首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The aim of the present study was to investigate the influence of Eudragit® E PO on the drug release mechanism of Eudragit® L 100-55 film coatings applied to theophylline tablets by a dry powder coating technique. The process was entirely liquid-free. Calculation of the Flory-Huggins interaction parameter based on solubility parameters suggested immiscibility of the two copolymers. MDSC thermograms were characterized by two glass transitions for the investigated Eudragit® E PO/Eudragit® L 100-55 ratios and confirmed incomplete miscibility of the copolymers at processing conditions. FT-IR analysis was employed to study binding interactions of the polymers. Due to the higher affinity of the plasticizer, triethyl citrate, for Eudragit® E PO compared to Eudragit® L 100-55, redistribution of the plasticizer was observed during the curing phase of the process. Plasticizer migration also affected the initial phase of drug release from powder-coated theophylline tablets that were stored for four weeks. Drug release from powder-coated tablets was dependent on the polymer blend ratio, coating thickness, and the pH of the dissolution medium. A broad range of pH dependent theophylline release profiles were obtained as a function of the polymer blend ratio. The particle size of the coating powder influenced the microstructure of the film coating.  相似文献   

2.
The aims of this work were to develop and characterize the prolonged release piroxicam transdermal patch as a prototype to substitute oral formulations, to reduce side effects and improve patient compliance. The patches were composed of film formers (Eudragit®) as a matrix backbone, with PVC as a backing membrane and PEG200 used as a plasticizer. Results from X-ray diffraction patterns and Fourier transform-infrared spectroscopy indicated that loading piroxicam into films changed the drug crystallinity from needle to an amorphous or dissolved form. Piroxicam films were prepared using Eudragit® RL100 and Eudragit® RS100 as film formers at various ratios from 1:0 to 1:3. Films prepared solely by Eudragit® RL100 showed the toughest and softest film, while other formulations containing Eudragit® RS100 were hard and brittle. Drug release kinetic data from the films fitted with the Higuchi model, and the piroxicam release mechanism was diffusion controlled. Among all formulation tested, Eudragit® RL100 films showed the highest drug release rate and the highest drug permeation flux across human epidermal membrane. Increasing drug loading led to an increase in drug release rate. Eudragit® can be used as a film former for the fabrication of piroxicam films.  相似文献   

3.
Objective: The objective of the present work was to develop a tablet-in-capsule type of multiunit system, which releases the drug in a controlled manner at pre-programmed time intervals.

Methods: The system consists of an enteric-coated hydroxypropyl methylcellulose capsule filled with four units of mesalamine minitablets, each of which was further coated with different ratios of Eudragit® E100 and Eudragit® RS100.

Results: In vitro evaluation of tablets coated with Eudragit® E100 and Eudragit® RS100 at different pH conditions revealed that at lower pH levels (2.0, 3.6 and 5.5 pH), the drug release is mainly governed by the dissolution of Eudragit® E100 from the Eudragit® E100 and Eudragit® RS100 coat. In vitro evaluation of capsules enteric coated with Eudragit® L100 and Eudragit® S100 revealed that a maximum lag time of 3?h and 4?h was obtained, respectively. In vivo roentgenographic evaluation in rabbits revealed that the developed system remained intact until it reaches the targeted region of the gastrointestinal tract, i.e. ileum and colon, where the tablets were released after the dissolution of the enteric coat Eudragit® L100 and Eudragit® S100, respectively.

Conclusion: The developed system exhibited a promising targeting behavior and hence may be used for the treatment of inflammatory bowel disease.  相似文献   

4.
The aim of the present study was to develop and characterize metformin HCl-loaded nanoparticle formulations. Nanoparticles were prepared by the nanoprecipitation method using both a single polymer (Eudragit®RSPO) and a polymer mixture (Eudragit/PLGA). The mean particle size ranged from 268.8 to 288?nm and the nanoparticle surface was positively charged (9.72 to 10.1 mV). The highest encapsulation efficiency was observed when Eudragit®RSPO was used. All formulations showed highly reproducible drug release profiles and the in vitro drug release in phosphate buffer (pH?=?6.8) ranged from 92 to 100% in 12?h. These results suggest that Eudragit®RSPO or Eudragit/PLGA nanoparticles might represent a promising sustained-release oral formulation for metformin HCl, reducing the necessity of repeated administrations of high doses to maintain effective plasma concentrations, and thus, increasing patient compliance and reducing the incidence of side-effects.  相似文献   

