首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the role of TNFRSF11B polymorphisms on the risk to develop Paget's disease of bone in a Belgian study population. We observed no association in men, but a highly significant association was found in women, and this was confirmed in a population from the United Kingdom. INTRODUCTION: Juvenile Paget's disease has been shown to be caused by mutations in TNFRSF11B encoding osteoprotegerin. Although mutations in this gene have never been found in patients with typical Paget's disease of bone (PDB), there are indications that polymorphisms in TNFRSF11B might contribute to the risk of developing PDB. MATERIALS AND METHODS: We recruited a population of 131 Belgian patients with sporadic PDB and 171 Belgian controls. By means of the HapMap, we selected 17 SNPs that, in combination with four multimarker tests, contain most information on common genetic variation in TNFRSF11B. To replicate the findings observed in the Belgian study population, genotyping data of SNPs generated in a UK population were reanalyzed. RESULTS: In our Belgian study population, associations were found for two SNPs (rs11573871, rs1485286) and for one multimarker test involving rs1032129. When subsequently analyzing men and women separately, these associations turned out to be driven by women (56 cases, 78 controls). In addition, three other tagSNPs turned out to be associated in women only. These were rs2073617 (C950T), rs6415470, and rs11573869. Reanalysis of genotyping data from a UK study population indicated that the associations found for C950T and C1181G were also exclusively driven by women (146 cases, 216 controls). Meta-analysis provided evidence for risk increasing effects of the T allele of C950T and the G allele of C1181G in the female population (p = 0.002 and 0.003, respectively). The haplotypes formed by the SNPs associated in the Belgian population were also distributed differentially between female cases and controls. CONCLUSIONS: We showed for the first time that SNPs influencing the risk to develop PDB could be sex-specific. Further research is necessary to identify the causative variants in TNFRSF11B and to elucidate the molecular pathogenic mechanism.  相似文献   

2.
Mutations in the SQSTM1 gene were identified as a common cause of Paget's disease of bone (PDB) but experimental evidence demonstrated that SQSTM1 mutation is not sufficient to induce PDB in vivo. Here, we identified two nonsynonymous single nucleotide polymorphisms (SNPs) (C421T, H141Y and T575C, V192A) in the TNFRSF11A gene, associated with PDB and with the severity of phenotype in a large population of 654 unrelated patients that were previously screened for SQSTM1 gene mutations. The largest effect was found for the T575C variant, yielding an odds ratio of 1.29 (p = 0.003), with the C allele as the risk allele. Moreover, an even more significant p-value (p = 0.0002) was observed in the subgroup of patients with SQSTM1 mutation, with an odds ratio of 1.71. Interestingly, patients with the C allele also showed an increased prevalence of polyostotic disease (68%, 53%, and 51% in patients with CC, CT, and TT genotypes, respectively; p = 0.01), as well as an increased number of affected skeletal sites (2.9, 2.5, and 2.0 in patients with CC, CT, and TT genotypes, respectively, p = 0.008). These differences increased when analyses were restricted to cases with SQSTM1 mutation. In human cell lines, cotrasfection with mutated SQSTM1 and TNFRSF11A(A192) produced a level of activation of NFκB signaling greater than cotrasfection with wild-type SQSTM1 and TNFRSF11A(V192), confirming genetics and clinical evidences. These results provide the first evidence that genetic variation within the OPG/RANK/RANKL system influences the severity of PBD in synergistic action with SQSTM1 gene mutations.  相似文献   

