首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Alcohol and the antiretroviral drug indinavir (Ind) decrease protein synthesis in skeletal muscle under in vivo and in vitro conditions. The goal of the present study was to identify signaling mechanisms responsible for the inhibitory effect of ethanol (EtOH) and Ind on protein synthesis. METHODS: C2C12 mouse myocytes were incubated with EtOH, Ind, or a combination of both for 24 hours. The rate of protein synthesis was determined by [35S]methionine/cysteine incorporation into cellular protein. Phosphorylation of eukaryotic initiation and elongation factors were quantitated by Western blot analysis to identify potential mechanisms for regulating translation. RESULTS: Treatment of myocytes with Ind or EtOH for 24 hours decreased protein synthesis by 19 and 22%, respectively, while a 35% decline was observed in cells treated simultaneously with both agents. Mechanistically, treatment with EtOH or Ind decreased the phosphorylation of the S6 ribosomal protein, and this reduction was associated with decreased S6K1 and p90rsk phosphorylation. Ethanol also decreased the phosphorylation of ERK1/2, mTOR, and 4EBP1, while Ind only suppressed ERK1/2 phosphorylation. Both agents inhibited the phosphorylation of Mnk1 and its upstream regulator p38 MAPK, and they decreased the amount of the active eukaryotic initiation factor (eIF) 4G/eIF4E complex. Finally, EtOH and/or Ind increased phosphorylation of the eukaryotic elongation factor (eEF)-2 by 1.6- to 6-fold. The effects of these agents were not additive, although the combination did exert a greater effect on S6K1 and eEF2 phosphorylation. CONCLUSIONS: Ethanol and Ind decreased protein synthesis in myocytes and this response was associated with changes in the phosphorylation of proteins that regulate translation initiation and elongation.  相似文献   

2.
The objective of this study was to investigate the effect of insulin and IGF-I on protein synthesis and translation initiation in C2C12 myotubes in nutrient-deprived Dulbecco's phosphate buffered saline (DPBS). The results showed that insulin and IGF-I increased protein synthesis by 62% and 35% respectively in DPBS, and the effect was not affected by rapamycin, but was blocked by LY294002. Insulin and IGF-I stimulated eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP1) phosphorylation in a dose-dependent manner, and the stimulation was independent of availability of external amino acids. Both LY294002 and rapamycin blocked the insulin and IGF-I-induced increases in 4EBP1 phosphorylation. The results also showed that insulin and IGF-I were able to stimulate PKB/Akt phosphorylation, glycogen synthase kinase (GSK) 3beta phosphorylation and mTOR phosphorylation in DPBS. Insulin and IGF-I increased the amount of eIF4G associated with eIF4E in nutrient-deprived C2C12 myotubes. The amount of 4EBP1 associated with eIF4E was decreased after insulin or IGF-I stimulation. We conclude that in C2C12 myotubes, insulin and IGF-I may regulate protein synthesis and translation initiation independent of external amino acid supply via the phosphatidylinositol-3 kinase-PKB/Akt-mTOR pathway.  相似文献   

3.
HIV-1 protease inhibitors have revolutionized the treatment of HIV infection, but their use has been associated with lipodystrophy and insulin resistance. One suggestion for this has been the inhibition of insulin-degrading enzyme (IDE). We have previously demonstrated that insulin, through IDE, can inhibit the proteasome, thus decreasing cytosolic protein degradation. We examined whether the protease inhibitor nelfinavir inhibited IDE and its effect on protein degradation both in vitro and in whole cells. 125I-Insulin degradation was measured by trichloroacetic acid precipitation. Proteasome activities were measured using fluorogenic peptide substrates. Cellular protein degradation was measured by prelabelling cells with 3H-leucine and determining the release of TCA-soluble radioactivity. Nelfinavir inhibited IDE in a concentration-dependent manner with 50% inhibition at the maximal concentration tested, 100 microm. Similarly, the chymotrypsin-like and trypsin-like activities of the proteasome were decreased with an IC50 of approximately 3 microm. The ability of insulin to inhibit the proteasome was abrogated by nelfinavir. Treatment of HepG2 cells with 50 microm nelfinavir decreased 125I-insulin degradation and increased cell-associated radioactivity. Insulin alone maximally decreased protein degradation by 15%. Addition of 50 microm nelfinavir inhibited cellular protein degradation by 14% and blunted the effect of insulin. These data show that nelfinavir inhibits IDE, decreases insulin's ability to inhibit protein degradation via the proteasome and provides another possible mechanism for the insulin resistance seen in protease inhibitor-treated HIV patients.  相似文献   