5.
Trans-resveratrol (RSV) was microencapsulated in Eudragit® RS100 and RL100 resin blends. Lyophilized microspheres were characterized in the solid state for their micromeritic properties and drug loading. FT-IR, PXRD, and DSC analyzes suggested that RSV formed an intimate microcrystalline dispersion within the polymer network, also confirmed by SEM analysis. This produced a reduced degradation of RSV after storage at 40?°C, compared to the neat drug, and a protection of the drug from UV light-induced trans-cis isomerization (60% intact drug was found after 60?s irradiation at 350?nm, compared to 37% for the pure drug). Solubility and in vitro dissolution studies indicated that microencapsulation did not improve the dissolution pattern of RSV in simulated gastric and intestinal aqueous fluids. Evaluation of the in vitro antioxidant activity showed that, compared to the neat drug in aqueous solution, RSV loaded in the microspheres retained for a longer time, up to 22 days of incubation, the initial ORAC capacity. The present study thus demonstrated that Eudragit® Retard resins can be used to easily produce micro-sized solid dispersions with RSV, for potential oral administration, contributing to ameliorate the physico-chemical stability and antioxidant activity of this compound.  相似文献   

6.
Tizanidine hydrochloride (THCl) is an antispasmodic agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. The aim of this study was to prepare a monolayered buccal patch containing THCl using the emulsification solvent evaporation method. Fourteen formulations were prepared using the polymers Eudragit® RS 100 or Eudragit® RL 100 and chitosan. Polymer solutions in acetone were combined with a THCl aqueous solution (in some cases containing chitosan) by homogenization at 9000 rpm for 2 min in the presence of triethyl citrate as plasticizer and cast in novel Teflon molds. Physicochemical properties such as film thickness, in vitro drug release and in vitro mucoadhesion were evaluated after which permeation across sheep buccal mucosa was examined in terms of flux and lag time. Formulations prepared using a Eudragit® polymer alone exhibited satisfactory physicomechanical properties but lacked a gradual in vitro drug release pattern. Incorporation of chitosan into formulations resulted in the formation of a porous structure which did exhibit gradual release of drug. In conclusion, THCl can be delivered by a buccal patch formulated as a blend of Eudragit® and chitosan, the latter being necessary to achieve gradual drug release.  相似文献   

7.
Emulsion gel (EMG) beads of calcium pectinate capable of floating in the gastric condition were developed using an emulsion-gelation method and their release properties were investigated. Attempts to modify the drug release were made by applying some additives into the starting solution prior to bead formation, by hardening with glutaraldehyde, and by coating with polymer. The metronidazole-loaded EMG beads were found to float on simulated gastric fluid. Increasing the drug to pectin ratio in the beads slowed the drug release from the conventional and the EMG beads. However, the drug release from these beads was rapid, i.e., about 80% of drug loading released within 20–80 min. The additives (PEG10000, glyceryl monostearate and Eudragit® L) had a slight, insignificant, effect on the drug release. Using 2% glutaraldehyde as a hardening agent prolonged the drug release. Coating the beads with Eudragit® RL significantly sustained the drug release while the beads remained buoyant. The results suggest that EMG beads are suitable as a carrier for intragastric floating drug delivery and that their release behaviour could be modified by hardening with glutaraldehyde or by coating with Eudragit® RL.  相似文献   