3.
Paget's disease of bone (PDB) is a common disorder characterized by focal areas of increased and disorganized osteoclastic bone resorption, leading to bone pain, deformity, pathological fracture, and an increased risk of osteosarcoma. Genetic factors play an important role in the pathogenesis of Paget's disease. In some families, the disease has been found to be linked to a susceptibility locus on chromosome 18q21-22, which also contains the gene responsible for familial expansile osteolysis (FEO)--a rare bone dysplasia with many similarities to Paget's disease. Insertion mutations of the TNFRSF11A gene encoding Receptor Activator of NF kappa B (RANK) have recently been found to be responsible for FEO and rare cases of early onset familial Paget's disease. Loss of heterozygosity (LOH) affecting the PDB/FEO critical region has also been described in osteosarcomas suggesting that TNFRSF11A might also be involved in the development of osteosarcoma. In order to investigate the possible role of TNFRSF11A in the pathogenesis of Paget's disease and osteosarcoma, we conducted mutation screening of the TNFRSF11A gene in patients with familial and sporadic Paget's disease as well as DNA extracted from Pagetic bone lesions, an osteosarcoma arising in Pagetic bone and six osteosarcoma cell lines. No specific abnormalities of the TNFRSF11A gene were identified in a Pagetic osteosarcoma, the osteosarcoma cell lines, DNA extracted from Pagetic bone lesions, or DNA extracted from peripheral blood in patients with familial or sporadic Paget's disease including several individuals with early onset Paget's disease. These data indicate that TNFRSF11A mutations contribute neither to the vast majority of cases of sporadic or familial PDB, nor to the development of osteosarcoma.  相似文献   

4.
PDB is genetically heterogeneous. Mutations of the sequestosome1 gene have been reported in sporadic and familial forms of Paget's in patients of French Canadian and British descent. Mutational analyses in different ethnic groups are needed to accurately investigate hereditary diseases. We describe two novel mutations of sequestosome1 in 62 Italian sporadic patients, confirming the role of the encoded protein in this disorder. INTRODUCTION: Paget's disease of bone (PDB) is a relatively common disease of bone metabolism reported to affect up to 3% of whites over 55 years of age. The disorder is genetically heterogeneous, and at present, there is scientific evidence that at least eight different human chromosomal loci are correlated with its pathogenesis. Mutations of the sequestosome1 (SQSTM1) gene were identified as responsible for most of the sporadic and familial forms of Paget in patients of French Canadian and British descent. Such mutations were located at exon 7 and 8 levels, encoding for the ubiquitin protein-binding domain (UBA) and representing a mutational hot spot area. MATERIALS AND METHODS: To verify the involvement of this gene in Italian subjects affected by PDB, we performed mutational analysis in 62 sporadic PDB cases. RESULTS: We described three different mutations at exon 8 level: P392L, already described in the French Canadian population and families predominantly of British descendent, and two novel mutations consisting of the amino acid substitutions M404V and G425R. No significant differences in the clinical history of PDB have been observed in patients with SQSTM1 mutations in respect to those without. CONCLUSIONS: Even though our findings suggest a minor involvement of the SQSTM1 gene in the pathogenesis of sporadic Italian Paget's cases, the identification of different significant mutations within the SQSTM1 gene in unrelated, but clinically similar individuals, offers extremely convincing evidence for a causal relationship between this gene and PDB. Longitudinal studies are needed to assess the penetrance of genotype/phenotype correlations. Our findings confirm the evidence of a clustered mutation area at this level in this disorder.  相似文献   

