首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precise mechanism whereby continuous high-frequency electrical stimulation of the subthalamic nucleus ameliorates motor symptoms of Parkinson's disease is unknown. We examined the effects of high-frequency stimulation of regions dorsal to and within the subthalamic nucleus on dopamine efflux in the striatum of urethane-anaesthetized rats using constant potential amperometry. Complementary extracellular electrophysiological studies determined the activity of subthalamic nucleus neurons in response to similar electrical stimulation of the subthalamic nucleus. High-frequency stimulation of the subthalamic nucleus increased action potential firing in the subthalamic nucleus only during the initial stimulation period and was followed by a cessation of firing over the remainder of stimulation. Electrical stimulation of the subthalamic nucleus with 15 pulses elicited stimulus-time-locked increases in striatal dopamine efflux with maximal peak effects occurring at 50 Hz frequency and 300 microA intensity. Extended subthalamic nucleus stimulation (1000 pulses at 50 Hz; 300 microA) elicited a similar peak increase in striatal dopamine efflux that was followed by a relatively lower steady-state elevation in extracellular dopamine over the course of stimulation. In contrast, extended stimulation immediately adjacent and dorsal to the subthalamic nucleus resulted in an 11-fold greater increase in dopamine efflux that remained elevated over the course of the stimulation. Immunohistochemical staining for tyrosine hydroxylase revealed catecholaminergic fibers running immediately dorsal to and through the subthalamic nucleus. Taken together, these results suggest that enhanced dopamine release within the basal ganglia may be an important mechanism whereby high-frequency stimulation of the subthalamic nucleus improves motor symptoms of Parkinson's disease.  相似文献   

2.
The ventral striatum is characterized by an intricate neurochemical compartmentation that is reflected in the distribution of most of its afferent fiber systems. In the present study, the compartmental relationships of ventral striatal neurons projecting to the mesencephalon were studied by combining tract tracing with the immunohistochemical localization of leu-enkephalin. Injections of the retrograde tracer cholera toxin subunit B were placed at various sites in the ventral mesencephalon. The anterograde tracer Phaseolus vulgaris leucoagglutinin was injected in single compartments in the rostrolateral part of the nucleus accumbens. The projections from the ventral striatum to the dopaminergic cell groups in the ventral mesencephalon and those to the substantia nigra pars reticulata originate from distinct subpopulations of ventral striatal neurons that respect neurochemically defined compartmental boundaries. In the "shell" of the nucleus accumbens, neurons that project to the dopaminergic cell groups are located outside areas of high cell density and weak enkephalin immunoreactivity (ENK-IR). Rostrolaterally in the "core" of the nucleus accumbens, neurons inside large areas of strong ENK-IR surrounding the anterior commissure project to the dorsomedial part of the substantia nigra pars reticulata, whereas neurons outside these areas innervate the ventral tegmental area and/or the medial part of the substantia nigra pars compacta. By contrast, more caudally in the dorsal part of the nucleus accumbens and in the ventral part of the caudate-putamen, the relationships are reversed: neurons in- or outside small patches of strong ENK-IR project respectively to the pars compacta or the pars reticulata of the substantia nigra. Since the thalamic and cortical afferents of the ventral striatum are compartmentally ordered as well, the present results imply that through the ventral striatal compartments information from disparate combinations of cortical and thalamic sources may be conveyed to distinct mesencephalic targets. The component of the ventral striatomesencephalic system reaching the dopaminergic cell groups A10, A9, and A8 may modulate the dopaminergic input to virtually the entire striatum. The other component can, by way of the pars reticulata of the substantia nigra, participate in nigrothalamic and nigrotectal output pathways of the basal ganglia.  相似文献   