8.
Cilostazol is practically insoluble in water and thus results in poor bioavailability. Only a few approaches have been reported for improving the bioavailability of cilostazol. Solid dispersion technique via solvent evaporation method was applied to improve the solubility and dissolution of cilostazol. Various polymers, mixture of polymer and surfactant, and mixture of polymers were screened as a carrier for the solid dispersion. Solubility of cilostazol was improved significantly when Eudragit® L100 was used as a carrier. However, addition of surfactant to Eudragit® L100 decreased the solubility slightly. Whereas, the mixture of Eudragit® L100 and Eudragit® S100 as a carrier system further increased the solubility. Based on the highest solubility obtained among the carriers screened, 1:1 ratio of Eudragit® L100 and Eudragit® S100 was selected as a carrier, and drug to carrier ratio was optimized to 1:5. Differential scanning calorimetry and X-ray diffraction studies showed that the characteristic peak of cilostazol disappeared in the solid dispersion, indicating that cilostazol existed in amorphous form in this formulation. Spray drying method was superior to vacuum drying method in terms of dissolution rate. Meanwhile, it was observed that the disintegration rate and the concentration of polymer had some effect on the crystallization of cilostazol in dissolution medium. Tablet formulation containing spray dried solid dispersion showed significant improvement in dissolution as compared to the commercial tablet.  相似文献   

9.
Considering the recent evidence on the therapeutic potential of postbiotics, this study focused on 2 main goals: (1) to develop an enteric microparticle (MP) formulation for intestinal localized delivery of indole-3-aldehyde (3-IAld) (a microbial-derived metabolite produced by the host's lactobacilli during the catabolic pathway of tryptophan) and (2) to provide support in the employment of spray-drying as innovative one-step manufacturing technique for enteric products. For this purpose, special attention was taken in the knowledge of the influence of equipment setup and feedstock properties on MP enteric behavior. Eudragit® S100 and L100 and ethyl cellulose were used as wall materials and NaOH and ethanol solutions as solvent systems. 3-IAld loading was maintained at 10% w/w. As postulated, feedstock properties influenced spray-drying regime. In addition, they prevailed over other spray-drying process factors in determining MP enteric behavior. Albeit the high buckling regime that produced crumped particles, gastro resistance was obtained by spray-drying 2:1 Eudragit® S100:L100 with 30% w/w ethyl cellulose in ethanol solution. These results support the use of spray-drying as a method for manufacturing gastro-resistant MP. The obtained 3-IAld–loaded enteric MP will be useful to investigate novel postbiotic-based treatments in different therapeutic areas.  相似文献   

10.
In the current study, the influence of type of plasticizer used with Eudragit® RS 30D on the drug release was investigated in solid dosage form extrusion/spheronization, and film coating. The drug pellets were coated for controlling drug release with Eudragit® RS 30D containing dibutyl phthalate and compared with dibutyl sebacate as an alternative plasticizer. To study the influence of pH of the dissolution medium on the drug release profile, capsules are tested for drug release profile at pH 1.2, 4.4, and 6.3. Additionally, the aging effect on the curing of Eudragit® RS 30D is evaluated by exposing the capsules dosage form to room temperature (25?°C?±?2?°C/60%?±?5% RH) for time 0, 3, 6, and 9?months, accelerated temperature (40?°C?±?2?°C/75%?±?5% RH) for time 0, 3, and 6?months, and intermediate temperature (30?°C?±?2?°C/65%?±?5% RH) for time 0, 6, and 9?months. The replacement of dibutyl phthalate, with dibutyl sebacate for polymer coating system in similar concentration is comparable with respect to plasticization effect. The coalescence of the polymer particles is not changed and requires no additional processing parameter control or additional curing time.  相似文献   

11.
The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC) and in vitro release of different pH. Different release models and scanning electron microscopy (SEM) were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2) of home-made capsule and commercially available product (Harnual®) were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.  相似文献   