5.
Mutations in the UBA domain of SQSTM1 are a common cause of Paget's disease of bone. Here we show that the most common disease-causing mutation (P392L) is carried on a shared haplotype, consistent with a founder effect and a common ancestral origin. INTRODUCTION: Paget's disease of bone (PDB) is a common condition with a strong genetic component. Mutations affecting the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1) have recently been shown to be an important cause of PDB. The most common mutation results in a proline to leucine amino acid change at codon 392 (P392L), and evidence has been presented to suggest that there may be a recurrent mutation rather than a founder mutation on an ancestral chromosome. Because marked geographical differences exist in the prevalence of PDB, we have investigated the frequency of SQSTM1 mutations in different populations and looked for a founder effect on chromosomes bearing SQSTM1 UBA domain mutations. MATERIALS AND METHODS: We conducted mutation screening of SQSTM1 and performed haplotype analysis using the PHASE software program in 83 kindreds with familial PDB, recruited mainly through clinic referrals in the United Kingdom, Australia, and New Zealand. Similar studies were conducted in 311 individuals with PDB who did not have a family history and 375 age- and sex-matched controls from the United Kingdom. RESULTS: The proportion of patients with familial PDB who had SQSTM1 UBA domain mutations varied somewhat between referral centers from 7.1% (Sydney, Australia) to 50% (Perth, Australia), but the difference between centers was not statistically significant. Haplotype analysis in 311 British patients with PDB who did not have a family history and 375 age- and sex-matched British controls showed that two common haplotypes accounted for about 90% of alleles at the SQSTM1 locus, as defined by common single nucleotide polymorphisms (SNPs) in exon 6 (C916T, G976A) and the 3'UTR (C2503T, T2687G). These were H1 (916T-976A-2503C-2687T) and H2 (916C-976G-2503T-2687G). There was no significant difference in haplotype distribution in PDB cases and controls, but the P392L mutation was found on the H2 haplotype in 25/27 cases (93%), which is significantly more often than expected given the allele frequencies in the normal population (odds ratio, 13.2; 95% CI, 3.1-56.4; p < 0.0001). Similar findings were observed in familial PDB, where 12/13 (92%) of P392L mutations were carried on H2 (odds ratio 17.2; 95% CI, 2.2-138; p = 0.001). CONCLUSIONS: These results provide strong evidence for a founder effect of the SQSTM1 P392L mutation in PDB patients of British descent, irrespective of family history. Our results imply that these individuals share a common ancestor and that the true rate of de novo mutations may be lower than previously suspected.  相似文献   

6.
Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides. INTRODUCTION: Mutations affecting the ubiquitin-associated (UBA) domain of Sequestosome 1 (SQSTM1) gene have recently been identified as a common cause of familial Paget's disease of bone (PDB), but the mechanisms responsible are unclear. We identified three novel SQSTM1 mutations in PDB, conducted functional and structural analyses of all PDB-causing mutations, and studied the relationship between genotype and phenotype. MATERIALS AND METHODS: Mutation screening of the SQSTM1 gene was conducted in 70 kindreds with familial PDB. We characterized the effect of the mutations on structure of the UBA domain by protein NMR, studied the effects of the mutant UBA domains on ubiquitin binding, and looked at genotype-phenotype correlations. RESULTS AND CONCLUSIONS: Three novel missense mutations affecting the SQSTM1 UBA domain were identified, including a missense mutation at codon 411 (G411S), a missense mutation at codon 404 (M404V), and a missense mutation at codon 425 (G425R). We also identified a deletion leading to a premature stop codon at 394 (L394X). None of the mutations were found in controls. Structural analysis showed that M404V and G425R involved residues on the hydrophobic surface patch implicated in ubiquitin binding, and consistent with this, the G425R and M404V mutants abolished the ability of mutant UBA domains to bind polyubiquitin chains. In contrast, the G411S and P392L mutants bound polyubiquitin chains normally. Genotype-phenotype analysis showed that patients with truncating mutations had more extensive PDB than those with missense mutations (bones involved = 6.05 +/- 2.71 versus 3.45 +/- 2.46; p < 0.0001). This work confirms the importance of UBA domain mutations of SQSTM1 as a cause of PDB but shows that there is no correlation between the ubiquitin-binding properties of the different mutant UBA domains and disease occurrence or extent. This indicates that the mechanism of action most probably involves an interaction between SQSTM1 and a hitherto unidentified protein that modulates bone turnover.  相似文献   