4.
BACKGROUND: Acute and chronic alcohol intoxication decreases skeletal muscle protein synthesis under in vivo conditions. We investigated whether ethanol (EtOH) and its major metabolites, acetaldehyde and acetate, can directly modulate protein balance under in vitro conditions. METHODS: Human myocytes were incubated with different doses of EtOH for varying periods of time (i.e., 4-72 hr). Alternatively, cells were incubated with acetaldehyde, acetate, insulin, insulin-like growth factor-I (IGF-I), or with a combination of EtOH plus insulin or IGF-I. Rates of protein synthesis or degradation were determined by 35S-methionine/cysteine incorporation into or release from cellular protein. RESULTS: A significant, 15% to 20%, decrease in basal protein synthesis was observed after 24 hr, but not at earlier time points, in response to 80 mM EtOH. Incubation of myocytes for 72 hr decreased synthesis in cells incubated with EtOH ranging between 60 and 120 mM. The ability of IGF-I or insulin to stimulate protein synthesis was impaired by 30% and 60%, respectively, in cells incubated with 80 mM EtOH for 72 hr. Exposure of cells to 200 microM acetaldehyde or 5 mM Na-acetate also decreased basal protein synthesis. In contrast, neither EtOH, acetaldehyde, nor acetate altered the basal rate of protein degradation. However, EtOH completely impaired the ability of insulin and IGF-I to inhibit proteolysis. Finally, EtOH did not impair IGF-I receptor autophosphorylation, but inhibited the ability of insulin to phosphorylate its own receptor. EtOH also did not alter the number of insulin or IGF-I receptors or the formation of insulin/IGF-I hybrid receptors. CONCLUSIONS: We have demonstrated that EtOH can directly inhibit muscle protein synthesis under in vitro conditions. Neither EtOH nor its metabolites altered basal protein degradation, although EtOH did compromise the ability of both insulin and IGF-I to slow proteolysis. This impairment seems to be mediated by different defects in signal transduction.  相似文献   

5.
The mechanism by which chronic treatment with HIV (human immunodeficiency virus)-1 protease inhibitors leads to a deterioration of glucose metabolism appears to involve insulin resistance, and may also involve impaired insulin secretion. Here we investigated the long-term effects of HIV-1 protease inhibitors on glucose-stimulated insulin secretion from beta cells and explored whether altered insulin secretion might be related to altered insulin signaling. INS-1 cells were incubated for 48 h with different concentrations of amprenavir, indinavir, nelfinavir, ritonavir or saquinavir, stimulated with 20 mM d-glucose, and insulin determined in the supernatant. To evaluate insulin signaling, cells were stimulated with 100 nM insulin for 2 min, and insulin-receptor substrate (IRS)-1, -2 and Akt phosphorylation determined. Incubation for 48 h with ritonavir, nelfinavir and saquinavir resulted in impaired glucose-induced insulin secretion at 2.5, 5 and 5 microM respectively, whereas amprenavir or indinavir had no effects even at 20 and 100 microM respectively. The impaired insulin secretion by ritonavir, nelfinavir and saquinavir was associated with decreased insulin-stimulated IRS-2 phosphorylation, and, for nelfinavir and saquinavir, with decreased insulin-stimulated IRS-1 and Thr308-Akt phosphorylation. No such effects on signaling were observed with amprenavir or indinavir. In conclusion, certain HIV-1 protease inhibitors, such as ritonavir, nelfinavir and saquinavir, not only induce peripheral insulin resistance, but also impair glucose-stimulated insulin secretion from beta cells. With respect to the long-term effect on beta-cell function there appear to be differences between the protease inhibitors that may be clinically relevant. Finally, these effects on insulin secretion after a 48 h incubation with protease inhibitor were associated with a reduction of the insulin-stimulated phosphorylation of insulin signaling parameters, particularly IRS-2, suggesting that protease inhibitor-induced alterations in the insulin signaling pathway may contribute to the impaired beta-cell function.  相似文献   