12.
Pilocarpine is used topically in the treatment of glaucoma. Various studies were performed to improve the bioavailability and prolong the residence time of drugs in ocular drug delivery. Drug loaded polymeric and lipid nanoparticles offer several favourable biological properties, such as biodegradability, nontoxicity, biocompatibility and mucoadhesiveness. Therefore, preparing positively-charged pilocarpine HCl-loaded polymeric and lipid nanoparticles was the purpose of this study. Nanoparticles were prepared by quasi-emulsion solvent evaporation technique. The non-biodegradable positively-charged polymer Eudragit® RS 100 and semi-solid lipid excipient Gelucire® 44/14 were used as a vehicle, the cationic lipid octadecylamine was used as a cationic agent. The formulations were evaluated in terms of particle size, size distribution, zeta potential measurement, thermal behavior (Differential Scanning Calorimetry DSC), entrapment efficacy and pH. Characterizations of nanoparticles were analyzed during the storage period of 6 months for stability tests. Polymeric and lipid nanoparticles could be prepared successfully promising their use for ophthalmic delivery.  相似文献   

13.
Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available Eudragit® RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize Eudragit® RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-rein-forcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.  相似文献   

14.
Microparticles (MPs) have been extensively researched as a potential drug delivery vehicle. Here, we investigated the fabrication of MPs with pH-responsive macropores and evaluated their potential applicability in developing solid oral drug formulations. Our previous study showed that macropored MPs, made of Eudragit® L100-55, could encapsulate 100 nm, 1 µm, and 4 µm sized fluorescent beads—model drugs that are mimicking vaccines, bacteria, and cells. In the present study, closed-pored MPs after freeze-drying were coated with a gastric soluble Eudragit® EPO layer to protect MPs in the simulated pregastric environment. Subsequently, drug encapsulated MPs maintained their intact closed-pored structure in the simulated gastric environment and exhibited a rapid release in the simulated intestine environment. Our MP system was found to provide a significantly higher level of protection to the encapsulated lactase enzyme compared to the control sample (i.e. without using MPs). Real-time fluorescence microscopy analysis showed that macropored MPs released encapsulated drugs in a burst-release pattern and in a size-independent manner. This work shows that our proposed EPO-coated MPs with pH-responsive macropores can meet the challenges posed by the multiple physiological environments of the digestive tract and be used in developing highly effective solid oral drug/vaccine formulations.  相似文献   

15.
Abstract

Megestrol acetate (MGA) is used as a progestagen to treat advanced cancers in the breast or uterus and anorexia-cachexia syndrome in cancer patients. Due to its low solubility (BCS class II), MGA bioavailability needs to be enhanced for efficacy and safety. We developed MGA-encapsulated Eudragit® L100 (EUD) nanoparticles (MGA-EUD (1:1) and MGA-EUD (2:1)) using an ultrasonic nebulization method. MGA-EUD (1:1) and MGA-EUD (2:1) consisted of MGA and EUD at the mass ratios of 1:1 and 2:1. Their physicochemical properties, i.e. particle size, loading efficiency, morphology, and crystallinity were determined. Dissolution tests were performed using USP method II. For pharmacokinetics, they were orally administered at 50?mg/kg to mice. Microcrystalline MGA suspension (MGA-MC, Megace®, BMS) was used as control. MGA-EUD (1:1) and MGA-EUD (2:1) had a smooth and spherical shape of 0.70 and 1.05?µm in diameter with loading efficiencies of 93 and 95% showing amorphous states of MGA. They significantly enhanced the dissolution potential of MGA. Oral bioavailability of MGA-EUD (1:1) and MGA-EUD (2:1) increased 2.0- and 1.7-fold compared to that of MGA-MC. It suggests that ultrasonic nebulization method for the fabrication of polymeric nanoparticles is a promising approach to improve the bioavailability of poorly soluble drugs.  相似文献   

16.
Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit® RS and Eudragit® RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit® EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit® EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release.  相似文献   