7.
Paget's Disease of Bone (PDB) is one of the most frequent metabolic bone diseases, affecting 1-5% of Western populations older than 55 years. Mutations in the sequestosome1 (SQSTM1) gene cause PDB in about one-third of familial PDB cases and in 2.4-9.3% of nonfamilial PDB cases, with the 1215C-->T (P392L) mutation being the most frequent one. We investigated whether a founder effect of the P392L SQSTM1 mutation was present in Belgian (n = 233), Dutch (n = 82), and Spanish (n = 64) patients without a PDB family history. First, direct sequencing analysis of exon 8 in these three populations showed that the P392L mutation occurred in 17 Belgian patients (7.3%), three Dutch patients without a family history (3.7%), and two Dutch patients with a family history. In the Spanish population, 15.6% of patients (n = 10) had the P392L mutation, including one homozygous mutant. This is by far the highest mutation frequency of all populations investigated so far. Next, we examined the genetic background of 33 mutated chromosomes by analyzing haplotypes. We genotyped four single-nucleotide polymorphisms (SNPs) in exon 6 and the 3'-untranslated region of SQSTM1 (rs4935C/T, rs4797G/A, rs10277T/C, and rs1065154G/T) and used software programs WHAP and PHASE to reconstruct haplotypes. Finally, allele-specific primers allowed us to assign the mutation to one of the two haplotypes from each individual. Sequencing results revealed that all 33 P392L mutations were on the CGTG (H2) haplotype. The chance to obtain this result due to 33 independent mutation events is 3.97 x 10(-14), providing strong evidence for a founder effect of the P392L SQSTM1 mutation in Belgian, Dutch, and Spanish patients with PDB.  相似文献   

8.
Evaluation of the role of RANK and OPG genes in Paget's disease of bone   总被引:8,自引:0,他引:8  
Paget's disease of bone (PDB) is one of the most common bone disorders in the western world. PDB is characterized by focal areas of increased osteoclastic bone resorption and bone formation, which leads to the formation of poorly structured bone. These abnormalities of bone turnover and structure predispose affected individuals to various complications including bone pain, deformity, pathological fracture, and an increased risk of osteosarcoma. One of the main mechanisms of osteoclast formation and activation involves the receptor activator of nuclear factor -kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway, where binding of RANKL to RANK results in the differentiation of osteoclast precursors. OPG, on the other hand, acts as an inhibitor of osteoclastogenesis by serving as a decoy receptor for RANKL. Recently, mutations in the RANK gene have been shown to cause familial expansile osteolysis, a rare bone disorder showing great similarity to PDB. We performed mutation analysis in the RANK and OPG genes in 28 PDB patients to investigate whether mutations in these genes could be responsible for PDB. Our data suggest that RANK is not directly involved in PDB in our set of patients, as no mutations in the RANK coding region could be identified and allele frequencies of RANK polymorphisms did not differ in PDB patients as compared with the random population. Also, in the OPG gene, we could not detect PDB-causing mutations. However, of the several polymorphisms identified, one (400 + 4 C/T in intron 2), showed a statistically significant increased frequency for the C allele in PDB patients, suggesting that individuals harboring this allele may be more susceptible for developing PDB.  相似文献   

9.
Mutations in Sequestosome 1 (SQSTM1) have been shown to segregate with familial Paget's disease of bone (PDB). We examined the coding sequence of SQSTM1 in five PDB pedigrees and found three novel mutations clustered around the C-terminal ubiquitin associated domain. Disruptions of the C-terminal domain of SQSTM1 seem to be a leading cause of familial PDB. INTRODUCTION: The characteristic features of Paget's disease of bone (PDB) are caused by focal areas of excessive and uncoordinated bone remodeling. A total of seven genetic loci (PDB1-PDB7) have been reported to be associated with the disease. The gene for Sequestosome 1 (p62; SQSTM1) has been identified as the causative gene for PDB3 in numerous French-Canadian families and families predominantly of British descent. To date, a total of three mutations, all affecting the ubiquitin-associated domain of SQSTM1, have been identified: a single 1215 C to T (P392L) transversion in exon 8, a T insertion in exon 8 (E396X), and a G to A mutation at the splice junction of exon 7 (IVS7 + 1). MATERIALS AND METHODS: DNA was isolated from blood collected from the members of five U.S. PDB pedigrees. Mutation analysis of the coding sequence of the SQSTM1 gene was performed on the proband and other key individuals in the pedigrees. RESULTS: Four of the five families had SQSTM1 mutations. Three of these mutations were novel: a single base deletion in exon 8 at position 1210 (1210delT) resulting in a premature stop codon at amino acid 394, a single C deletion in exon 8 at position 1215 (1215delC) also resulting in a premature stop codon at amino acid 394, and a single 1200 C to T (P387L) transversion in exon 7. CONCLUSION: Noteworthy is the fact that these three SQSTM1 mutations, in addition to the three previously described mutations, are clustered near the C-terminal of the protein. These mutations may be acting in a dominant-negative fashion to disrupt the ubiquitin-binding function, which could result in abnormal activation of the NF-kappaB pathway and the subsequent activation of the osteoclasts. These findings imply that SQSTM1 mutations may play a role in the majority of familial PDB in the United States.  相似文献   

