首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang Y  Blasioli DJ  Kim HJ  Kim HS  Kaplan DL 《Biomaterials》2006,27(25):4434-4442
  相似文献   

2.
Articular cartilage does not repair itself spontaneously. To promote its repair, the transfer of stem cells from adipose tissue (ATSC) using an injectable self-setting cellulosic-hydrogel (Si-HPMC) appears promising. In this context, the objective of this work was to investigate the influence of in vitro chondrogenic differentiation of ATSC on the in vivo cartilage formation when combined with Si-HPMC. In a first set of experiments, we characterized ATSC for their ability to proliferate, self renew and express typical mesenchymal stem cell surface markers. Then, the potential of ATSC to differentiate towards the chondrogenic lineage and the optimal culture conditions to drive this differentiation were evaluated. Real-time RT-PCR and histological analysis for sulphated glycosaminoglycans and type II collagen revealed that 3-dimensional culture and hypoxic condition favored ATSC chondrogenesis regarding mRNA expression level and the corresponding proteins production. In order to assess the phenotypic stability of chondrogenically-differentiated ATSC, real-time RT-PCR for specific terminal chondrogenic markers and alkaline phosphatase activity assay were performed. In addition to promote chondrogenesis, our culture conditions seem to prevent the terminal differentiation of ATSC. Histological examination of ATSC/Si-HPMC implants suggested that the in vitro chondrogenic pre-commitment of ATSC in monolayer is sufficient to obtain cartilaginous tissue in vivo.  相似文献   

3.
Articular cartilage has limited ability for repair when damaged by trauma or degenerative disease, such as osteoarthritis, which can result in pain and compromised quality of life. Biological surface replacements developed using tissue engineering methods are a promising approach for cartilage repair, which would avoid the need for total joint replacement with the synthetic implants used currently. A basic requirement of in vitro tissue generation is a supply of sufficient number of cells, which are difficult to acquire from sparsely cellular cartilage tissue. Previously, we have shown that coculture of in vitro-expanded dedifferentiated chondrocytes (P2) with small numbers of primary chondrocytes (P0) induces redifferentiation in passaged (P2) cells. In this study we show that this redifferentiation is not a transient change. After 4 weeks of coculture, the P0 and P2 cells were separated by flow-associated cell sorting, and the redifferentiated P2 (dP2) were cultured alone for a further 4 weeks. The redifferentiated dP2 cells formed thicker cartilage tissue compared to the tissue generated by P2 cells. The newly formed tissue contained type II collagen as demonstrated by immunohistochemical staining and accumulated more proteoglycan per cell than the tissue formed by P2 cells. The dP2 cells also exhibited higher type II collagen and lower type I collagen gene expression than the P2 cells. Interestingly, dP2 cells were able to exert the same effect as P0 cells when cocultured with P2 cells. In conclusion, under proper culture conditions, redifferentiated passaged chondrocytes behave similarly to primary chondrocytes. This coculture system approach can be used to increase the number of differentiated chondrocytes that can be obtained by classical monolayer cell expansion and represents a novel way to acquire sufficient cell numbers for cartilage tissue engineering.  相似文献   

4.
Scaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors scheduled for ACI were expanded, cryopreserved and re-arranged in polyglycolic acid (PGA)-fibrin scaffolds for tissue culture. Chondrocyte redifferentiation was analyzed by electron microscopy, histology and gene expression analysis. Karyotyping was performed using GTG banding and fluorescence in situ hybridization on a single cell basis. Chondrocytes showed de- and redifferentiation accompanied by the formation of extracellular matrix and induction of typical chondrocyte marker genes like type II collagen in PGA-fibrin scaffolds. Post mortem chondrocytes showed up to 1.7% structural and high numbers of numerical (up to 26.7%) chromosomal aberrations, while chondrocytes from living donors scheduled for ACI showed up to 1.8% structural and up to 1.3% numerical alterations. Cytogenetically, cell culture procedures and PGA-fibrin scaffolds did not significantly alter chromosomal integrity of the chondrocyte genome. Human chondrocytes derived from living donors subjected to regenerative medicine cell culture procedures like cell expansion, cryopreservation and culture in resorbable polymer-based scaffolds show normal chromosomal integrity and normal karyotypes.  相似文献   