17.
Objectives Nanoparticles were designed for the oral administration and transmucosal colon delivery of drugs. Methods Preparation parameters were studied in order to develop solid pH‐dependent drug‐release nanoparticles, constituted by hydroxypropyl‐β‐cyclodextrin and/or Eudragit® L100 loaded with diclofenac sodium. Nanoemulsions were prepared by the emulsion‐evaporation method using various homogenizers. Different preparative conditions were tested. The emulsions obtained were analysed in terms of size and then dried to obtain solid nanoparticles which were characterized in vitro (particle size, morphology, dissolution, solid state characterization). The effect of nanoparticles on drug permeation through synthetic membranes, colonic pig mucosa and Caco2 cell line were performed. Toxicity studies were carried out to assess the safety of the raw materials used and the nanosystems produced. Key findings Appropriate parameters to obtain nanoemulsions stable enough to be desiccated were determined: Panda NS100L was the most suitable homogenizer for the preparation; particle size ranged between 100 and 600 nm depending on the production method. Solid nanoparticles were obtained by an exsiccation process, which does not modify the mean size. pH‐dependent drug‐release nanoparticles were obtained. The nanoencapsulation process decreased the crystallinity of the drug. Materials and nanoparticles were highly biocompatible. Transmucosal delivery of drug is dependent on the polymer and the test employed: cyclodextrin improved drug permeation across colonic pig mucosa. Conclusions Formulations containing hydroxypropyl‐β‐cyclodextrin represent new colon‐targeted nanoparticles for transmucosal delivery of drugs.  相似文献   

18.
To enhance the dissolution of poorly soluble mefenamic acid, self-emulsifying formulation (SEF), composing of oil, surfactant and co-surfactant, was formulated. Among the oils and surfactants studied, Imwitor® 742, Tween® 60, Cremophore® EL and Transcutol® HP were selected as they showed maximal solubility to mefenamic acid. The ternary phase diagram was constructed to find optimal concentration that provided the highest drug loading. The droplet size after dispersion and drug dissolution of selected formulations were investigated. The results showed that the formulation containing Imwitor® 742, Tween® 60 and Transcutol® HP (10:30:60) can encapsulate high amount of mefenamic acid. The dissolution study demonstrated that, in the medium containing surfactant, nearly 100% of mefenamic acid were dissolved from SEF within 5 min while 80% of drugs were dissolved from the commercial product in 45 min. In phosphate buffer (without surfactant), 80% of drug were dissolved from the developed SEF within 5 min while only about 13% of drug were dissolved in 45 min, from the commercial product. The results suggested that the SEF can enhance the dissolution of poorly soluble drug and has a potential to enhance drug absorption and improve bioavailability of drug.  相似文献   

19.
This study aimed to increase ocular residence time of levofloxacin by formulation into zero-order sustained release mucoadhesive minitablets for once daily administration using a hydrophobic–hydrophilic polymeric matrix. Levofloxacin was first formulated into solid dispersion with different ratios of Eudragit® RS then the resulting solid dispersion was mixed with different concentrations of Carbopol® and other excipients to be finally compressed into minitablets. A 24 full factorial design was employed to estimate the effects and interactions of two formulation factors, and to establish their relationships with selected responses in the developed minitablets. The studied factors were: drug to Eudragit® RS ratio, and percent of Carbopol® in the minitablets. Sixteen ocular minitablets formulations were prepared and evaluated for the cumulative percentages drug release at 6, 12, and 24?h, as well as mucoadhesion time, mucoadhesive strength, and swelling index as response variables. After optimizing the responses, the optimized formulation was found to be stable on sterilization using gamma-irradiation and storage at 40?°C/75% RH for six months. In vivo testing of the optimized formulation showed that the minitablets extended levofloxacin release up to 24?h without causing any ocular irritation. The optimized formulation exhibited superior microbiological activity compared to the commercial product.  相似文献   

20.
《Drug delivery》2013,20(8):430-436
Nanoparticles loaded with two different commercial insulins (Actrapid®, Novorapid®) and based on different blends of a biodegradable polyester (poly-ε-caprolactone) and a polycationic non-biodegradable acrylic polymer (Eudragit® RS) were characterized in vitro. The zeta potential was positive whenever Eudragit® RS was part of the nanoparticles matrix. The encapsulation efficiency was ~ 96% except for Novorapid®-loaded particles of poly-ε-caprolactone (only 35%). In vitro release studies revealed a burst release from nanoparticles, which may be of interest for oral delivery. Novorapid-loaded nanoparticles were orally administered to diabetic rats and allowed the glycemia to be decreased when compared with free nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号