首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It is well known that Loxosceles venom induces local dermonecrosis in rabbits, guinea pigs and humans but not in mice, although, depending on the dose, Loxosceles venom can be lethal to mice. In this work we demonstrate that mice injected intradermally in the dorsal area of the back can survive a lethal dose of Loxosceles gaucho venom and also develop an inflammatory reaction (with infiltration of leukocytes shown by histological analysis) at the local injection site when the venom is co-administered with sphingomyelin. It was observed that more venom was retained for a longer period of time at the local injection site when venom was co-administered with sphingomyelin. The presence of exogenous sphingomyelin did not influence significantly the release of TNF-alpha induced by L. gaucho venom. These results suggest that the action of venom on sphingomyelin, producing ceramide phosphate, causes the development of an inflammatory reaction, which in turn traps the venom in the local area for a long period of time and does not allow it to disperse systemically in a dose sufficient to cause death. Our findings also indicate that the size and availability of the local sphingomyelin pool may be important in determining the outcome of Loxosceles envenoming in different mammalian species.  相似文献   

2.
The ability of IgG(T) and IgGa subclasses--isolated by liquid chromatography from equine arachnidic antivenom (AAV)-to neutralize toxic activities of Loxosceles gaucho, Phoneutria nigriventer and Tityus serrulatus venoms as well as to remove venom toxins from circulation was investigated. These subclasses showed similar antibody titers against L. gaucho, P. nigriventer and T. serrulatus venoms, and by immunoblotting few differences were observed in the recognition pattern of venom antigens. IgG(T) and IgGa neutralized 100% lethality induced by L. gaucho and 50% of P. nigriventer venom, but IgGa failed to neutralize T. serrulatus venom, in contrast to IgG(T). Both subclasses neutralized local reactions and dermonecrosis induced by L. gaucho venom in rabbits. In mice, IgG(T) and IgGa partially neutralized the edematogenic activity induced by P. nigriventer and T. serrulatus venoms, but only IgG(T) neutralized (ca. 81%) the nociceptive activity induced by T. serrulatus venom. Both subclasses failed to neutralize nociceptive activity induced by P. nigriventer venom. IgG(T) reduced the serum venom levels of animals injected with L. gaucho, P. nigriventer or T. serrulatus venoms, while IgGa solely reduced L. gaucho and P. nigriventer venoms levels. Our results demostrate that IgG(T) and IgGa subclasses neutralize toxic activities induced by P. nigriventer, T. serrulatus and L. gaucho venoms with different efficacies, as well as depurate these venoms from circulation.  相似文献   

3.
Loxosceles venoms can promote severe local and systemic damages. We have previously reported that Loxosceles gaucho spider venom causes a severe early thrombocytopenia in rabbits. Herein, we investigated the in vitro effects of this venom and its sphingomyelinase fraction on the main functions of platelets. Whole venom and its fraction induced aggregation of both human and rabbit platelets. Aggregation was dependent of plasma component(s) but independent of venom-induced lysophosphatidic acid generation. There was no increase in the levels of lactate dehydrogenase during platelet aggregation, ruling out the possibility of platelet lysis. The increased expression of ligand-induced binding site 1 (LIBS1) induced by L. gaucho venom and its sphingomyelinase fraction, as well as of P-selectin by the whole venom, evidenced the activation state of both human and rabbit platelets. Adhesion assays showed an irregular response when platelets were exposed to the whole venom, whereas the sphingomyelinase fraction induced a dose-dependent increase in the platelet adhesion to collagen. These findings evidence that L. gaucho venom and its sphingomyelinase fraction trigger adhesion, activation, and aggregation of both human and rabbit platelets. Thus, this work justifies the use of rabbits to investigate Loxosceles venom-induced platelet disturbances, and it also supports research on the role of platelets in the pathogenesis of loxoscelism.  相似文献   