3.
This study examines the organization of thalamostriatal projections from ventral tier nuclei that relay basal ganglia output to the frontal cortex. Although previous thalamostriatal studies emphasize projections from the intralaminar nuclei, studies in primates show a substantial projection from the ventral anterior (VA) and ventral lateral (VL) nuclei. These nuclei make up the main efferent projection from the basal ganglia to frontal cortical areas, including primary motor, supplementary, premotor, and cingulate motor areas. Functionally related motor areas of the frontal cortex and VA/VL have convergent projections to specific regions of the dorsal striatum. The distribution of VA/VL terminals within the striatum is crucial to understanding their relationship to motor cortical afferents. We placed anterograde tracer injections into discrete VA/VL thalamic areas. VA/VL thalamostriatal projections terminate in broad, rostrocaudal regions of the dorsal striatum, corresponding to regions innervated by functionally related cortical motor areas. The pars oralis division of VL projects primarily to the dorsolateral, postcommissural putamen, whereas the parvicellular VA targets more medial and rostral putamen regions, and the magnocellular division of VA targets the dorsal head of the caudate nucleus. Whereas these results demonstrate a general functional topography, specific VA/VL projections overlap extensively, suggesting that functionally distinct VA/VL projections may also converge in dorsal striatal areas. Within striatal territories, VA/VL projections terminate in a patchy, nonhomogeneous manner, indicating another level of complexity. Moreover, terminal fields contain both terminal clusters and scattered, long, unbranched fibers with many varicosities. These fiber morphologies resemble those from the cortex and raise the possibility that VA/VL thalamostriatal projections neurons have divergent connectional features.  相似文献   

4.
Animals repeatedly dosed with methamphetamine during a single day suffer damage to brain dopamine and serotonin terminals and show behavioral deficits. These methamphetamine regimens also produce long‐term reductions in dopamine agonist‐stimulated immediate‐early gene responses both in striatum and several cortical areas, but the mechanism(s) underlying these long‐lasting effects of methamphetamine remain uncertain. Six weeks after a neurotoxic regimen of methamphetamine (4 × 4 mg/kg) or saline, α subunit levels of striatal G‐proteins that couple dopamine receptors to second messenger systems were measured. Because the damage to striatal monoamine terminals produced by methamphetamine is regionally heterogeneous, we used radioimmunocytochemistry, which combines quantification with regional resolution. We found significant increases in G and Golfα expression in the ventral striatum (but not in the dorsolateral striatum or nucleus accumbens) of methamphetamine‐pretreated rats, a regional pattern similar to that reported for methamphetamine effects on dopamine terminal markers. By contrast, G expression was unaffected in all striatal subregions. The central roles of Gi and Golf in modulating the activity of a series of interlinked intracellular signaling pathways suggest that methamphetamine‐induced changes in Gi and Golf can have lasting effects on striatal neuronal function. Synapse 64:839–844, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Altered glutamatergic transmission in the striatum may be implicated in behavioral sensitization to repeated amphetamine (AMPH) administration. Quantitative in situ hybridization histochemistry was performed to define the effects of acute and chronic AMPH exposures on mRNA expression of Group I metabotropic glutamate receptors (mGluRs) in the striatum. Behavioral ratings indicated that the motor activity of rats was significantly higher after the final of five daily AMPH injections (4 mg/kg, i.p.) than that after the first of five daily AMPH, indicative of the development of behavioral sensitization. Moreover, the motor activity of rats treated with five daily AMPH was significantly greater than that of rats treated with five daily saline in response to a 2 mg/kg challenge dose of AMPH 7, 14, 28, and 60 days after the discontinuation of drug treatments, indicative of the persistent expression of behavioral sensitization. Three hours after acute administration of AMPH to naive rats, mGluR1 and mGluR5 mRNA expression in the dorsal (caudatoputamen) and ventral (nucleus accumbens) striatum showed no change as compared to acute saline injection. In rats that developed behavioral sensitization to repeated AMPH, mGluR1 levels in the dorsal and ventral striatum were increased by 53% and 43%, respectively, 3 h after the final AMPH treatment. However, this change did not persist during withdrawal since it was not observed 7, 14, and 28 days after the discontinuation of AMPH treatment. Conversely, mGluR5 levels were markedly reduced 3 h after the final of five daily AMPH treatments in the entire striatum of sensitized rats (34% and 77% of controls in the dorsal and ventral striatum, respectively). The reduction persisted at 7, 14, and 28 days of withdrawal. These results reveal a close linkage between striatal Group I mGluR gene expression and behavioral sensitization to AMPH. This may indicate functional implications of the two subtypes of Group I mGluRs in the regulation of behavioral sensitization to the dopamine stimulant.  相似文献   

