首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral microdialysis is used to study anticancer drug penetration in the central nervous system (CNS) and brain tumors in animal models. Genetically engineered murine models (GEMMs) have been recently used to study many aspects of CNS tumors since they represent a more relevant model than orthotopic brain tumor xenograft models. However, it is challenging to implant microdialysis cannula in these animals because T2-weighted magnetic resonance imaging (MRI) does not show the reference point (bregma) traditionally used to obtain stereotactic coordinates. Thus, an alternative reference point that can be visualized on MRI images is needed. In this study, a novel reference point, identified as the intersection between the olfactory bulb/frontal lobe border and the midline between cerebral hemispheres on T2-weighted MRI images, was used to calculate anterior–posterior and medial–lateral coordinates of brain tumors in a GEMM. This point overlies a visible crossover between the rostral rhinal vein and the midline suture on the mouse skull, allowing for the conversion of the MRI coordinates into surgical stereotactic coordinates. Postmortem MRI and histological examination confirmed accurate probe placement. This procedure will facilitate the accurate and precise implantation of microdialysis probes for the study of anticancer drug penetration in brain tumors of GEMMs. © 2011 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:4210–4214, 2011  相似文献   

2.
We developed a chromatography method to measure lactone and carboxylate forms of topotecan (TPT) in mouse cerebrospinal fluid (CSF) using microdialysis sampling. The chromatography method utilized a microbore (0.8 mm) column. Analytes, which eluted in less than 5 min, were detected with a fluorescence detector. The calibration range was 0.25-100.0 ng/mL for both forms. The within-day and between-day precision was < or =16% for 0.8 ng/mL and < or =8.0% for 3, 12, and 80 ng/mL. Accuracy was +/-15% (0.8 and 3 ng/mL) and +/-10% (12 and 80 ng/mL). TPT lactone hydrolyzes to the carboxylate during sampling, so we developed an equation and parameters to describe the TPT lactone hydrolysis in artificial CSF (aCSF). After TPT administration, CSF dialysate samples (2 microL) were analyzed for lactone and carboxylate using online injection. The hydrolysis of each dialysate sample was then estimated and a correction applied. We conclude that this HPLC method coupled with online microdialysis sampling allows for the rapid measurement of both TPT forms in small volumes of murine CSF dialysate. The system allows for the determination of TPT pharmacokinetics in murine CSF and provides a tool to extend pharmacological studies in this brain compartment.  相似文献   

3.
The brain penetration of methotrexate (MTX) and its metabolite 7-hydroxymethotrexate (7OHMTX) was characterized in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. Plasma pharmacokinetic studies and cerebral and ventricular microdialysis studies were performed in animals dosed with 200 or 1000 mg/kg MTX by IV bolus. Plasma, brain/tumor extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF) MTX and 7OHMTX concentration-time data were analyzed by validated LC-MS/MS methods and modeled using a population-based pharmacokinetic approach and a hybrid physiologically-based model structure for the brain compartments. Brain penetration was similar for MTX and 7OHMTX and was not significantly different between non-tumor and tumor bearing mice. Overall, mean (±SD) model-derived unbound plasma to ECF partition coefficient Kp,uu were 0.17 (0.09) and 0.17 (0.12) for MTX and 7OHMTX, respectively. Unbound plasma to CSF Kp,uu were 0.11 (0.06) and 0.18 (0.09) for MTX and 7OHMTX, respectively. The plasma and brain model were scaled to children using allometric principles and pediatric physiological parameters. Model-based simulations were adequately overlaid with digitized plasma and CSF lumbar data collected in children receiving different MTX systemic infusions. This model can be used to further explore and optimize methotrexate dosing regimens in children with brain tumors.  相似文献   

