首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain and have protective effects against excitotoxic injuries. However, their effects on synapse formation remain to be elucidated. To determine whether HGF has the ability to alter synaptic function during development, we investigated changes in the number of synapse detected by double immunostaining for NMDA receptor subunits and a presynaptic marker in cultured young hippocampal neurons. Whereas application of HGF increased the number of cluster of synapsin, a presynaptic protein, the clusters of NMDA receptor subunits NR1 and NR2B were not altered. Interestingly, colocalization of PSD-95, a scaffolding protein of the receptor, with synapsin was increased by HGF treatment without a change in the total amount of it. In addition, we investigated the expression of surface NMDA receptor, neuroligin, and neurexin, which were assessed by use of a cell-surface biotinylation assay. The application of HGF did not change the surface expression of these proteins. Furthermore, we determined the release of glutamate in response to depolarization. Treatment with HGF promoted depolarization-evoked release of glutamate. These results suggest that HGF modulates the expression of the scaffolding protein of the NMDA receptor at the synapse and promotes maturation of excitatory synapses in young hippocampal neurons.  相似文献   

2.
Wang L  Zhang Y  Dai J  Yang J  Gang S 《Brain research》2006,1120(1):46-53
N-methyl-D-aspartate (NMDA) receptor on the central terminals of the dorsal root ganglion (DRG) appears to be playing an important role in the development of central sensitization related to persistent inflammatory pain. Acupuncture analgesia has been confirmed by numerous clinical observations and experimental studies to be a useful treatment to release different kinds of pains, including inflammatory pain and hyperalgesia. However, the underlying mechanisms of the analgesic effect of acupuncture are not fully understood. In the present study, using a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA), we observed the effect of electroacupuncture (EA) on animal behavior with regard to pain and the expression of a subunit of NMDA receptor (NR1) and isolectin B4 (IB4) in the neurons of the lumbar DRG. Intraplantar injection of 50 microl CFA resulted in considerable changes in thermal hyperalgesia, edema of the hind paw and "foot-bend" score, beginning 5 h post-injection and persisting for a few days, after which a gradual recovery occurred. The changes were attenuated by EA treatment received on the ipsilateral "Huan Tiao" and "Yang Ling Quan" once a day from the first day post-injection of CFA. Using an immunofluorescence double staining, we found that the number of double-labeled cells to the total number of the IB4 and NR1-labeled neurons increased significantly on days 3 and 7 after CFA injection. The change was attenuated by EA treatment. These results suggest that EA affects the progress of experimental inflammatory pain by modulating the expression of NMDA receptors in primary sensory neurons, in particular, IB4-positive small neurons.  相似文献   

3.
Atrial natriuretic peptide (ANP) can regulate aqueous humor production in the eye and has recently been suggested to play some functional roles in the retina. It has also been reported that ANP increases tyrosine hydroxylase (TH) mRNA levels and intracellular dopamine levels in PC12 cells. The effect of ANP on TH levels and the role of ANP in retinal excitotoxicity remain unknown. In this study, we investigated the effects of ANP on TH expression and dopamine levels in rat retina after intravitreal injection of NMDA. Immunohistochemistry localized natriuretic peptide receptor-A (NPRA) in the ganglion cell layer (GCL), the inner nuclear layer (INL) and the outer nuclear layer (ONL) in the rat retina. Quantitative real-time PCR and Western blot analysis showed a dramatic reduction in retinal TH levels 5 days after NMDA injection, while ANP, at a concentration of 10(-4) M, ameliorated this reduction in TH mRNA and TH protein levels. High-performance liquid chromatography (HPLC) analysis showed that NMDA reduced dopamine levels in the retina, and that ANP attenuated this reduction. Moreover, morphological analysis showed that ANP ameliorated NMDA-induced neurotoxicity through NPRA. The ameliorative effect of ANP was inhibited by a dopamine D(1) receptor antagonist. These results suggest that ANP may have a neuroprotective effect through possible involvement of dopamine induction.  相似文献   