6.
The present study examined the direct effects of high glucose and insulin on protein synthesis in cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Cultured rat cardiac myocytes and fibroblasts were grown in media containing normal glucose, high glucose, or osmotic control, and incubated with or without insulin. In cardiac myocytes, high glucose had no effect, but insulin increased protein synthesis and atrial natriuretic peptide (ANP) secretion and gene expression. The extracellular signal-regulated protein kinase (ERK)/mitogen-activated protein kinase (MAPK) inhibitor and the protein kinase C (PKC) inhibitor blocked insulin-induced protein synthesis. In cardiac fibroblasts, high glucose and osmotic control media increased DNA synthesis. Collagen synthesis and fibronectin and transforming growth factor-beta1 (TGF-beta1) mRNA expression were stimulated by high glucose, but not by osmotic control. Insulin increased DNA and collagen synthesis in fibroblasts, and the insulin-induced increase in DNA synthesis was blocked by the phosphatidylinositol 3 kinase (PI3K) inhibitor. Our findings suggest that cardiomyocyte protein synthesis is mainly regulated by insulin rather than high glucose and both high glucose and insulin contribute to fibroblast DNA and collagen synthesis. High glucose accelerates fibroblast DNA synthesis and collagen synthesis, and fibronectin and TGF-beta1 mRNA expression, dependent or independent of osmotic stress. Insulin regulates myocyte protein synthesis and fibroblast DNA synthesis through different intracellular mechanisms.  相似文献   

7.
OBJECTIVE: To determine if particular components of antiretroviral drug regimens are associated with greater insulin resistance, dyslipidemia, and peripheral lipoatrophy. METHODS: Metabolic and body composition variables were measured prospectively over 64 weeks in 334 antiretroviral-naive, HIV-infected subjects who were randomized to receive nelfinavir, efavirenz, or both, combined with zidovudine/lamivudine or didanosine/stavudine in a factorial design, multicenter trial. Subjects assigned to efavirenz (n = 110) were compared with those assigned to nelfinavir (n = 99); subjects assigned to zidovudine/lamivudine (n = 154) were compared with those assigned to didanosine/stavudine (n = 180). A subset of 157 subjects had serial dual-energy X-ray absorptiometry (DEXA) scans. RESULTS: Lipid measures increased in all groups. Greater increases in high density lipoprotein (HDL) cholesterol occurred with efavirenz than with nelfinavir. Greater increases in total cholesterol, non-HDL cholesterol and HDL cholesterol occurred with stavudine and didanosine than with zidovudine/lamivudine. There were no differences in insulin resistance in the comparisons. After initial increases in the first 16 weeks, median limb fat decreased. Greater changes in percentage changes in limb fat occurred with didanosine/stavudine (-16.8%) than with zidovudine/lamivudine (+4.0%; P < 0.001 for overall change from baseline) and with nelfinavir (-13.1%) compared with efavirenz (+1.8%; P = 0.003). CONCLUSIONS: Over 64 weeks, all regimens were associated with increases in lipids but insulin resistance did not differ between groups. Regimens containing didanosine/stavudine and regimens containing nelfinavir were associated with greater loss of limb fat.  相似文献   

8.
The roles of glycosylation and protein synthesis in the maintenance of insulin receptor levels and turnover rates in 3T3-L1 adipocytes were investigated. The heavy isotope density-shift technique was employed to determine the effects of inhibitors of these processes on the rates of synthesis and degradation of cellular insulin receptors. Inhibitors of protein synthesis--i.e., cycloheximide and puromycin--markedly decreased the rate of degradation of the insulin receptor, the half-life for receptor decay increasing from 7.5 hr without to 25 hr with inhibitor. The continued synthesis of a short-lived protein appears to be necessary for normal insulin receptor turnover. Tunicamycin, a potent inhibitor of core oligosaccharide addition in the formation of N-glycosidically linked glycoproteins, caused the depletion of cell-surface and total cellular detergent-extractable insulin receptors. This inhibitor totally prevented the formation of functional newly synthesized insulin receptor, yet receptor degradation was affected minimally. Thus, glycosylation of the receptor appears to be required for its activation after translation.  相似文献   