5.
Tissue engineering may provide a technique to generate cartilage grafts for laryngotracheal reconstruction in children. The present study used a rabbit model to characterize cartilage generated by a candidate tissue engineering approach to determine, under baseline conditions, which chondrocytes in the rabbit produce tissue-engineered cartilage suitable for in vivo testing in laryngotracheal reconstruction. We characterized tissue-engineered cartilage generated in perfused bioreactor chambers from three sources of rabbit chondrocytes: articular, auricular, and nasal cartilage. Biomechanical testing and histological, immunohistochemical, and biochemical assays were performed to determine equilibrium unconfined compression (Young's) modulus, and biochemical composition and structure. We found that cartilage samples generated from articular or nasal chondrocytes lacked the mechanical integrity and stiffness necessary for completion of the biomechanical testing, but five of six auricular samples completed the biomechanical testing (moduli of 210 +/- 93 kPa in two samples at 3 weeks and 100 +/- 65 kPa in three samples at 6 weeks). Auricular samples showed more consistent staining for proteoglycans and collagen II and had significantly higher glycosaminoglycan (GAG) content and concentration and higher collagen content than articular or nasal samples. In addition, the delayed gadolinium enhanced MRI of cartilage (dGEMRIC) method revealed variations in GAG spatial distribution in auricular samples that were not present in articular or nasal samples. The results indicate that, for the candidate tissue engineering approach under baseline conditions, only rabbit auricular chondrocytes produce tissue-engineered cartilage suitable for in vivo testing in laryngotracheal reconstruction. The results also suggest that this and similar tissue engineering approaches must be optimized for each potential source of chondrocytes.  相似文献   

6.
This study compares bovine chondrocytes harvested from four different animal locations--nasoseptal, articular, costal, and auricular--for tissue-engineered cartilage modeling. While the work serves as a preliminary investigation for fabricating a human ear model, the results are important to tissue- engineered cartilage in general. Chondrocytes were cultured and examined to determine relative cell proliferation rates, type II collagen and aggrecan gene expression, and extracellular matrix production. Respective chondrocytes were then seeded onto biodegradable poly(L-lactide-epsilon-caprolactone) disc-shaped scaffolds. Cell-copolymer constructs were cultured and subsequently implanted in the subcutaneous space of athymic mice for up to 20 weeks. Neocartilage development in harvested constructs was assessed by molecular and histological means. Cell culture followed over periods of up to 4 weeks showed chondrocyte proliferation from the tissue sources varied, as did levels of type II collagen and aggrecan gene expression. For both genes, highest expression was found for costal chondrocytes, followed by nasoseptal, articular, and auricular cells. Retrieval of 20-week discs from mice revealed changes in construct dimensions with different chondrocytes. Greatest disc diameter was found for scaffolds seeded with auricular chondrocytes, followed by those with costal, nasoseptal, and articular cells. Greatest disc thickness was measured for scaffolds containing costal chondrocytes, followed by those with nasoseptal, auricular, and articular cells. Retrieved copolymer alone was smallest in diameter and thickness. Only auricular scaffolds developed elastic fibers after 20 weeks of implantation. Type II collagen and aggrecan were detected with differing expression levels on quantitative RT-PCR of discs implanted for 20 weeks. These data demonstrate that bovine chondrocytes obtained from different cartilaginous sites in an animal may elicit distinct responses during their respective development of a tissue-engineered neocartilage. Thus, each chondrocyte type establishes or maintains its particular developmental characteristics, and this observation is critical in the design and elaboration of any tissue-engineered cartilage model.  相似文献   