4.
Cannabinoids (CBs) are attributed neuroprotective effects in vivo. Here, we determined the neuroprotective potential of CBs during neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). OHSCs are the best characterized in vitro model to investigate the function of microglial cells in neuronal damage since blood-borne monocytes and T-lymphocytes are absent and microglial cells represent the only immunocompetent cell type. Excitotoxic neuronal damage was induced by NMDA (50 microM) application for 4 h. Neuroprotective properties of 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), N-arachidonoylethanolamide (AEA) or 2-arachidonoylglycerol (2-AG) in different concentrations were determined after co-application with NMDA by counting degenerating neurons identified by propidium iodide labeling (PI(+)) and microglial cells labeled by isolectin B(4) (IB(4)(+)). All three CBs used significantly decreased the number of IB(4)(+) microglial cells in the dentate gyrus but the number of PI(+) neurons was reduced only after 2-AG treatment. Application of AM630, antagonizing CB2 receptors highly expressed by activated microglial cells, did not counteract neuroprotective effects of 2-AG, but affected THC-mediated reduction of IB(4)(+) microglial cells. Our results indicate that (1) only 2-AG exerts neuroprotective effects in OHSCs; (2) reduction of IB(4)(+) microglial cells is not a neuroprotective event per se and involves other CB receptors than the CB2 receptor; (3) the discrepancy in the neuroprotective effects of CBs observed in vivo and in our in vitro model system may underline the functional relevance of invading monocytes and T-lymphocytes that are absent in OHSCs.  相似文献   

5.
Udagawa R  Nakano M  Kato N 《Brain research》2006,1124(1):28-36
Specific contributions of voltage-dependent calcium channels (VDCCs) to induction of long-term depression (LTD) have not been thoroughly elucidated. The present study examined roles of T- and L-type VDCCs in N-methyl-D-aspartate (NMDA) receptor-dependent LTD induced at several different levels of synaptic activation (0.5- to 10-Hz presynaptic stimulations) at Schaffer collateral-CA1 synapses in rat hippocampal slices. Blockade of T-type VDCCs with nickel ions failed to change LTD magnitude at all levels of stimulation. However, blockade of L-type VDCCs reduced LTD in response to stimulation at 1 and 2 Hz and, conversely, enhanced LTD at a lower frequency (0.5 Hz). The enhancement of 0.5-Hz LTD under L-type VDCC blockade was shown pharmacologically to depend on NMDA receptors (NMDARs) and intracellular Ca(2+) release. Calcium imaging revealed that contribution of L-type VDCC-mediated calcium influx to the total calcium increase was greater during 0.5-Hz stimulation than during 1.0-Hz stimulation. This finding, combined with the reported suppression of NMDARs mediated by L-type VDCCs, may be relevant to the present enhancement of 0.5-Hz LTD due to L-type VDCC blockade.  相似文献   

6.
Peripheral electrical stimulation (PES) has been utilized to manage chronic pain associated with nerve injury. However, the data on clinical effectiveness are conflicting and the neurophysiological mechanism is not well known. This study was designed to assess whether PES relieved neuropathic pain and its possible mechanisms. The neuropathic pain model was made with lumbar 5th (L5) and 6th (L6) spinal nerve ligations in rats. Nociceptive responses of the rats were assessed by the cold plate test (the number and duration of paw lifts that occurred in 5 min on a 5 +/- 1 degrees C cold plate). PES with a frequency of 2 Hz and at increasing strengths was given for 30 min via stainless-steel needles inserted into standard acupoints on the leg and back, respectively. Immunochemistry was used to examine the immunoreactivity of the NMDA receptor 1 (NR1) subunit in the spinal cord dorsal horn. The results are as follows: (1) PES relieved neuropathic pain and the effect was blocked by 1.0 mg/kg naloxone. (2) The effect of one session of PES lasted up to 12 h. (3) Repetitive PES showed a cumulative effect and no tolerance was observed. (4) There was a significant increase of NR1 immunoreactivity in the superficial laminae of the spinal cord of neuropathic pain rats as compared with naive rats. This increase could be reversed by repetitive 2 Hz PES. These results suggest that PES can relieve neuropathic pain, and that mu-opioid receptors and NMDA receptors are involved in the effect of PES.  相似文献   