9.
Stimulation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (PKB) is implicated in the regulation of protein synthesis in various cells. One mechanism involves PI3K/PKB-dependent phosphorylation of 4E-BP1, which dissociates from eIF4E, allowing initiation of translation from the 7-methylGTP cap of mRNAs. We examined the effects of insulin and H(2)O(2) on this pathway in neonatal cardiac myocytes. Cardiac myocyte protein synthesis was increased by insulin, but was inhibited by H(2)O(2). PI3K inhibitors attenuated basal levels of protein synthesis and inhibited the insulin-induced increase in protein synthesis. Insulin or H(2)O(2) increased the phosphorylation (activation) of PKB through PI3K, but, whereas insulin induced a sustained response, the response to H(2)O(2) was transient. 4E-BP1 was phosphorylated in unstimulated cells, and 4E-BP1 phosphorylation was increased by insulin. H(2)O(2) stimulated dephosphorylation of 4E-BP1 by increasing protein phosphatase (PP1/PP2A) activity. This increased the association of 4E-BP1 with eIF4E, consistent with H(2)O(2) inhibition of protein synthesis. The effects of H(2)O(2) were sufficient to override the stimulation of protein synthesis and 4E-BP1 phosphorylation induced by insulin. These results indicate that PI3K and PKB are important regulators of protein synthesis in cardiac myocytes, but other factors, including phosphatase activity, modulate the overall response.  相似文献   

10.
Soft tissue injury to one hindlimb of rats was used to test the metabolic response of atrial and ventricular muscle to trauma. Effects of insulin on muscle metabolism were also studied. In myocytes and atria from normal animals, insulin increased protein synthesis and decreased protein degradation. For myocytes of rats at one and two days after trauma, this effect of insulin on proteolysis could not be detected. Over the next two days, the inhibitory effect returned to normal. Insulin also did not increase protein synthesis on day 1, but did thereafter. In atria, in contrast to heart cells, the inhibitory effect of insulin on proteolysis was enhanced at two and three days after trauma, and its stimulation of protein synthesis was unaltered. Insulin increased carbohydrate metabolism in both myocytes and atria of normal rats and traumatized rats after 2 days, and trauma did not alter this response. In myocytes, but not atria, trauma led to a faster oxidation of leucine and a significant rise in the production of alanine. Production of glutamine and glutamate was not affected in either tissue. These results show that the metabolic responses to trauma of atrial and ventricular muscle differ considerably.  相似文献   

11.
12.
13.
This study was designed to evaluate the role of p70 S6 kinase (p70(S6K) ), p90 S6 kinase (p90(RSK)) and mitogen-activated protein (MAP) kinase pathways in the insulin resistance of muscle protein synthesis observed during glucocorticoid treatment. Dexamethasone treatment decreased the effect of insulin on protein synthesis (-35. 2%) in epitrochlearis muscle incubated in vitro. This resistance is associated with a total blockage of the stimulation of p70(S6K) by insulin without any significant decrease in the amount of the kinase. However, the effect of rapamycin (inhibitor of several intracellular pathways including p70(S6K) pathways) on muscle protein synthesis was not modified by dexamethasone in rat muscles. This suggested that 'rapamycin-sensitive pathways' associated with the insulin stimulation of protein synthesis were not altered by glucocorticoids and thus are not responsible for the insulin resistance observed. As incubation of muscles with a MAP kinase inhibitor (PD98059) did not modify the stimulation of protein synthesis by insulin and as glucocorticoids did not alter the effect of insulin on p90(RSK )activity, our results provide evidence that glucocorticoid-induced alterations in muscle protein synthesis regulation by insulin do not involve factors or kinases that are dependent on MAP kinase and/or p90(RSK).  相似文献   