4.
We investigated the rate of penetration into and the intra-relationship between the serum, cerebrospinal fluid (CSF) and regional brain extracellular fluid (bECF) compartments following systemic administration of lamotrigine in rat. The serum pharmacokinetics were biphasic with an initial distribution phase, (half-life approximately 3 h), and then a prolonged elimination phase of over 30 h. The serum pharmacokinetics were linear over the range 10 - 40 mg kg(-1). Using direct sampling of CSF with concomitant serum sampling, the calculated penetration half-time into CSF was 0.42+/-0.15 h. At equilibrium, the CSF to total serum concentration ratio (0.61+/-0.02) was greater than the free to total serum concentration (0.39+/-0.01). Using in vivo recovery corrected microdialysis sampling in frontal cortex and hippocampus with concomitant serum sampling, the calculated penetration half-time of lamotrigine into bECF, 0.51+/-0.11 h, was similar to that for CSF and was not area or dose dependent. At equilibrium, the bECF to total serum concentration ratio (0.40+/-0.04) was similar to the free to total serum concentration (0.39+/-0.01), and did not differ between hippocampus and frontal cortex. The species specific serum kinetics can explain the prolonged action of lamotrigine in rat seizure models. Lamotrigine has a relatively slow penetration into both CSF and bECF compartments compared with antiepileptic drugs used in acute seizures. Furthermore, the free serum drug concentration is not the sole contributor to the CSF compartment, and the CSF concentration is an overestimate of the bECF concentration of lamotrigine.  相似文献   

5.
In the clinical setting, drug concentrations in cerebrospinal fluid (CSF) are sometimes used as a surrogate for drug concentrations at the target site within the brain. However, the brain consists of multiple compartments and many factors are involved in the transport of drugs from plasma into the brain and the distribution within the brain. In particular, active transport processes at the level of the blood-brain barrier and blood-CSF barrier, such as those mediated by P-glycoprotein, may lead to complex relationships between concentrations in plasma, ventricular and lumbar CSF, and other brain compartments. Therefore, CSF concentrations may be difficult to interpret and may have limited value. Pharmacokinetic data obtained by intracerebral microdialysis monitoring may be used instead, providing more valuable information. As non-invasive alternative techniques, positron emission tomography or magnetic resonance spectroscopy may be of added value.  相似文献   

6.
The ability to deliver drug molecules effectively across the blood–brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants.  相似文献   

7.
Blood microdialysis in pharmacokinetic and drug metabolism studies   总被引:12,自引:0,他引:12  
Microdialysis is a sampling technique allowing measurement of endogenous and exogenous substances in the extracellular fluid surrounding the probe. In vivo microdialysis sampling offers several advantages over conventional methods of studying the pharmacokinetics and metabolism of xenobiotics, both in experimental animals and humans. In the first part of this review article various practical aspects related to blood microdialysis will be discussed, such as: probe design, surgical implantation techniques, methods to determine the in vivo relative recovery of the analyte of interest by the probe, special analytical considerations related to small volume microdialysate samples, and pharmacokinetic calculations based on microdialysis data. In the second part of this review a few selected applications of in vivo microdialysis sampling to investigate pharmacokinetic processes are briefly discussed: determination of in vivo plasma protein binding in small laboratory animals, distribution of drugs across the blood-brain barrier, the use of microdialysis sampling to study biliary excretion and enterohepatic cycling, blood microdialysis sampling in man and in the mouse, and in vivo drug metabolism studies.  相似文献   

8.
Purpose. The purpose of this study was to design and validate a concentric, flexible intravenous microdialysis probe to determine drug concentrations in blood from the inferior vena cava of a freely-moving animal model. Methods. An intravenous microdialysis probe was constructed using fused-silica tubing and an acrylonitrile/sodium methallyl sulfonate copolymer hollow fiber. The probe was tested in vitro for the recovery of fluconazole and UK-54,373, a fluconazole analog used for probe calibration by retrodialysis. Subsequent in vivo validation was done in rats (n = 7) that had a microdialysis probe inserted into the inferior vena cava via the femoral vein, and the femoral artery was cannulated for simultaneous blood sampling. Comparisons of fluconazole pharmacokinetic parameters resulting from the two sampling methods were performed at 2 and 10 days after probe implantation. Results. There were no statistical differences between the microdialysis sampling and conventional blood sampling methods for the T1/2, Cl, Vdss, and dose-normalized AUC by paired t-test (p > 0.05) for repeated dosing at day 2 and day 10 after probe placement. The probe recovery, as determined by retrodialysis, significantly decreased over the ten day period. This finding indicates the necessity for frequent recovery determinations during a long-term blood microdialysis experiment. Conclusions. These results show that microdialysis sampling in the inferior vena cava using this unique and robust probe design provides an accurate method of determining blood pharmacokinetics in the freely-moving rat for extended experimental periods. The probe design allows for a simple surgical placement into the inferior vena cava which results in a more stable animal preparation for long-term sampling and repeated-measures experimental designs.  相似文献   