7.
The bisphosphonate clodronate, clinically used in the treatment of osteoporosis, is known to deplete cells of the monocytic lineage. Using an in vitro model of excitotoxic damage in organotypic hippocampal slice cultures (OHSC), we investigated whether clodronate can also prevent microglial activation that occurs in CNS pathologies. Lesioning of OHSC was performed by application of 50 microM N-methyl-D-aspartate (NMDA) for 4 h after 6 days in vitro (div). Treatment of lesioned OHSC with clodronate (1000, 100, or 10 microg/ml) resulted in an almost complete abrogation of the microglial reaction after 3 further div: Confocal laser scanning microscopy showed that the number of Griffonia simplicifolia isolectin B(4)-labeled (IB4+) microglial cells in the dentate gyrus (DG) was reduced to 4.25% compared with OHSC treated with NMDA alone. Continuous treatment with clodronate (100 or 10 microg/ml) of lesioned OHSC for 9 days resulted in a further reduction in the number of microglial cells (reduction to 2.72%). The number of degenerating, propidium iodide-labeled (PI(+)) neurons in lesioned OHSC that received clodronate treatment between 6 and 9 div was not significantly different from OHSC treated with NMDA alone. However, the number of PI(+) neurons in lesioned OHSC that received continuous clodronate treatment for 9 div was significantly higher when compared to NMDA-lesioned OHSC. In summary, clodronate is able to reduce microglial activation induced by excitotoxic neuronal injury. Our results demonstrate that clodronate is a useful tool in the investigation of neuron-glia interactions because it induces an efficient depletion of microglial cells that are activated after excitotoxic CNS injury.  相似文献   

8.
BACKGROUND: d-cycloserine (DCS) facilitates extinction of learned fear. The aim of this study was to examine whether DCS 1) affects reacquisition of fear (Experiment 1) and 2) produces generalized extinction of fear (Experiment 2). METHODS: Following fear conditioning, where a light or a tone conditioned stimulus (CS) was paired with a white-noise burst unconditioned stimulus (US), rats received nonreinforced exposure to one CS (i.e., extinction training). Fear was assessed by measuring CS-elicited freezing, a species-specific defense response. RESULTS: Rats given DCS exhibited facilitated extinction of fear but were able to reacquire fear of that CS in a similar manner as saline-treated control animals (Experiment 1). Furthermore, DCS-treated rats exhibited generalized extinction (i.e., they were less fearful of a non-extinguished CS) in comparison to controls (Experiment 2). CONCLUSIONS: DCS facilitates extinction of learned fear to the extinguished CS, but also appears to reduce fear of a nonextinguished CS. These findings suggest that this drug may have substantial clinical value in the treatment of anxiety disorders.  相似文献   

9.
To examine the effects of HGF on synaptic densities under excitotoxic conditions, we investigated changes in the number of puncta detected by double immunostaining with NMDA receptor subunits and presynaptic markers in cultured hippocampal neurons. Exposure of hippocampal neurons to excitotoxic NMDA (100 muM) decreased the synaptic localization of NMDA receptor subunit NR2B, whereas synaptic NR1 and NR2A clusters were not altered. Colocalization of PSD-95, a scaffolding protein of the receptor, with the presynaptic protein synapsin I was also decreased after excitotoxicity. Treatment with HGF attenuated these decreases in number. The decrease in the levels of surface NR2B subunits following the addition of the excitotoxic NMDA was also attenuated by the HGF treatment. The decrease in CREB phosphorylation in response to depolarization-evoked NMDA receptor activation was prevented by the HGF treatment. These results suggest that HGF not only prevented neuronal cell death but also attenuated the decrease in synaptic localization of NMDA receptor subunits and prevented intracellular signaling through the NMDA receptor.  相似文献   

10.
Using organotypic cultures of rat ventral mesencephalon, the effects of chronic (12–15 day) exposure to the type IV cAMP phosphodiesterase inhibitor, Ro20-1724, were examined. At concentrations of 10−8–10−5 M, Ro20-1724 alone had no effect upon the number of tyrosine hydroxylase-positive neurons or upon neurite outgrowth. However, the drug offered significant protection, with maximum effect at 10−6 M, against subsequent acute (48 h) exposure to the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP+) and N-methyl-d-aspartate (NMDA).  相似文献   

11.
The effects of cholecystokinin (CCK) on glutamate-induced neurotoxicity were examined using cultured rat cortical neurons. Brief exposure of glutamate followed by an incubation with normal solution for more than 60 min reduced cell viability by 60–70%, compared with control values. Glutamate-induced neurotoxicity was significantly inhibited by MK-801 and ketamine, which are non-competitive blockers of N-methyl-d-aspartate (NMDA) receptors. Octapeptide CCK-8S and CCK-related decapeptide ceruletide at concentrations of 10−9−10−7 M dose-dependently reduced glutamate-induced neurotoxicity. A desulfated analog CCK-8NS, which acts selectively as an antagonist of CCKB receptors, also reduced glutamate neurotoxicity. The neuroprotective effects of CCK were antagonized by L-365260, a CCKB receptor antagonist, but not by L-364718, a CCKA receptor antagonist. These results suggest that CCK protects cortical neurons against NMDA receptor-mediated glutamate neurotoxicity via CCKB receptors.  相似文献   