10.
A positional cloning effort in French Canadian families with Pagets disease of bone (PDB) resulted in the identification of a mutation in the sequestosome1 (SQSTM1) gene in a subset of both familial and sporadic PDB cases. This was confirmed in samples of mainly United Kingdom (UK) origin. In this study, we performed both mutation analysis and association studies in order to evaluate the role of this gene in a collection of isolated Belgian PDB patients. A mutation in the SQSTM1 gene was found in only 6 of 111 patients (5.4%). In all cases it involves the P392L mutation, previously shown to be common in both familial and sporadic cases. To perform association studies, we selected 8 single nucleotide polymorphisms (SNPs) and looked for linkage disequilibrium (LD) between these. Haplotype analysis indicated that typing of 3 Tag SNPs (IVS1+633A/C, IVS5–23A/G, and 976A/G) enables us to identify the most common haplotypes. Association studies for the 3 selected SNPs, based on 105 PDB cases without a SQSTM1 mutation and 159 control individuals, did not support a possible influence of natural variants in the SQSTM1 gene either on the pathogenesis of PDB or on the disease severity. In conclusion, our study confirms that the P392L mutation is a recurrent mutation causing PDB in different populations. We were not able to show an association between SQSTM1 polymorphisms and PDB in our population but this clearly needs to be extended to other populations. The presented identification of haplotype Tag SNPs will be of major help for such studies.  相似文献   

11.
12.
Ralston SH 《BONE》2008,43(5):819-825
Paget's disease of bone is a common condition characterised by increased and disorganised bone turnover which can affect one or several bones throughout the skeleton. These abnormalities disrupt normal bone architecture and lead to various complications such as bone pain osteoarthritis, pathological fracture, bone deformity, deafness, and nerve compression syndromes. Genetic factors play an important role in PDB and mutations or polymorphisms have been identified in four genes that cause classical Paget's disease and related syndromes. These include TNFRSF11A, which encodes RANK, TNFRSF11B which encodes osteoprotegerin, VCP which encodes p97, and SQSTM1 which encodes p62. All of these genes play a role in the RANK-NFkappaB signalling pathway and it is likely that the mutations predispose to PDB by disrupting normal signalling, leading to osteoclast activation. Although Paget's has traditionally be considered a disease of the osteoclast there is evidence that stromal cell function and osteoblast function are also abnormal, which might account for the fact that the disease is associated with increased bone formation as well as resorption. Environmental factors also contribute to Paget's disease. Most research has focused on paramyxovirus infection as a possible environmental trigger but evidence in favour of the involvement of viruses in the disease remains conflicting. Other factors which have been implicated as possible disease triggers include mechanical loading, dietary calcium and environmental toxins. Further work will be required to identify additional genetic variants that predispose to Paget's disease and to determine how the causal mutations and predisposing polymorphisms interact with environmental factors to influence bone cell function and cause the focal bone lesions that are characteristic of the disease.  相似文献   