9.
The direct measurement of local drug concentration levels at discreet skin locations with minor trauma has recently become possible with the introduction of cutaneous microdialysis. Cutaneous microdialysis is an in vivo sampling technique for measuring solutes in the extracellular fluid of the dermis. When used in combination with other experimental approaches, for example with a variety of non-invasive techniques to describe the functional status of the skin (bioengineering methods), it may help investigators to gain new insights into the fields of skin diseases, metabolism and drug absorption/penetration. An important parameter to describe the efficacy of microdialysis is the relative recovery. This is the ratio between the concentration of a substance in the dialysate and the true extracellular concentration. Several methods are in common use to describe the relative recovery (no-net-flux method or retrodialysis). Parameters such as probe design, depth of the probe in the dermis, physico-chemical properties of the compound of interest, and analytical aspects are important factors influencing microdialysis. Microdialysis has been used to investigate the influence of penetration enhancers, vehicles or iontophoresis on percutaneous absorption, performed by in vivo studies in rats. In human volunteers, most of the experiments have been performed to study the kinetics of fast penetrating substances, e.g. nicotine, non-steroidal antiinflammatory drugs, local anaesthetics, or solvents. Problems have been encountered in the detection of lipophilic and highly protein-bound substances. Further, dermal metabolism and the influence of barrier perturbation on percutaneous absorption have been analyzed. Investigations suggest that microdialysis, in combination with traditional techniques, might give valuable information regarding the assessment of the penetration of drugs and other exogenous agents through the skin. In spite of the clearly defined and accepted advantages of microdialysis technology for studies of transdermal drug delivery, to date no standardized test procedure exists nor has the reproducibility of the results been evaluated. In the future, these problems have to be solved to enable this method to find its place in standard research.  相似文献   

10.
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.  相似文献   

11.
One of the major challenges in the development of central nervous system (CNS)-targeted drugs is predicting CNS exposure in human from preclinical data. In this study, we present a methodology to investigate brain disposition in rats using a physiologically based modeling approach aiming at improving the prediction of human brain exposure. We specifically focused on quantifying regional diffusion and fluid flow processes within the brain. Acetaminophen was used as a test compound as it is not subjected to active transport processes. Microdialysis probes were implanted in striatum, for sampling brain extracellular fluid (ECF) concentrations, and in lateral ventricle (LV) and cisterna magna (CM), for sampling cerebrospinal fluid (CSF) concentrations. Serial blood samples were taken in parallel. These data, in addition to physiological parameters from literature, were used to develop a physiologically based model to describe the regional brain pharmacokinetics of acetaminophen. The concentration-time profiles of brain ECF, CSF(LV), and CSF(CM) indicate a rapid equilibrium with plasma. However, brain ECF concentrations are on average fourfold higher than CSF concentrations, with average brain-to-plasma AUC(0-240) ratios of 121%, 28%, and 35% for brain ECF, CSF(LV), and CSF(CM), respectively. It is concluded that for acetaminophen, a model compound for passive transport into, within, and out of the brain, differences exist between the brain ECF and the CSF pharmacokinetics. The physiologically based pharmacokinetic modeling approach is important, as it allowed the prediction of human brain ECF exposure on the basis of human CSF concentrations.  相似文献   

12.
The present study aimed to investigate pharmacokinetics of Rg1 in rat medial prefrontal cortex (mPFC), hippocampus (HIP), and lateral ventricle (LV) after subcutaneous injection. For the first time, intracerebral pharmacokinetics of Rg1 was studied in freely moving rats by microdialysis technique. Rg1 concentrations in dialysates were detected by a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method and were revised using in vivo probe-recovery in HIP and LV. The pharmacokinetic parameters were then determined using non-compartmental models. Since the in vivo recoveries remained stable in HIP and LV during 9 h dialysis, average recoveries were used to revise dialysate concentrations. After dosing, Rg1 was soon detected in brain extracellular fluid (bECF) and cerebrospinal fluid (CSF). The elimination of Rg1 was significantly slower in mPFC than in HIP and LV, and significantly greater AUC was obtained in mPFC than in HIP. Rg1 kinetics in bECF and CSF indicate that Rg1 can go across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), and then immediately distribute to learning and memory-related regions in brain, which may lead to rapid pharmacological onset. There may be active transport and target-mediated disposition of Rg1 in the CNS, which need to be further clarified.  相似文献   