12.
Song Y  Wei EQ  Zhang WP  Ge QF  Liu JR  Wang ML  Huang XJ  Hu X  Chen Z 《Brain research》2006,1088(1):57-67
In the developing brain, neural progenitor cells in the ventricular zone (VZ) show a typical migration pattern-interkinetic nuclear migration, in which nuclear position within the VZ is correlated with the cell cycle. However, the mechanisms underlying this regulation remain unclear. To clarify whether the cell cycle progression controls nuclear migration of neural progenitor cells, we determined whether chemically induced cell cycle arrest affected nuclear migration patterns in the VZ. Administration of 5-azacytidine (5AzC) or cyclophosphamide (CP) to pregnant mice induced cell cycle arrest in the fetal neural progenitor cells of the telencephalon: 5AzC induced G2/M-phase arrest, and CP induced S-phase arrest. We used 5-bromo-2'-deoxyuridine (BrdU) labeling to determine the position of the cell in the cell cycle and the nuclei within the VZ at the same time. Cells arrested in G2/M-phase stopped migrating in the inner area of the VZ. Cells arrested in S-phase stopped migrating in the outer area. These results indicate that nuclear position within the VZ was correlated with cell cycle phase, even when the cell cycle was disrupted, and that the nuclei of neural progenitor cells can migrate only when their cell cycle is going. Our results suggest that cell cycle regulators might control the machinery of migration through a common regulatory mechanism.  相似文献   

13.
Some studies have found that unilateral cerebral damage produces significant deficits in the ipsilesional, "less-affected", body side. Other studies have found that such damage results in a paradoxical hyperfunctionality of the ipsilesional body side and a facilitation of learning-induced neuroplastic changes in the contralesional motor cortex. The purpose of this study was to determine whether these effects co-exist and/or vary with lesion severity. After small or large unilateral ischemic lesions of the sensorimotor cortex (SMC) or sham operations, adult male rats were trained for 20 days to acquire a motor task, skilled reaching for food, for the first time with the ipsilesional forelimb. Analyses of movement patterns indicated lesion-size-dependent ipsilesional abnormalities in grasping, retrieving and releasing food pellets. Despite these impairments, success rates were significantly increased and aiming errors reduced in lesion groups compared with sham operates. Performance was best in rats with small lesions that had more minor ipsilesional impairments. In the motor cortex contralateral to the lesion and trained limb, there were significant increases in the density of dendrites immunoreactive for microtubule-associated protein-2 (MAP2) and of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) immunoreactivity compared with sham operates. These effects were correlated with reaching performance. Therefore, enhanced motor skill learning in the "less-affected" forelimb and contralesional neuroplastic changes are muted after larger lesions and co-exist with ipsilesional impairments. These effects may be related to a denervation-induced neural restructuring of the contralesional cortex that both disrupts pre-existing motor engrams and facilitates the establishment of new ones.  相似文献   

14.
The susceptibility of cortical neurons to two forms of apoptotic death was compared with susceptibility to excitotoxic death during development in vitro (DIV 4–21). Murine cortical cultures were exposed for 48 h to the phosphatase inhibitor cyclosporine, the protein kinase inhibitor staurosporine or the excitotoxin N-methyl-d-aspartate (NMDA). Susceptibility to apoptosis induced by staurosporine or cyclosporine was maximal between DIV 4–10 and declined from DIV 10 through 18. The opposite pattern was observed with susceptibility to NMDA receptor-mediated excitotoxic necrosis, which was minimal at DIV 6 and progressively increased through DIV 21.  相似文献   

15.
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.  相似文献   

16.
17.
The sensitivity of central neurons in culture to N-methyl-d-aspartate (NMDA) receptor-mediated cell death increases with development. In this study, we show that this phenomenon in vitro may be due, at least in part, to changes in the redox properties of the NMDA receptor itself. With increasing days in culture, NMDA-induced electrical responses in rat cortical neurons are less sensitive to dithiothreitol-induced potentiation and spontaneously oxidize less readily than in younger cells. These results imply that at earlier developmental ages NMDA receptors prefer a more oxidized state. Hence, in the presence of a reducing agent, NMDA-induced neurotoxicity was produced in normally resistant younger neurons. The observed changes in NMDA receptor properties with development could not be attributed to long-range diffusible redox endogenous factors. An oxidized NMDA receptor thus confers maturing neurons a protective mechanism against glutamate toxicity during development.  相似文献   