14.
BACKGROUND: Acute alcohol intoxication in rats decreases protein synthesis in skeletal muscle and, to a lesser extent, in liver. The purpose of the present study was to examine potential mechanisms for the inhibitory effect of acute ethanol exposure. METHODS: Rats were injected intraperitoneally with either ethanol (75 mmol/kg) or saline, and tissues were examined 2.5 hr later. Rates of protein synthesis in vivo were determined by [3H]phenylalanine incorporation into protein, and various eukaryotic initiation factors (eIFs) were quantitated by Western blot analysis to identify possible mechanisms for regulating translation. RESULTS: Protein synthesis in gastrocnemius and liver was decreased (39% and 21%, respectively) after alcohol administration, compared with saline-injected control animals. Alcohol administration did not alter tissue RNA content but diminished translational efficiency in muscle (43%) and liver (24%). Hepatic eIF2B activity was decreased 24% in alcohol-treated rats, and this was associated with a 95% increase in eIF2alpha phosphorylation. However, alcohol did not alter the amount of 4E-binding protein 1 (4E-BP1) bound to eIF4E, cIF4E bound to eIF4G, or the phosphorylation state of either 4E-BP1 or eIF4E. In contrast to liver, neither eIF2B activity nor the phosphorylation of eIF2alpha was affected in muscle of alcohol-treated rats. However, acute alcohol intoxication increased binding of 4E-BP1 to eIF4E (113%), decreased the amount of cIF4E bound to cIF4G (81%), and decreased the amount of 4E-BP1 in the phosphorylated gamma-form (77%). The plasma concentrations of insulin and insulin-like growth factor-I were unchanged by alcohol, but muscle insulin-like growth factor-I messenger ribonucleic acid abundance was decreased 35%. CONCLUSIONS: These data suggest that acute alcohol intoxication decreases translation initiation and protein synthesis in liver and muscle via different mechanisms. Changes in eIF2B appear to predominate in liver, whereas alterations in eIF4E availability appear more critical in skeletal muscle for controlling translation initiation.  相似文献   

15.
Accelerated atherosclerosis accompanying diabetes mellitus, obesity, and some types of hypertension has been associated with hyperinsulinemia, augmented plasma plasminogen activator inhibitor type 1 (PAI-1), or both. We hypothesized that insulin and insulin-like growth factor type I (IGF-I) can influence synthesis of PAI-1, thereby potentially attenuating fibrinolysis. In HepG2 cells used as a model system, concentrations of insulin and IGF-I consistent with those seen in plasma independently stimulated PAI-1 synthesis. Accumulation of PAI-1 protein in conditioned medium over 24 hr was stimulated more with insulin alone than with the combination. Synergistic increases were evident, however, in the accumulation of PAI-1 protein over 48 hr with a concomitant increase in PAI-1 mRNA. A 10- to 20-fold increase in IGF binding protein I mRNA was seen 16-48 hr after exposure of the HepG2 cells to insulin and IGF-I, an increase abolished by cycloheximide. The results obtained are consistent with the hypothesis that hyperinsulinemia coupled with physiologic concentrations of IGF-I may attenuate fibrinolytic activity in vivo, thereby contributing to accelerated atherosclerosis.  相似文献   

16.
Elevated TNFalpha levels are associated with insulin resistance, but the molecular mechanisms linking cytokine signaling to impaired insulin function remain elusive. We previously demonstrated a role for Akt in insulin regulation of protein kinase CbetaII alternative splicing through phosphorylation of serine/arginine-rich protein 40, a required mechanism for insulin-stimulated glucose uptake. We hypothesized that TNFalpha attenuated insulin signaling by dephosphorylating Akt and its targets via ceramide-activated protein phosphatase. Western blot analysis of L6 cell lysates demonstrated impaired insulin-stimulated phosphorylation of Akt, serine/arginine-rich protein 40, and glycogen synthase kinase 3beta in response to TNFalpha and the short chain C6 ceramide analog. TNFalpha increased serine/threonine phosphatase activity of protein phosphatase 1 (PP1) in response to C6, but not insulin, suggesting a ceramide-specific effect. Myriocin, an inhibitor of de novo ceramide synthesis, blocked stimulation of the PP1 activity. Ceramide species measurement by liquid chromatography-mass spectrometry showed consistent increases in C24:1 and C16 ceramides. Effects of TNFalpha and C6 on insulin-stimulated phosphorylation of glycogen synthase kinase 3beta were prevented by myriocin and tautomycin, a PP1 inhibitor, further implicating a de novo ceramide-PP1 pathway. Alternative splicing assays demonstrated that TNFalpha abolished insulin-mediated inclusion of the protein kinase CbetaII exon. Collectively, our work demonstrates a role for PP1-like ceramide-activated protein phosphatase in mediating TNFalpha effects blocking insulin phosphorylation cascades involved in glycogen metabolism and alternative splicing.  相似文献   