4.
P Guilherme  I Fernandes  K C Barbaro 《Toxicon》2001,39(9):1333-1342
Neutralization of dermonecrotic and lethal activities and differences among the principal toxic proteins (32-35 kDa) of medically important Loxosceles spider venoms in Brazil (Loxosceles gaucho, Loxosceles laeta and Loxosceles intermedia) were studied using monoclonal antibodies (MAbs) produced against the dermonecrotic component (35 kDa) of L. gaucho venom. MAb titers were 512,000 to homologous venom, between 2000 and 64,000 for L. intermedia venom and between 1000 and 64,000 for L. laeta venom. By Western blotting, MAbs could recognize mainly the 35 kDa protein of L. gaucho venom and with less intensity the 35 kDa protein of L. intermedia venom. These MAbs also recognized weakly or did not recognize the 32 kDa component of L. laeta venom. Only MoALg1 showed high affinity for L. gaucho venom and neutralized in vivo 90-97% of the dermonecrotic activity, besides delaying the lethality induced by homologous venom. MoALg1 maintained its capacity to neutralize the dermonecrotic activity, even when administered (i.v.) 6h after envenoming (i.d.). All MAbs obtained failed to neutralize the toxic activities of the heterologous venoms.These results suggest that different epitopes are present in the protein responsible for the dermonecrotic activity of Loxosceles venoms, and confirm the participation of other venom components during the local reaction process. This study also confirms the importance of antibodies for neutralization of dermonecrotic activity, even when administered some hours after envenoming, and emphasizes the differences of composition and toxicity of medically important Loxosceles venoms. These findings must be considered in order to improve loxoscelism immunotherapy.  相似文献   

5.
Previous work has demonstrated that down-regulation of ceramide production after selection of cells with N-oleoylethanolamine (OE), an inhibitor of ceramidase, results in resistance to DNA damage-induced apoptosis. We report here that acute exposure of WEHI-231 cells (murine B-cell lymphoma) to OE activates neutral sphingomyelinase, induces ceramide production and increases intracellular reactive oxygen species. OE exposure also induces mitochondrial permeability, cytochrome c release, and apoptosis. Cells selected for resistance to OE exhibit little if any change in reactive oxygen species and cytochrome c release when exposed either to OE or to toxic doses of ceramide. Importantly, the OE resistant cells are also resistant to ionizing radiation-induced cytochrome c release and apoptosis. These findings demonstrate that down-regulation of neutral sphingomyelinase activity is associated with decreased DNA-damage-induced apoptosis. In addition, the data suggests that agents that modify extranuclear targets responsible for ceramide production select for cells resistant to ionizing radiation-induced apoptosis through alterations in mitochondrial function.  相似文献   

6.
Ceramide, generated by the hydrolysis of sphingomyelin, mediates the actions of several cytokines such as tumour necrosis factor-alpha (TNF-alpha) interferon-gamma and interleukin-1beta (IL-1beta), including their inhibitory effect on tumour proliferation. We have evaluated the role of ceramide in the proliferation of prostate cancer by using the human prostate adenocarcinoma LNCaP cell line. Treatment of LNCaP cells with neutral or acidic sphingomyelinase or addition of C8- or C2-ceramide, two cell permeable analogues of endogenous ceramide, induced a profound inhibition of cell proliferation. This effect appeared after 24 h, was still present after 72 h of exposure to the drugs and exhibited concentration-dependency (10-200 and 5-200 mU ml(-1) for neutral and acidic sphingomyelinase, respectively, and 1-25 microM for C8-ceramide). The inhibitory effect on cell growth caused by neutral sphingomyelinase and ceramides was rapidly reversible as LNCaP cells rapidly regained their previous proliferation rate following withdrawal of the treatment. IL-1beta produced profound inhibition of LNCaP cell proliferation and caused enhanced ceramide formation. No clear features of apoptotic cell death were detectable by either oligonucleosome formation, cytofluorimetric analysis or nuclear staining following exposure of LNCaP cells to neutral sphingomyelinase, ceramide or IL-1beta. However, clear changes in LNCaP cell cycle distribution were detectable following these treatments. In contrast, treatment with acidic sphingomyelinase or TNF-alpha induced apoptotic death detectable by flow cytometric analysis and bisbenzimide staining. In conclusion, our data demonstrate that preferential activation of distinct enzymatic pathways by cytokines may lead to different outcomes in the viability of LNCaP cells.  相似文献   