18.
Kumar V  Naik RS  Hillert M  Klein J 《Brain research》2006,1122(1):222-229
Brain edema is a serious consequence of hemispheric stroke and traumatic brain injury and contributes significantly to patient mortality. In the present study, we measured water contents in hippocampal slices as an in vitro model of edema formation. Excitotoxic conditions induced by N-methyl-D-aspartate (NMDA, 300 microM), as well as ischemia induced by oxygen-glucose deprivation (OGD), caused cellular edema formation as indicated by an increase of slice water contents. In the presence of furosemide, an inhibitor of the Na,K,Cl-cotransporter, NMDA-induced edema were reduced by 64% while OGD-induced edema were unaffected. The same observation, i.e., reduction of excitotoxic edema formation but no effect on ischemia-induced edema, was made with chloride transport inhibitors such as DIDS and niflumic acid. Under ischemic conditions, modulation of GABAA receptors by bicuculline, a GABA antagonist, or by diazepam, a GABAergic agonist, did not significantly affect edema formation. Further experiments demonstrated that low chloride conditions prevented NMDA-induced, but not OGD-induced, water influx. Omission of calcium ions had no effect. Our results show that NMDA-induced edema formation is highly dependent on chloride influx as it was prevented by low-chloride conditions and by various compounds that interfere with chloride influx. In contrast, OGD-induced edema observed in brain slices was not affected by modulators of chloride fluxes. The results are discussed with reference to ionic changes occurring during tissue ischemia.  相似文献   

19.
Glucose is well accepted as the major fuel for neuronal activity, while it remains controversial whether lactate also supports neural activity. In hippocampal slice cultures, synaptic transmission supported by glucose was reversibly suppressed by lactate. To test whether lactate had a similar inhibitory effect in vivo, lactate was perfused into the hippocampi of unanesthetized rats while recording the firing of nearby pyramidal cells. Lactate perfusion suppressed pyramidal cell firing by 87.5+/-8.3% (n=6). Firing suppression was slow in onset and fully reversible and was associated with increased lactate concentration at the site of the recording electrode. In vivo suppression of neural activity by lactate occurred in the presence of glucose; therefore we tested whether suppression of neural firing was due to lactate interference with glucose metabolism. Competition between glucose and lactate was measured in hippocampal slice cultures. Lactate had no effect on glucose uptake. Lactate suppressed glucose oxidation when applied at an elevated, pathological concentration (10 mM), but not at its physiological concentration (1 mM). Pyruvate (10 mM) also inhibited glucose oxidation but was significantly less effective than lactate. The greater suppressive effect of lactate as compared to pyruvate suggests that alteration of the NAD(+)/NADH ratio underlies the suppression of glucose oxidation by lactate. ATP in slice culture was unchanged in glucose (1 mM), but significantly reduced in lactate (1 mM). ATP in slice culture was significantly increased by combination of glucose (1 mM) and lactate (1 mM). These data suggest that alteration of redox ratio underlies the suppression of neural discharge and glucose metabolism by lactate.  相似文献   

20.
Since dexamethasone may elevate the Ca2+ influx through NMDA receptors, we have investigated mechanisms of dexamethasone toxicity in rat cerebellar granule neurons. Dexamethasone concentrations over 0.1 microM induced cell death that reached about 20% of the death induced by glutamate. Dexamethasone-induced cell death was reduced by more than 80% by the mineralocorticoid antagonist RU 28318 or the NMDA receptor antagonists MK 801 and CGP 39551, whereas RU 28318 rescued only approximately 30% of cells treated with glutamate, indicating that dexamethasone requires NMDA receptors to induce acute neuronal toxicity and that a fraction of the neurons showed this toxicity. Mg2+ reduced the cell death induced by glutamate at potassium concentrations of 1 mM and 5 mM, but not at 25 mM. In contrast, cell death induced by dexamethasone was not significantly reduced by Mg2+ in any of the potassium concentrations. Both glutamate and dexamethasone induced toxicity with translocation of the apoptosis inducer NGFI-B to the mitochondria seen after 30 min-2 h concomitant with activation of apoptosis inducing factor (AIF) and caspase-3. In conclusion, dexamethasone induces a rapid toxicity which is blocked by NMDA receptor antagonists other than Mg2+, and involves mitochondrial apoptosis inducer NGFI-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号