7.
Park SS  Jin HR  Chi DH  Taylor RS 《Biomaterials》2004,25(12):2363-2369
This study was done to define the mechanical and histological properties of tissue-engineered cartilage (TEC) derived from human chondrocytes and to compare these findings with those of native cartilage. Chondrocytes were obtained from 10 human auricular cartilages and seeded onto a biodegradable template of polyglycolic acid and poly L-lactic acid. Each template was shaped into a 1 cm x 2 cm rectangle. The templates were implanted in athymic mice for 8 weeks. Eight human auricular cartilages were used for comparison. Mechanical analysis with a tensile testing device provided values of ultimate tensile strength (UTS), stiffness, and resilience. Statistical analysis was performed with the Student's t-test. Histological assessment was done with hematoxylin-eosin staining along with other special stains. The TEC had UTS of 2.07 MPa, stiffness of 3.7 MPa, and resilience of 0.37 J/m3. The control specimens had UTS of 2.18 MPa, stiffness of 5.11 MPa, and resilience of 0.42 J/m3. No statistical difference was found between the experimental and control groups for each of the three parameters. Histological analysis showed mature cartilage with characteristic collagen, glycosaminoglycans, and elastin in the TEC. The neo-cartilage showed slightly smaller size and more irregular distribution of chondrocytes and unique fibrous capsule formation with peripheral infiltration of fibrous tissue. This study showed that the mechanical qualities of TEC from human chondrocytes are similar to those of native auricular cartilage. It suggests that the engineered cartilage from human chondrocytes may have sufficient strength and durability for clinical uses. The histological findings revealed some differences with neo-cartilage.  相似文献   

8.
背景:与传统水凝胶相比,智能水凝胶能够对外界刺激诸如温度、pH值、光、磁场等作出不同的应答表现,产生二级结构甚至化学结构的变化,自发组装形成有序的超分子结构,最终形成具有三维结构的凝胶。 目的:综述智能水凝胶的研究现状及其在组织工程的应用。 方法:应用计算机检索中国知网及PubMed 数据库从建库至2014年有关智能水凝胶在组织工程中应用的文献,检索关键词为“水凝胶,组织工程学,hydrogel,Tissue engineering”。 结果与结论:智能水凝胶中包括温度敏感性、pH敏感性、光敏感性、磁敏感性及温度/pH双重敏感性水凝胶,其对于外界环境变化能自动感知并能作出响应性的反应,在药物递送系统、药物释放,修复和改善缺损组织等领域表现出一系列传统材料所没有的突出性能,尤其是在组织工程方面表现出相当的优越性:低免疫原性,减少了炎症和排斥作用;具备生物可降解性;能真正在三维尺度上模拟细胞所处微环境,从而利于细胞黏附、生长、迁移及分化等。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

9.
Traumatic injury to the central nervous system (CNS) triggers cell death and deafferentation, which may activate a cascade of cellular and network disturbances. These events often result in the formation of irregularly shaped lesions comprised of necrotic tissue and/or a fluid-filled cavity. Tissue engineering represents a promising treatment strategy for the injured neural tissue. To facilitate minimally invasive delivery of a tissue engineered system, a thermoreversible polymer is an attractive scaffold candidate. We have developed a bioactive scaffold for neural tissue engineering by tethering laminin-1 (LN) to methylcellulose (MC), a thermoresponsive hydrogel. The base MC chain was oxidized via sodium m-periodate to increase MC tethering capacity. Protein immobilization was facilitated by a Schiff base reaction between primary amine groups on LN and the carbonyl groups of the oxidized MC chain. Immunoassays demonstrated tethering of LN at 1.6 +/- 0.5 ng of LN per milligram of MC. Rheological measurements for different MC-LN constructs indicated MC composition- and MC treatment-dependent effects on solution-gelation transition temperature. Cellular assays with primary rat cortical neurons demonstrated enhanced cell adhesion and viability on LN-functionalized MC when compared with base and oxidized MC. This bioadhesive thermoresponsive scaffold may provide a robust delivery vehicle to injured CNS tissue for neural cell transplantation strategies.  相似文献   

10.
Cartilage tissue engineering: state-of-the-art and future approaches   总被引:2,自引:0,他引:2  
Lesions of the articular cartilage have a large variety of causes among which traumatic damage, osteoarthritis and osteochondritis dissecans are the most frequent. Returning damaged cartilage in articular joints back to a functionally normal state has been a major challenge for orthopaedic surgeons. This interest results in large part because cartilage defects cannot adequately heal themselves. Current techniques used in orthopaedic practice to repair cartilage give variable and unpredictable results. Bone marrow stimulation techniques such as abrasion arthroplasty, drilling and microfracture produce mostly fibrocartilage. Autologous osteochondral transplant systems (mosaicplasty) have shown encouraging results. Autologous chondrocyte transplantation has led to a hyaline articular cartilage repair but little is known about the predictability and reliability of the procedure. The rapidly emerging field of tissue engineering promises creation of viable substitutes for failing cartilage tissue. Current tissue engineering approaches are mainly focused on the restoration of pathologically altered tissue structure based on the transplantation of cells in combination with supportive matrices and molecules. Among natural and synthetic matrices, collagen and polysaccharidic biomaterials have been extensively used with promising results. Recently, interest has switched to the use of mesenchymal stem cells instead of chondrocytes. Tissue engineering offers the possibility to treat localised cartilage lesions. Genetic engineering techniques using genetically modified chondrocytes offer also the opportunity to treat diffuse cartilage lesions occurring in osteoarthritis or inflammatory joint diseases. Electroporation is specially a reliable and inexpensive technique that shares with electrochemotherapy an ability to target the chondrocytes despite the barrier effect of the extracellular matrix without viral vectors. The authors review recent research achievements and highlight the potential clinical applications of new technologies in the treatment of patients with cartilage injuries.  相似文献   

