 71.4% of nonusers planned to adopt IGRT in the future.

CONCLUSIONS:

IGRT is widely used among radiation oncologists. On the basis of prospective plans of responders, its use is expected to increase. Further research will be required to determine the safety, cost efficacy, and optimal applications of these technologies. Cancer 2010. © 2010 American Cancer Society.  相似文献   

16.
螺旋断层放射治疗系统(helical tomotherapy,HT)是利用一台6MV的医用直线加速器以螺旋CT旋转扫描方式,实现40 cm×160 cm范围的照射,是当今最先进的肿瘤放射治疗系统之一,集调强放射治疗(IMRT)、图像引导放射治疗(IGRT)、自适应放疗 (ART)和剂量引导放疗(DGRT)于一体。目前HT已初步应用于中枢神经系统良恶性肿瘤的治疗,照射精确、剂量分布均匀、能够有效保护危及器官,降低正常组织放疗毒性,应用前景广阔。现就HT在中枢神经系统肿瘤中的应用展开总结论述。  相似文献   

17.
Image-guided radiation therapy (IGRT) aims at frequent imaging in the treatment room during a course of radiotherapy, with decisions made on the basis of this information. The concept is not new, but recent developments and clinical implementations of IGRT drastically improved the quality of radiotherapy and broadened its possibilities as well as its indications. In general IGRT solutions can be classified in planar imaging, volumetric imaging using ionising radiation (kV- and MV- based CT) or non-radiographic techniques. This review will focus on volumetric imaging techniques applying ionising radiation with some comments on Quality Assurance (QA) specific for clinical implementation. By far the most important advantage of volumetric IGRT solutions is the ability to visualize soft tissue prior to treatment and defining the spatial relationship between target and organs at risk. A major challenge is imaging during treatment delivery. As some of these IGRT systems consist of peripheral equipment and others present fully integrated solutions, the QA requirements will differ considerably. It should be noted for instance that some systems correct for mechanical instabilities in the image reconstruction process whereas others aim at optimal mechanical stability, and the coincidence of imaging and treatment isocentre needs special attention. Some of the solutions that will be covered in detail are: (a) A dedicated CT-scanner inside the treatment room. (b) Peripheral systems mounted to the gantry of the treatment machine to acquire cone beam volumetric CT data (CBCT). Both kV-based solutions and MV-based solutions using EPIDs will be covered. (c) Integrated systems designed for both IGRT and treatment delivery. This overview will explain some of the technical features and clinical implementations of these technologies as well as providing an insight in the limitations and QA procedures required for each specific solution.  相似文献   

18.
Image-guided radiation therapy (IGRT) in the modern sense includes large volumetric image sets and high-resolution planar images. In addition to the issue of the sheer size of the data under consideration in IGRT is the critical need for the data to be available in the necessary situation in a timely and reliable fashion. Standards exist for the format of much of the data needed to perform IGRT, but the information workflow is not "standardized" (formal or ad hoc) and details of the use of the standards are only recently being constrained to ensure interoperability. Depending on the interpretation of the scope of IGRT or the desired workflow of the IGRT system, not all of the information that needs to be exchanged between systems is yet standardized nor is the means to exchange the information. The organization of the different types of data needed for IGRT for easy navigation is addressed by commercially available products from multiple vendors; however, this is also an area in which standards and consistency in the clinical environment are catching up to the market. The critical questions a clinician needs answers to include the following: (1) What kinds of data will I need to store and communicate between the pieces of my IGRT system? (2) How much storage will I need to address the volumes of data produced? (3) How long do I need to store (and be able to access) the data? (4) How will the pieces of my IGRT system communicate the necessary information between them (what standards or technical frameworks apply and do the pieces conform or adhere to them)? (5) What are the time constraints on getting information from "where it is" to "where it needs to be"? and (6) Is my IGRT system as a whole capable of providing me with the workflow necessary for my clinical environment or, alternatively, what do the providers of my IGRT system need to do to enable my required workflow? The body of this article examines these issues in greater detail to enable clinicians and clinical support personnel to frame the questions in a practical manner and develop answers that assist in the successful deployment of IGRT.  相似文献   

19.
20.
The purpose of external beam radiotherapy is to sterilize malignant tumours and at the same time to avoid complications by radiation injury to the surrounding healthy tissues. Modern radiation techniques in recent years have allowed to safely escalate the dose by approximately 10% for the treatment of prostate cancer, resulting in a disease control that is nowadays comparable to surgery or permanent seed implant brachytherapy. Two recent technical developments have dramatically increased the precision of radiation dose delivery: conformal radiotherapy and image guided radiotherapy (IGRT). Conformal radiotherapy aims to shape the dose distribution to the shape of the target. At least equally important as conformality is the accurate spatial delivery of the conformal dose distribution to the target. Conventional patient positioning by skin drawings and lasers is an imprecise way to target the prostate within the pelvis. The need for adequate patient/target setup led in recent years to the development of a variety of solutions. They bear in common that setup is no longer guided by skin marks but by some imaging modality. An ideal IGRT system would allow for daily prostate imaging without possible introduction of errors due to image-acquisition itself, do so within a reasonable time frame, without the necessity for implanted radio-opaque markers and preferentially without exposing the patient to radiation. A solution that combines all these features is inexistent so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号