7.
The Thalassophryne nattereri fish venom induces a severe burning pain, oedema, and necrosis observed both clinically and experimentally. The present study was carried out in order to describe the pattern of local acute inflammatory response after T. nattereri venom injection. Our findings show that the edematogenic response induced by T. nattereri venom in footpad of mice was dose- and time dependent, and remained significantly elevated over 48 h after injection. Analysis of footpad homogenates were tested for the presence of TNF-alpha, IL-1beta and IL-6, and demonstrated augmented levels of these cytokines. Our results showed that the injection of venom developed an inadequate cellular inflammatory response evidenced by poor infiltration of mononuclear cells, preceded by decreased number of these cells in peripheral blood. In contrast, we observed an early intense recruitment of neutrophil to peritoneal cavity, accompanied by a significant decrease in the number of mononuclear cells. A drastic increase in the total amount of cells, mainly in neutrophils, followed by mononuclear cell recruitment was observed 24 h. In addition, we also demonstrated that T. nattereri venom affects the viability of mononuclear cells (J774A1) in culture. We conclude that the scarcity of inflammatory cellular influx into local lesions (intraplantar) induced by T. nattereri venom could be a consequence of an impaired blood flow in venules at injured tissue and cytotoxic effect of the venom on inflammatory cells can contribute to this impairment.  相似文献   

8.
In the present study the recombinant form (recLiD1) of a dermonecrotic protein present in the Brazilian brown spider Loxosceles intermedia venom was expressed in Escherichia coli cells and purified by reversed-phase HPLC using a C8 Vydac column. About 25.8mg of purified recLiD1 was produced from a litre of bacterial culture. SDS/PAGE and immunoblot analysis of the recombinant protein revealed an apparent molecular weight of 32-35kDa. The later result was confirmed by mass spectrometry (32,758Da). recLiD1 displayed dermonecrotic and platelet aggregation activities which were qualitatively similar to that displayed by the crude L. intermedia venom. However, very low sphingomyelinase D enzymatic activity and complement-dependent haemolytic activities were observed. recLiD1 immunized BALB/c mice developed an antibody response. Anti-recLiD1 antibodies recognized L. intermedia venom in an indirect enzyme-linked immunosorbent assay (ELISA) and cross-reacted with crude venoms from L. intermedia, L. gaucho and L. laeta. An in vivo protection assay carried out 5 weeks after the end of the immunization protocol showed that 75% of the vaccinated mice could resist the challenge by 2.5LD(50) of L. intermedia venom. To characterize epitopes associated with protective antibodies, we prepare sets of immobilized synthetic 15 mer overlapping peptides covering the complete amino acid sequences of the recLiD1. Antibodies revealed one antigenic region in the N-terminal part of the toxin. The amino acid sequence of this epitope was found in several dermonecrotic proteins and some of its residues have been implicated with the active site of the toxin.  相似文献   

9.
Loxosceles adelaida spiders (Araneae, Sicariidae) are found near and inside the caves in the Parque Estadual Turistico do Alto Ribeira (PETAR), Sao Paulo, Brazil, which are visited by thousands of tourists every year. Several Loxosceles species are a public health problem in many regions of the world, by causing severe dermonecrosis and/or complement dependent haemolysis upon envenomation. The aim of this study was to characterize the biochemical and biological properties of L. adelaida venom and evaluate the toxic potential of envenomation by this non-synanthropic Loxosceles species. The biological activities of the L. adelaida venom was compared to that of Loxosceles gaucho, a synanthropic species of medical importance in Brazil. L. adelaida venom showed a similar potential to induce haemolysis, dermonecrosis and lethality as L. gaucho venom. L. adelaida crude venom was purified, yielding a 31 kDa component endowed with haemolytic and dermonecrotic activities. In conclusion, we show here that the troglophile Loxosceles species, L. adelaida, commonly found in the complex of caves from PETAR, is potentially able to cause envenomation with the same gravity of those produced by synanthropic species.  相似文献   

10.
INTRODUCTION: Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin. AREAS COVERED: The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death. EXPERT OPINION: Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.  相似文献   

11.
Introduction: Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin.

Areas covered: The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death.