6.
Repeated exposure to drugs of abuse induces behavioural sensitization, i.e. a persistent hypersensitivity to the psychomotor stimulant effects of these drugs. This may be the result of increased responsiveness, to drugs, of mesostriatal dopamine systems and their projections, but it has also been suggested that acute and sensitized behavioural responses to psychostimulant drugs involve activation of distinct neuronal circuits. In order to distinguish between these possibilities, we studied amphetamine-induced c-fos immunoreactivity in subregions of rat striatum (patch and matrix compartments of caudate-putamen and nucleus accumbens core and shell) in drug-naive rats, as well as during long-term expression of amphetamine sensitization. We found that, in sensitized animals, amphetamine (1.0 mg/kg) evoked an increase in the ratio of c-fos-immunopositive cells in striatal patch and matrix compartments, suggesting a preferential involvement of striatal patches in the sensitized response to amphetamine. In drug-naive rats, amphetamine (0.5-5.0 mg/kg) dose-dependently increased c-fos expression in all striatal subregions. Remarkably, the highest dose of amphetamine also evoked an increase in patch : matrix ratio of c-fos immunoreactivity. In nucleus accumbens core and shell of amphetamine- and saline-pretreated animals, amphetamine (1.0 mg/kg) evoked comparable increases in c-fos expression. These data indicate that distinct striatal compartments display a differential sensitivity to amphetamine in both drug-naive and amphetamine-sensitized animals. In addition, they suggest that the shift in amphetamine-induced c-fos expression from striatal matrix to patches in sensitized animals is the consequence of a change in the sensitivity to amphetamine, rather than a long-term circuitry reorganization that is exclusive to the sensitized state.  相似文献   

7.
Visual and somatic representations are established in the subcortical striatal sections of the forebrain (pallial thickening, dorsal ventricular ridge and putamen) of immobilized weakly anaesthetized turtles. According to electrophysiological characteristics they are similar to the corresponding sensory representations in the general cortex. The absence of reliable discrepancy between the latencies of potentials in the cortex and striatum evoked by light flash or by the electric stimulation of the dorsal thalamus indicates that visual projectional fibres ascending from the lateral geniculate nucleus terminate both in cortical and striatal structures. Differences in the latency distribution of single unit responses in the cortex and striatum to visual and thalamic stimulations can be due to the existence, besides the geniculo-telencephalic pathway, of a rotundo-telencephalic visual channel having direct connections with the striatum and polysynaptic ones with the general cortex. Significant differences in latency between the evoked potentials and neuronal responses in cortical and subcortical structures to electric stimulation of the skin shows that somatic projectional fibres on their way to the cortex are relayed in the striatum, thus indicating a lower corticolization degree of the somatosensory system as compared with that of the visual one.  相似文献   

8.
The cortical contribution to the maintenance of preproenkephalin (PPE) and preprotachykinin (PPT) mRNA levels in the rat striatum was investigated using quantitative in situ hybridization histochemistry. The effects of knifecut transections of the frontal cortical pole on the expression of PPE and PPT mRNA in rat striatal neurons was studied in intact striata and in striata previously denervated by a bhydroxydopamine (6-OHDA) lesion of the mesencephalic dopamine pathways. Lesions of the dopaminergic striatal afferents resulted in marked increases in the mRNA encoding PPE throughout the striatum, including the ventral striatum and nucleus accumbens, while the levels of PPT mRNA were considerably reduced in these structures. Knife-cut lesions of the frontal cortical pole, transecting the prefrontal corticostriatal projection at the level of the foreceps minor, displayed little or no effect on the expression of either PPE or PPT mRNA in the dopamineintact striatum. Conversely, frontal cortical transections performed 4 weeks after the 6-OHDA lesions reversed the 6-OHDA-lesion-induced increase in PPE mRNA in the striatum as well as in the ventral striaturn and nucleus accumbens. The down-regulation of PPE mRNA in the dopaminergically denervated striatum was most pronounced in the medial part, which is the area most densely innervated by the frontal cortical pole. Here, the level of PPE mRNA expression per striatal cell was similar to the intact striatum. In contrast, the cellular expression of PPE mRNA remained up-regulated in the lateral striatum, which receives more sparse innervation from the frontal cortical pole. Cortical transections did not significantly affect the 6-OHDA-lesion-induced down-regulation of PPT mRNA in any of the striatal regions analysed. The present results demonstrate that knifecut transections of the frontal corticostriatal pathway are capable of reversing the increased striatal PPE mRNA levels, but not the decreased PPT mRNA levels, induced by a 6-OHDA lesion of the dopaminergic input. These observations suggest that in the absence of a functional striatal dopamine input, augmented glutamatergic transmission in corticostriatal afferents is necessary to maintain increased levels of PPE mRNA expression, and hence also enkephalin synthesis, in striatal projection neurons.  相似文献   