13.
To increase awareness of the rarity of Paget's disease of bone (PDB) in the Chinese population, we characterized the clinical manifestations and features of 13 Chinese sporadic PDB patients. The clinical features of our Chinese PDB patients show similarities with cases reported in Western countries. The most common lesion sites were the pelvis, femur, and tibia; the next most common lesion sites were the spine and skull. Most patients had a higher serum alkaline phosphatase (ALP) level. Treatment with bisphosphonates was effective. In addition, we screened for PDB-causing mutations and performed a functional analysis in an attempt to elucidate the molecular pathogenesis of PDB. A total of 216 persons, including 13 sporadic PDB patients, three unaffected relatives of 1 patient, and 200 healthy donors, were recruited. All eight exons and exon-intron boundaries of the SQSTM1 gene were amplified by polymerase chain reaction (PCR) and directly sequenced. We identified a 53-year-old man who harbored a heterozygous T-to-C transversion at position 1250 in exon 8 (1250T?>?C), which resulted in a methionine-to-threonine (ATG?>?ACG) substitution at codon 404 (M404T). The M404T mutant SQSTM1 protein exhibited increased NF-κB activation and drove a significantly increased number of osteoclast-like cells (OLCs) that formed in response to RANKL and an increased number of OLC nuclei. This is the first report of an SQSTM1 genetic mutation that contributes to the pathogenesis of PDB in Chinese patients. These results may partially explain the mechanism by which this SQSTM1 mutation contributes to the pathogenesis of sporadic PDB in Chinese patients.  相似文献   

14.
RANK (receptor activator of nuclear factor‐κB), encoded by TNFRSF11A, is a key protein in osteoclastogenesis. TNFRSF11A mutations cause Paget's disease of bone (PDB)–like diseases (ie, familial expansile osteolysis, expansile skeletal hyperphosphatasia, and early‐onset PDB) and an osteoclast‐poor form of osteopetrosis. However, no TNFRSF11A mutations have been found in classic PDB, neither in familial nor in isolated cases. To investigate the possible relationship between TNFRSF11A polymorphisms and sporadic PDB, we conducted an association study including 32 single‐nucleotide polymorphisms (SNPs) in 196 Belgian sporadic PDB patients and 212 control individuals. Thirteen SNPs and 3 multimarker tests (MMTs) turned out to have a p value of between .036 and 3.17 × 10?4, with the major effect coming from females. Moreover, 6 SNPs and 1 MMT withstood the Bonferroni correction (p < .002). Replication studies were performed for 2 nonsynonymous SNPs (rs35211496 and rs1805034) in a Dutch and a British cohort. Interestingly, both SNPs resulted in p values ranging from .013 to 8.38 × 10?5 in both populations. Meta‐analysis over three populations resulted in p = .002 for rs35211496 and p = 1.27 × 10?8 for rs1805034, again mainly coming from the female subgroups. In an attempt to identify the underlying causative SNP, we performed functional studies for the coding SNPs as well as resequencing efforts of a 31‐kb region harboring a risk haplotype within the Belgian females. However, neither approach resulted in significant evidence for the causality of any of the tested genetic variants. Therefore, further studies are needed to identify the real cause of the increased risk to develop PDB shown to be present within TNFRSF11A. © 2010 American Society for Bone and Mineral Research.  相似文献   

15.
The oldest person (60 yr) with juvenile Paget's disease is homozygous for the TNFRSF11B mutation 966_969delTGACinsCTT. Elevated circulating levels of immunoreactive OPG and soluble RANKL accompany this genetic defect that truncates the OPG monomer, preventing formation of OPG homodimers. INTRODUCTION: Juvenile Paget's disease (JPD), a rare autosomal recessive disorder, features skeletal pain, fracture, and deformity from extremely rapid bone turnover. Deafness and sometimes retinopathy also occur. Most patients have diminished osteoprotegerin (OPG) inhibition of osteoclastogenesis caused by homozygous loss-of-function defects in TNFRSF11B, the gene that encodes OPG. Circulating immunoreactive OPG (iOPG) is undetectable with complete deletion of TNFRSF11B but normal with a 3-bp in-frame deletion. MATERIALS AND METHODS: We summarize the clinical course of a 60-yr-old Greek man who is the second reported, oldest JPD patient, including his response to two decades of bisphosphonate therapy. Mutation analysis involved sequencing all exons and adjacent mRNA splice sites of TNFRSF11B. Over the past 4 yr, we used ELISAs to quantitate his serum iOPG and soluble RANKL (sRANKL) levels. RESULTS: Our patient suffered progressive deafness and became legally blind, although elevated markers of bone turnover have been normal for 6 yr. He carries the same homozygous mutation in TNFRSF11B (966_969delTGACinsCTT) reported in a seemingly unrelated Greek boy and Croatian man who also have relatively mild JPD. This frame-shift deletes 79 carboxyterminal amino acids from the OPG monomer, including a cysteine residue necessary for homodimerization. Nevertheless, serum iOPG and sRANKL levels are persistently elevated. CONCLUSIONS: Homozygosity for the TNFRSF11B "Balkan" mutation (966_969delTGACinsCTT) causes JPD in the second reported, oldest patient. Elevated circulating iOPG and sRANKL levels complement evidence that this deletion/insertion omits a cysteine residue at the carboxyterminus needed for OPG homodimerization.  相似文献   