11.
Healing capacity of cartilage is low. Thus, cartilage defects do not regenerate as hyaline but mostly as fibrous cartilage which is a major drawback since this tissue is not well adapted to the mechanical loading within the joint. During in vitro cultivation in monolayers, chondrocytes proliferate and de-differentiate to fibroblasts. In three-dimensional cell cultures, de-differentiated chondrocytes could re-differentiate toward the chondrogenic lineage and re-express the chondrogenic phenotype. The objective of this study was to characterize the mesenchymal stem cell (MSC) potential of human chondrocytes isolated from articular cartilage. Furthermore, the differentiation capacity of human chondrocytes in three-dimensional cell cultures was analyzed to target differentiation direction into hyaline cartilage. After isolation and cultivation of chondrogenic cells, the expression of the MSC-associated markers: cluster of differentiation (CD)166, CD44, CD105, and CD29 was performed by flow cytometry. The differentiation capacity of human chondrocytes was analyzed in alginate matrix cultured in Dulbecco?s modified eagle medium with (chondrogenic stimulation) and without (control) chondrogenic growth factors. Additionally, the expression of collagen type II, aggrecan, and glycosaminoglycans was determined. Cultivated chondrocytes showed an enhanced expression of the MSC-associated markers with increasing passages. After chondrogenic stimulation in alginate matrix, the chondrocytes revealed a significant increase of cell number compared with unstimulated cells. Further, a higher synthesis rate of glycosaminoglycans and a positive collagen type II and aggrecan immunostaining was detected in stimulated alginate beads. Human chondrocytes showed plasticity whilst cells were encapsulated in alginate and stimulated by growth factors. Stimulated cells demonstrated characteristics of chondrogenic re-differentiation due to collagen type II and aggrecan synthesis.  相似文献   

12.
Foetal mouse cortical cells were cultured on 2D films and within 3D thermally responsive chitosan/glycerophosphate salt (GP) hydrogels. The biocompatibility of chitosan/GP 2D films was assessed in terms of cell number and neurites per cell. Osmolarity of the hydrogel was a critical factor in promoting cell survival with isotonic GP concentrations providing optimal conditions. To improve cell adhesion and neurite outgrowth, poly-D-lysine (PDL) was immobilised onto chitosan via azidoaniline photocoupling. Increase in PDL concentrations did not alter cell survival in 2D cultures but neurite outgrowth was significantly inhibited. Neurons exhibited a star-like morphology typical of 2D culture systems. The effects of PDL attachment on cell number, cell morphology and neurite outgrowth were more distinct in 3D culture conditions. Neurones exhibited larger cell bodies and sent out single neurites within the macroporous gel. Immobilised PDL improved cell survival up to an optimum concentration of 0.1%, however, further increases resulted in drops in cell number and neurite outgrowth. This was attributed to a higher cell interaction with PDL within a 3D hydrogel compared to the corresponding 2D surface. The results show that thermally responsive chitosan/GP hydrogels provide a suitable 3D scaffolding environment for neural tissue engineering.  相似文献   