13.
Both placental and blood-CSF transfer of atropine (0.01 mg/kg intramuscularly) was measured (by RIA) in 11 parturients undergoing Caesarean section under spinal analgesia. In the foeto-placental unit a significant penetration into amniotic fluid was found, whereas in CSF there was a measurable level of the drug (greater than 1.5 ng/ml) in only one mother. Our results show that there is a fundamental difference in the penetrability of tertiary ammonium alkaloids like atropine through these two biological membranes. However, our results concern penetration into human lumbar CSF and do not necessarily reflect potential penetration into the ventricular CSF, choroid plexus or brain ventricular ependyma.  相似文献   

14.
ABSTRACT

Introduction: There are 2 misconceptions about the cerebrospinal fluid (CSF), the blood-brain barrier (BBB), and brain drug delivery, which date back to the discovery of a barrier between blood and brain over 100 years ago. Misconception 1 is that drug distribution into CSF is a measure of BBB transport. Misconception 2 is that drug injected into the CSF compartment distributes to the inner parenchyma of brain.

Areas Covered: Drug distribution into the CSF is a function of drug transport across the choroid plexus, which forms the blood-CSF barrier, and not drug transport across the BBB, which is situated at the microvascular endothelium of brain. Drug injected into CSF undergoes rapid efflux to the blood compartment via bulk flow. Drug penetration into brain parenchyma from the CSF is limited by diffusion and drug concentrations in brain decrease exponentially relative to the CSF concentration.

Expert Opinion: The barrier between blood and brain was discovered in 1913, when it was believed that the BBB was localized to the choroid plexus, and that nutrient flow from blood passed through the CSF en route to brain. These misconceptions are still widely held, and hinder progress in the development of technology for BBB drug delivery.  相似文献   

15.
The development of multiple probe microdialysis sampling in the stomach   总被引:1,自引:0,他引:1  
A multiple probe approach of implanting microdialysis probes into each separate tissue layer would better represent sampling from the stomach. Presently, microdialysis sampling experiments are performed with only a single probe in the submucosa to represent sampling from the stomach tissue. The focus of this research was to develop a four-probe microdialysis sampling design to simultaneously monitor the stomach lumen, mucosa, submucosa and in the blood of the rat. Due to the small outer diameter of the microdialysis probe (350mum), implantation into each separate layer was achieved with confirmation of probe location from histological examination. To assess the significance of sampling by this approach, multiple probe microdialysis sampling was used to monitor drug absorption in the stomach. Salicylic acid, caffeine and metoprolol were individually dosed to the ligated stomach. Analysis of the dialysate samples was performed by HPLC-UV and concentration-time curves and pharmacokinetics analysis were used to determine differences between the different probe locations.  相似文献   

16.
The distribution of zidovudine (3-azido-3-deoxythymidine; AZT) into two regions of rabbit brain was investigated in crossover using microdialysis. Six rabbits had guide cannulas surgically implanted in the lateral ventricle and thalamus by stereotaxic placement. After recovery, microdialysis probes were positioned and i.v. bolus doses of 5, 10, 20, and 30 mg/kg were administered to each animal over a period of 2 weeks. Blood was drawn via a marginal ear vein catheter for 8 hr. Brain dialysate was collected at 3 µl/min from ventricle and thalamus dialysis probes every 10 min. Simulated cerebrospinal fluid (CSF), to which 3-azido-2,3-dideoxyuridine (AZdU) was added, was used as perfusate. AZdU loss, which was measured during simultaneous retrodialysis, served as a marker for in vivo recovery of AZT. AZT concentrations in plasma, as well as in ventricle and thalamus dialysate, were determined using a sensitive HPLC assay, and AZdU was simultaneously analyzed in the dialysates. Calculation of in vivo recovery of AZT was based on loss of AZdU from the perfusate during retrodialysis and was used to estimate the concentration of drug at both sites in the brain. In vitro loss of AZdU and recovery of AZT showed good agreement, demonstrating a bivariate regression slope of 0.99. The half-lives and AUCs (normalized to dose) achieved in the plasma, ventricle, or thalamus were not significantly different for the four doses. The AUC ratios, which represent the ratio of clearances into and from the CNS, were not significantly different among the doses studied (AUCv/AUCp range, 0.16–0.19; AUCt/AUCp range, 0.05–0.09), providing further evidence that the kinetics of distribution into the thalamus and CSF are linear. The results also demonstrate that the time-averaged concentrations of AZT in thalamus ECF are about half of those in the CSF.  相似文献   