16.
BACKGROUND: Dopamine modulates blood pressure in the kidney. The aim of this study was to investigate whether two previously known (-707 G/C, Ser9Gly) and one novel (Ala17Ala) polymorphism in the dopamine D3 receptor gene and/or their haplotypes are associated with blood pressure, diabetic nephropathy or renal variables in the study subjects. METHODS: A cross-sectional, case-control study with a total of 996 type 1 diabetic patients from the multicentre, nationwide FinnDiane Study. Patients were recruited consecutively and classified into four groups according to their renal status. RESULTS: The frequencies of the genotypes harbouring the minor allele were 33, 51 and 19% for the -707 G/C, Ser9Gly and Ala17Ala polymorphisms, respectively. Frequencies of the -707 G/C minor genotypes were 35 (normoalbuminuria), 32 (microalbuminuria), 28 (proteinuria) and 39% (end-stage renal disease) (chi(2) = 6.3, df = 3, P = 0.1), of the Ser9Gly 52, 51, 46 and 57% (chi(2) = 6.3, df = 3, P = 0.1) and of the Ala17Ala polymorphism 18, 19, 19 and 21% (chi(2) = 0.7, df = 3, P = 0.9), respectively. Five haplotypes were identified, but no differences were seen between those with and without diabetic nephropathy. Furthermore, there were no differences in blood pressure levels nor in any renal variables between genotypes or haplotypes. CONCLUSIONS: These results do not provide evidence for an involvement of the dopamine D3 receptor gene in blood pressure levels or in the pathogenesis of diabetic nephropathy in type 1 diabetic patients.  相似文献   

17.
Mutation screening of the SQSTM1 gene in 94 French patients with PDB revealed two novel point-mutations (A381V and L413F) and two new compound heterozygous genotypes (P392L/A381V and P392L/A390X). Functional analysis showed an increased level of SQSTM1/p62 protein in PDB patients and truncated forms of the protein encoded by the A390X allele. Clinical data indicate that PDB patients with SQSTM1 mutation are younger at PDB diagnosis and have more extensive bone lesions. INTRODUCTION: Paget's disease of bone (PDB) is a common chronic disease of the skeleton, with a strong genetic component. A recurrent mutation (P392L) was first identified on chromosome 5, in the Sequestosome 1 (SQSTM1) gene. Several other mutations of the SQSTM1 gene have been described in PDB patients, affecting the ubiquitin-associated domain (UBA) of the SQSTM1/p62 protein. The objectives of this study were to evaluate the frequency of the SQSTM1 mutations in French PBD patients, to study the expression of the SQSTM1/p62 protein, and to search for genotype-phenotype correlations. MATERIALS AND METHODS: Blood was obtained from 94 unrelated French PDB patients and 100 controls for mutation screening of exons 7 and 8, encoding for the UBA domain of SQSTM1. Epstein-Barr virus (EBV)-immortalized B-cell lymphocytes were established from 13 patients, giving access to functional analysis of the gene and the SQSTM1/p62 expressions using real-time PCR and Western blot. RESULTS: Mutations of the SQSTM1 gene were identified in 12 of the 94 PDB patients (13%). Eight patients carried P392L. Two novel missense mutations were identified: L413F and A381V. This A381V mutation and A390X were found in distinct patients already carriers of P392L. The SQSTM1/p62 protein expression in PDB patients increased when zero, one, or two mutations were present, and SQSTM1 truncated forms were associated with the A390X mutation. The mean age of PDB diagnosis was younger in patients with the SQSTM1 mutation. PDB was more extensive in patients who carried a SQSTM1 mutation. CONCLUSIONS: Mutations of SQSTM1 are present in the French population. PDB patients with and without the SQSTM1 mutation have an increased level of SQSTM1/p62, caused by overproduction of the protein, probably involved in the pathophysiology of PDB. The presence of the SQSTM1 mutation may be a worsening factor for PDB.  相似文献   