13.
Biomimetic materials for tissue engineering   总被引:46,自引:0,他引:46  
Shin H  Jo S  Mikos AG 《Biomaterials》2003,24(24):4353-4364
The development of biomaterials for tissue engineering applications has recently focused on the design of biomimetic materials that are capable of eliciting specific cellular responses and directing new tissue formation mediated by biomolecular recognition, which can be manipulated by altering design parameters of the material. Biomolecular recognition of materials by cells has been achieved by surface and bulk modification of biomaterials via chemical or physical methods with bioactive molecules such as a native long chain of extracellular matrix (ECM) proteins as well as short peptide sequences derived from intact ECM proteins that can incur specific interactions with cell receptors. The biomimetic materials potentially mimic many roles of ECM in tissues. For example, biomimetic scaffolds can provide biological cues for cell-matrix interactions to promote tissue growth, and the incorporation of peptide sequences into materials can also make the material degradable by specific protease enzymes. This review discusses the surface and bulk modification of biomaterials with cell recognition molecules to design biomimetic materials for tissue engineering. The criteria to design biomimetic materials such as the concentration and spatial distribution of modified bioactive molecules are addressed. Recent advances for the development of biomimetic materials in bone, nerve, and cardiovascular tissue engineering are also summarized.  相似文献   

14.
Hybrid constructs associating a biodegradable matrix and autologous chondrocytes hold promise for the treatment of articular cartilage defects. In this context, our objective was to investigate the potential use of nasal chondrocytes associated with a fibrin sealant for the treatment of articular cartilage defects. The phenotype of primary nasal chondrocytes (NC) from human (HNC) and rabbit (RNC) origin were characterized by RT-PCR. The ability of constructs associating fibrin sealant and NC to form a cartilaginous tissue in vivo was investigated, firstly in a subcutaneous site in nude mice and secondly in an articular cartilage defect in rabbit. HNC express type II collagen and aggrecan, the two major hallmarks of a chondrocytic phenotype. Furthermore, when injected subcutaneously into nude mice within a fibrin sealant, these chondrocytes were able to form a cartilage-like tissue. Our data indicate that RNC also express type II collagen and aggrecan and maintained their phenotype in three-dimensional culture within a fibrin sealant. Moreover, treatment of rabbit articular cartilage defects with autologous RNC embedded in a fibrin sealant led to the formation of a hyalin-like repair tissue. The use of fibrin sealant containing hybrid autologous NC therefore appears as a promising approach for cell-based therapy of articular cartilage.  相似文献   

15.
Tissue engineered human cartilage is presently being utilized in clinical research programs in a variety of medical disciplines including otolaryngology, urology, and orthopedics. In this study, we present a new methodology for auricular cartilage harvest that can be applied to tissue engineering. Eight 16-week-old pigs were subjected to a traditional open cartilage harvest technique involving suture closure, while the other ear was subjected to the closed stitchless cartilage harvest, using a 12-gauge core biopsy needle. Surgical time was significantly (p < 0.0001) shorter (3.5 +/- 2.8 min for closed vs. 14.4 +/- 5 min for open), and no sutures where utilized in the closed technique. Sample weights were significantly (p < 0.00001) greater (0.115 +/- 0.028 g vs. 0.045 +/- 0.005 g) for the closed techniques. However, the minimally invasive closed technique had fewer incidents of bruising, hematoma, long-term stitch abscess, and scarring. Cell culture data shows no disadvantage to either technique with regards to cell growth characteristics. Final histological data from donor ears indicates favorable results with the minimally invasive technique. This technique preserves cell viability and isolation efficiency while decreasing surgical time and lessening postoperative complications.  相似文献   

16.
A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4′-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by 1H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as 30 °C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100 U/mL hyaluronidase/PBS at 37 °C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37 °C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.  相似文献   

17.
组织工程支架材料的研究进展   总被引:6,自引:0,他引:6  
研究开发具有良好性能的组织工程支架材料是组织工程研究的热点之一。由于组织工程支架材料的研究面较广,文章仅从研究热点中的不同材料间的复合、致孔剂的应用、生长因子的引入三个方面,对组织工程材料的研究状况做一综述,为广大从事组织工程研究的同仁们提供参考。  相似文献   

18.
19.
组织工程支架材材料的研究进展   总被引:4,自引:0,他引:4  
研究开发具有良好性能的组织工程支架材料是组织工程研究的热点之一.由于组织工程支架材料的研究面较广,文章仅从研究热点中的不同材料间的复合、致孔剂的应用、生长因子的引入三个方面,对组织工程材料的研究状况做一综述,为广大从事组织工程研究的同仁们提供参考.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号