17.
The disposition of lidocaine within the CNS of the rat following nasal and intra-arterial delivery was characterized using a microdialysis technique. Lidocaine concentrations in the cisterna magna were determined using microdialysis and compared to those previously determined using a direct CSF sampling method. The disposition profiles for lidocaine into the cisternal CSF obtained using microdialysis were found to be similar to those obtained by direct CSF sampling techniques over an initial 120-min interval. In other experiments, lidocaine disposition in the right (dosed side) and left olfactory bulb following nasal (i.n.) and intra-arterial (i.a.) administration was studied using microdialysis. The lidocaine concentrations in the ipsilateral olfactory bulb were slightly higher after drug administration into the nasal cavity than those in the contralateral olfactory bulb over the initial 20-min sampling interval. Drug concentrations found in the right olfactory bulb were not significantly different from those found in the left olfactory bulb following intra-arterial administration. Comparisons of lidocaine disposition in the right olfactory bulb and cerebellum, two CNS sites with the same regional vascular supply, showed that the disposition patterns were nearly identical for the two sites following i.a. administration. There was a significant lengthening in the tmax at both sites following i.n. delivery compared to i.a. delivery, and the relative concentrations at each site were no longer equivalent. From these results, it appears that the microdialysis technique is a useful tool for studying drug distribution into the CNS. The changes in disposition patterns between i.a. and i.n. administration indicate that other factors or pathways, in addition to the systemic circulation, play a role in the transport of lidocaine into the brain following nasal administration.  相似文献   

18.
脑室给甲氨蝶呤治疗脑肿瘤患者脑脊液中的药代动力学   总被引:5,自引:0,他引:5  
对脑肿瘤病人脑室内注射 5mg甲氨蝶呤(MTX) 3次后 ,脑脊液 (CSF)中MTX呈二室开放动力学特点 .主要动力学参数 :t1/ 2α=3h ;t1/ 2 β=4 8.2h ;Vc =15.6mL ;AUC =6365mg·h·L- 1;Cl =0 .32 4mL·h- 1.给药后 4 8h血药浓度很低 ,峰值 ( 4h)时仅有 0 .7mg·L- 1.对MTX经脑室给药CSF药物浓度高 ,维持时间久 ,而血药浓度一直在极低水平的原因及应用前景进行了分析  相似文献   

19.
F Campos  S Rellán  R Duran  A Gago  L F Faro  M Alfonso 《Toxicon》2008,52(7):817-823
In vivo microdialysis is a versatile sampling technique commonly employed to observe changes in neurotransmitters levels that occur in response to different treatments, being these treatments administered through a microdialysis probe implanted into a specific brain region in living animals. In previous works we have used this technique to study the effects of the drug anatoxin-a, a nicotinic acetylcholine receptor agonist, on dopamine release in striatum. The aim of the present study was to assess the recovery of anatoxin-a through the microdialysis probe. This information allows knowing the exact amount of the drug crossing the microdialysis membrane, acting on extracellular tissue. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection (FLD) has been used for the analysis of anatoxin-a. We observed that the recovery of anatoxin-a was about 0.5%. Under our experimental conditions, the results suggest that anatoxin-a can be used as an important tool in the study of neuronal nicotinic receptors by in vivo microdialysis technique and also show a reliable estimation of the anatoxin-a recovery through the microdialysis probe under both in vivo and in vitro conditions.  相似文献   

20.
The purpose of this work is to validate a novel ocular microdialysis sampling technique in rabbits with permanently implanted vitreous probes. This objective is achieved by studying the vitreous pharmacokinetics of fluorescein following systemic and intravitreal administration. The rabbits were divided into two groups (groups I and II) based on whether or not they were allowed a recovery period following surgical implantation of probes. The integrity of the blood-retinal barrier was determined by the vitreal protein concentrations and the fluorescein permeability index. Vitreal protein concentrations returned to baseline 48 h after probe implantation and therefore experiments were conducted 72 h post-implantation of probes in rabbits where recovery period was allowed. The permeability indices for fluorescein after systemic administration in group I (without recovery period) and group II (with recovery period) indicated that the integrity of the blood-retinal barrier was maintained and were found out to be 0.55 +/- 0.27 and 0.71 +/- 0.38%, respectively, for the vitreous chamber. Following microdialysis probe implantation in the group II rabbits, the blood-retinal barrier integrity was not compromised. A novel microdialysis technique in rabbits with permanently implanted probes for studying the pharmacokinetics of posterior segment has been developed and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号