18.
19.
Even though SQSTM1 gene mutations have been identified in a consistent number of patients, the etiology of Paget's disease of bone (PDB) remains in part unknown. In this study we analyzed SQSTM1 mutations in 533 of 608 consecutive PDB patients from several regions, including the high‐prevalence area of Campania (also characterized by increased severity of PDB, higher number of familial cases, and peculiar phenotypic characteristics as giant cell tumor). Eleven different mutations (Y383X, P387L, P392L, E396X, M401V, M404V, G411S, D423X, G425E, G425R, and A427D) were observed in 34 of 92 (37%) and 43 of 441 (10%) of familial and sporadic PDB patients, respectively. All five patients with giant cell tumor complicating familial PDB were negative for SQSTM1 mutations. An increased heterogeneity and a different distribution of mutations were observed in southern Italy (showing 9 of the 11 mutations) than in central and northern Italy. Genotype‐phenotype analysis showed only a modest reduction in age at diagnosis in patients with truncating versus missense mutations, whereas the number of affected skeletal sites did not differ significantly. Patients from Campania had the highest prevalence of animal contacts (i.e., working or living on a farm or pet ownership) without any difference between patients with or without mutation. However, when familial cases from Campania were considered, animal contacts were observed in 90% of families without mutations. Interestingly, a progressive age‐related decrease in the prevalence of animal contacts, as well as a parallel increase in the prevalence of SQSTM1 mutations, was observed in most regions except in the subgroup of patients from Campania. Moreover, patients reporting animal contacts showed an increased number of affected sites (2.54 ± 2.0 versus 2.19 ± 1.9, p < .05) over patients without animal contacts. This difference also was evidenced in the subgroup of patients with SQSTM1 mutations (3.84 ± 2.5 versus 2.76 ± 2.2, p < .05). Overall, these data suggest that animal‐related factors may be important in the etiology of PDB and may interact with SQSTM1 mutations in influencing disease severity. © 2010 American Society for Bone and Mineral Research  相似文献   

20.
Paget's disease of bone (PDB) is a focal disorder of bone remodeling that leads to overgrowth of affected bone, with rare progression to osteosarcoma. Extensive studies of familial PDB showed that a majority of cases harbor germline mutations in the Sequestosome1 gene (SQSTM1). In contrast, little is known about the mutational status of SQSTM1 in sporadic PDB. We hypothesized that somatic SQSTM1 mutations might occur in the affected tissues of sporadic PDB and pagetic osteosarcoma. We used laser capture microdissection to capture homogeneous populations of cells from the affected bone or tumor of patients with sporadic PDB or pagetic osteosarcoma, respectively. DNA from these samples and appropriate controls was used for sequence analysis and allelic discrimination analysis. Two of five patients with sporadic PDB had SQSTM1C1215T mutations detected in their affected bone but not in their blood samples, indicating a somatic origin of the mutations. Samples from three of five sporadic pagetic osteosarcoma patients had the SQSTM1C1215T mutation, whereas the normal adjacent tissue from two of these tumors clearly lacked the mutation, again indicating an occurrence of somatic events. No SQSTM1 mutations were found in primary adolescent osteosarcomas. The discovery of somatic SQSTM1 mutations in sporadic PDB and pagetic osteosarcoma shows a role for SQSTM1 in both sporadic and inherited PDB. The discovery of somatically acquired mutations in both the diseased bone and tumor samples suggests a paradigm shift in our understanding of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号