17.
Src homology 2-containing inositol 5'-phosphatase 2 (SHIP2) possesses 5'-phosphatase activity to specifically hydrolyze the phosphatidylinositol 3-kinase product PI(3,4,5)P3 in the regulation of insulin signaling. In the present study, we examined the impact of SHIP2 on the regulation of insulin signaling leading to protein synthesis in 3T3-L1 adipocytes cultured with standard and excess concentrations of amino acids. Insulin-induced translocation of PDK1 to the plasma membrane, phosphorylation of Akt and p70S6-kinase and ribosomal protein S6, increase in the amount of 4E-BP1 gamma-form, association of eIF4E with eIF4G, and protein synthesis were decreased by overexpression of wild-type SHIP2 by adenovirus-mediated gene transfer. The effect of SHIP2 overexpression on the regulation of insulin-induced phosphorylation of Akt and p70S6-kinase was somewhat augmented by the incubation with 5-fold excess concentrations of amino acids for 30 min. In contrast, the impact of SHIP2 expression was diminished in insulin-induced phosphorylation of p70S6-kinase and S6, but not of Akt, after the incubation for 16 h. Interestingly, incubation with the excess concentrations of amino acids for 30 min induced activation of phosphatidylinositol 3-kinase and phosphorylation of Akt, whereas phosphorylation of p70S6-kinase and S6 was decreased. Furthermore, although the exposure for longer time periods up to 24 h did not elicit phosphorylation of Akt, it markedly induced phosphorylation of p70S6-kinase and S6. These results indicate that SHIP2 plays an important role in the negative regulation of insulin signaling for the protein synthesis and that the impact of SHIP2 is altered, dependent on the acute or chronic exposure of excess concentrations of amino acids in culture.  相似文献   

18.
19.
20.
IGF-I induces skeletal muscle hypertrophy by stimulating protein synthesis and suppressing the protein degradation pathway; the downstream signaling pathways Akt-mammalian target of rapamycin (mTOR)-p70-kDA-S6-kinase (p70S6K), and Forkhead box O1 (FoxO1) play essential roles in this regulation. Reactive oxygen species (ROS) modulate the signaling of various growth factors via redox regulation. However, the role of ROS in IGF-I signaling is not fully understood. In this study, we investigated whether ROS regulate the signaling and biological action of IGF-I in C2C12 myocytes. We found that IGF-I induces ROS in C2C12 myocytes. While treatment with H(2)O(2) significantly enhanced IGF-I-induced phosphorylation of the IGF-I receptor (IGF-IR), IGF-IR phosphorylation was markedly attenuated when cells were treated with antioxidants. The downstream signaling pathway, Akt-mTOR-p70S6K was subsequently down-regulated. Furthermore, the phosphorylation of FoxO1 by IGF-I decreased concomitantly with the restoration of the expression of its target genes, Atrogin-1 and muscle RING finger 1, which are related to muscle atrophy. Nox4 knockdown, which is reportedly to produce ROS in insulin signaling, attenuated IGF-I-induced IGF-IR phosphorylation, indicating that Nox4 is involved in the regulation of IGF-I signaling. Importantly, antioxidant treatments inhibited IGF-I-induced myocyte hypertrophy, demonstrating that ROS are necessary for IGF-I-induced myocyte hypertrophy in vitro. These results indicate that ROS play an essential role in the signaling and biological action of IGF-I in C2C12 myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号