Expert opinion: Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.  相似文献   

12.
Sphingolipid metabolites such as sphingosine 1-phosphate (S1P) and ceramide can mediate many cellular events including apoptosis, stress responses and growth arrest. Although ceramide stimulates arachidonic acid metabolism in several cells, the effects of sphingosine and its endogenous analogs have not been established. We investigated the effects of D-erythro-sphingosine and its metabolites on arachidonic acid release in the two cells and on the activity of cytosolic phospholipase A2alpha. C2-Ceramide (N-acetyl-D-erythro-sphingosine, 100 microM) alone stimulated [3H]arachidonic acid release and enhanced the ionomycin-induced release from the prelabeled PC12 cells and L929 cells. In contrast, exogenous addition of D-erythro-sphingosine inhibited the responses in a concentration-dependent manner in the two cell lines. D-erythro-sphingosine, D-erythro-N,N-dimethylsphingosine (D-erythro-DMS) and D-erythro-dihydrosphingosine (D-erythro-DHS) significantly inhibited mastoparan-, but not Na3VO4-, stimulated arachidonic acid release in PC12 cells. D-erythro-S1P and DL-threo-DHS showed no effect on the responses. Production of prostaglandin F2alpha was also enhanced by C2-ceramide (20 microM) and suppressed by D-erythro-sphingosine (10 microM) in PC12 cells. An in vitro study revealed that D-erythro-sphingosine, D-erythro-DMS and D-erythro-DHS directly inhibited cytosolic phospholipase A2alpha activity. These findings suggest that ceramide and D-erythro-analogs of sphingosine have opposite effects on phospholipase A2 activity and thus regulate arachidonic acid release from cells.  相似文献   

13.
14.
The effects of ceramide on agonist-stimulated phospholipase A2 (PLA2) activity were studied in platelets. Cell-permeable C6-ceramide (N-hexanoylsphingosine) exogenously added to platelet suspension enhanced U46619-stimulated arachidonic acid release and lysophosphatidylcholine production. Treatment of platelets with sphingomyelinase also led to an enhancement of the release. The enhanced arachidonic acid release by exogenous ceramide was completely inhibited by methyl arachidonyl fluorophosphonate, a cytosolic PLA2 inhibitor. However, U46619-stimulated PLA2 activity was not significantly potentiated by ceramide. These results suggest that enrichment of ceramide in membranes causes modification of intermolecular organization, leading to increased susceptibility of substrate phospholipids to PLA2.  相似文献   

15.
16.
We have produced 13 mAbs for Loxosceles intermedia crude venom. Twelve were reactive against proteins of 32-35 kDa and one of these Li mAb(7) showed high neutralizing potency for the dermonecrotic activity of L. intermedia venom. This Li mAb(7) showed no cross-reactivity, with Loxosceles laeta (Brazil), L. laeta (Perú) and Loxosceles gaucho venoms. The mAbs were produced by immunization with the crude venom and screened by enzyme-linked immunosorbent assay (ELISA) using L. intermedia whole venom or dermonecrotic fraction (DNF) as antigens coated onto microtitre plates. A sensitive two-site immunometric assay was designed and shown to be useful for identifying and quantifying DNF from L. intermedia in biological samples. The Li mAb(7) coated onto microtitre plates and hyperimmune horse anti-L. intermedia IgGs prepared by immunoaffinity chromatography and conjugated to horseradish peroxidase were used to set up a sandwich-type ELISA. Measurable absorbance signals were obtained with 0.2 ng of L. intermedia crude venom per assay.  相似文献   

17.
The role of p44/42 mitogen-activated protein kinase (MAPK), p38, and c-Jun NH(2)-terminal kinase (JNK) in tumor necrosis factor (TNF)-alpha-induced cyclooxygenase (COX)-2 expression was studied in NCI-H292 epithelial cells. TNF-alpha-mediated COX-2 expression and COX-2 promoter activity were inhibited by the MAPK kinase inhibitor PD98059 or the p38 inhibitor SB203580. Treatment of cells for 10 min with TNF-alpha resulted in activation of p44/42 MAPK, p38, and JNK. C2-ceramide (a cell-permeable ceramide analog), bacterial neutral sphingomyelinase (Smase; an enzyme that degrades sphingomyelin to ceramide), and N-oleoylethanolamine (a ceramidase inhibitor) all induced activation of MAPKs, COX-2 expression, nuclear factor (NF)-kappaB DNA-protein binding, and COX-2 promoter activity. The inactive analog, dihydro-C2-ceramide, had no effect. SMase- or C2-ceramide-induced COX-2 expression and COX-2 promoter activity were also inhibited by PD98059 or SB203580. Glutathione, a neutral SMase inhibitor, attenuated TNF-alpha- or SMase-induced activation of MAPKs, COX-2 expression, and COX-2 promoter activity. TNF-alpha- or C2-ceramide-induced COX-2 promoter activity was inhibited by the dominant negative mutant of extracellular signal-regulated kinase 2, p38, JNK, IkappaB kinase (IKK)1, or IKK2. IKK activity was stimulated by either TNF-alpha or C2-ceramide, and these effects were inhibited by PD98059 or SB203580. All these results suggest that, in NCI-H292 epithelial cells, activation of MAPKs by ceramide contributes to the TNF-alpha signaling that occurs downstream of neutral SMase activation and results in the stimulation of IKK1/2, and NF-kappaB in the COX-2 promoter, followed by initiation of COX-2 expression.  相似文献   

18.
Sphingolipids are major constituents of biological membranes of eukaryotic cells. Many studies have shown that sphingomyelin (SM) is a major phospholipid in cell bilayers and is mainly localized to the plasma membrane of cells, where it serves both as a building block for cell architecture and as a precursor of bioactive sphingolipids. In particular, upregulation of (C-type) sphingomyelinases will produce ceramide, which regulates many physiological functions including apoptosis, senescence, or cell differentiation. Interestingly, the venom of some arthropodes including spiders of the genus Loxosceles, or the toxins of some bacteria such as Corynebacterium tuberculosis, or Vibrio damsela possess high levels of D-type sphingomyelinase (SMase D). This enzyme catalyzes the hydrolysis of SM to yield ceramide 1-phosphate (C1P), which promotes cell growth and survival and is a potent pro-inflammatory agent in different cell types. In particular, C1P stimulates cytosolic phospholipase A2 leading to arachidonic acid release and the subsequent formation of eicosanoids, actions that are all associated to the promotion of inflammation. In addition, C1P potently stimulates macrophage migration, which has also been associated to inflammatory responses. Interestingly, this action required the interaction of C1P with a specific plasma membrane receptor, whereas accumulation of intracellular C1P failed to stimulate chemotaxis. The C1P receptor is coupled to Gi proteins and activates of the PI3K/Akt and MEK/ERK1-2 pathways upon ligation with C1P. The proposed review will address novel aspects on the control of inflammatory responses by C1P and will highlight the molecular mechanisms whereby C1P exerts these actions.  相似文献   

19.
20.
Reduced glutathione and N-acetylcysteine can inhibit both apoptosis and necrosis of several cell types, suggesting a critical role for reactive oxygen species (ROS) in cell death. However, how the cellular defense against oxidative stress is connected with other cell death mediators remains unclear. We selectively investigated the interaction of seleno-glutathione peroxidase-1 (GPx-1), the major enzyme responsible for peroxide detoxification in mammalian cells, with the cytotoxic response of T47D human breast cancer cells to doxorubicin, an anticancer drug known to promote production of ROS and apoptotic mediator ceramide. The sensitivity to doxorubicin-mediated cell death was compared in T47D/H3 containing low levels of endogenous GPx and T47D/GPx2 transfectant cells, which overexpress GPx-1. We show that T47D/GPx2 cells were significantly more resistant than T47D/H3 cells to doxorubicin (1 microM). The glutathione precursor, N-acetylcysteine also partially protected T47D/H3 cells from the lethal effect of doxorubicin, whereas L-buthionine-(S,R)-sulfoximine, an inhibitor of glutathione biosynthesis, sensitized both GPx-1--deficient and -proficient cells. Interestingly, in addition to a decrease in ROS production, the activation of neutral sphingomyelinase, sphingomyelin hydrolysis, and ceramide generation in response to doxorubicin was impaired in T47D/GPx2 cells compared with control cells. In contrast, GPx overexpression did not protect breast cancer cells from cell death induced by exogenous cell-permeant ceramide. Moreover, the basal activity of neutral sphingomyelinase was considerably lower in T47D/GPx2. Taken together, these results indicate that GPx-1 can regulate doxorubicin-induced cell death signaling at least in part by interfering with the activation of the sphingomyelin-ceramide pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号