9.
The purpose of this study was to investigate whether GABA(B) receptor activation blocks acute amphetamine-induced behavioral activity, dopamine release, and neuropeptide mRNA expression in the striatum. Systemic administration of R-(+)-baclofen (1.25 mg/kg, i.p.) did not alter total distance traveled or vertical rearing induced by amphetamine (2.5 mg/kg, i.p.). At 2.5 mg/kg, baclofen did not alter spontaneous motor activity or total distance traveled, but completely blocked vertical rearing induced by amphetamine. At 5.0 mg/kg, baclofen completely blocked both total distance traveled and vertical rearing induced by amphetamine. Quantitative in situ hybridization histochemistry revealed that baclofen (2.5 mg/kg, i.p.) decreased the ability of amphetamine to increase preprodynorphin (PPD), preprotachykinin (PPT), preproenkephalin (PPE), and secretogranin II (SGII) mRNA levels in the striatum without altering the basal levels of these signals. Baclofen also blocked the amphetamine-induced rise in SGII mRNA in the core and shell of the nucleus accumbens and cingulate cortex. In a separate experiment, systemic baclofen (2.5 mg/kg) decreased the amphetamine-induced increase in dialysate dopamine levels in the striatum. These results suggest that reduced striatal dopamine release contributes to the ability of GABA(B) receptor activation to decrease acute amphetamine-induced behavioral activity and striatal neuropeptide gene expression.  相似文献   

10.
Metabotropic glutamate receptor 5 (mGluR5) is densely expressed in medium-sized spiny projection neurons of the rat striatum. Activation of mGluR5 increases intracellular Ca2+, resulting in Ca(2+)-dependent cellular responses. Acute administration of the psychostimulant amphetamine (AMPH) induces immediate early gene (IEG) expression in the striatum, which is considered an important molecular event for the development of striatal neuroplasticity related to the addictive properties of drugs of abuse. This study investigated the role of mGluR5 in the mediation of IEG expression in the rat striatum induced by a single dose of AMPH (4 mg/kg, i.p.) in vivo. We found that systemic administration of the mGluR5-selective antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) at a dose of 10 mg/kg, i.p. reduced AMPH-stimulated c-fos mRNA levels in the dorsal (caudoputamen) and ventral (nucleus accumbens) striatum as revealed by quantitative in situ hybridization. Similar results were observed in the three areas of cerebral cortex (cingulate, sensory, and piriform cortex). In contrast to c-fos mRNAs, AMPH-stimulated mRNA expression of another IEG, zif/268, was not significantly altered by the blockade of mGluR5 with MPEP in the entire striatum and the three areas of cortex. Treatment with MPEP alone had no effect on basal levels of c-fos and zif/268 mRNAs in the striatal and cortical areas. These results indicate that an mGluR5-dependent mechanism selectively contributes to c-fos expression in the striatum and cortex in response to acute exposure to AMPH.  相似文献   

11.
Interactions between the basal ganglia and the cerebral cortex are critical for normal goal-directed behavior. In the present study, we used immediate-early genes (c-fos, zif 268) as functional markers to investigated how basal ganglia output altered by stimulation/blockade of D1 dopamine receptors in the striatum affects cortical function. Systemic administration of the mixed D1/D2 receptor agonist apomorphine (3 mg/kg) increased immediate-early gene expression in the striatum and throughout most of the cortex. Unilateral intrastriatal infusion of the selective D1 receptor antagonist SCH-23390 (0.5-10 microg) blocked this response bilaterally in striatum and cortex in a dose-dependent manner. Even apparently regionally restricted blockade of striatal D1 receptors attenuated gene expression throughout striatum and cortex in both hemispheres. Intrastriatal administration of the D1 antagonist inhibited apomorphine-induced sniffing/whisking, whereas other motor behaviors were unaffected. To determine whether such changes in cortical gene expression could reflect altered cortical function, we examined the effects of blocking striatal D1 receptors on whisker stimulation-evoked immediate-early gene expression in the sensorimotor cortex. Apomorphine increased sensory stimulation-evoked gene expression in the barrel cortex, and intrastriatal infusion of SCH-23390 attenuated this effect. These results suggest that stimulation of D1 dopamine receptors in the striatum exerts a widespread facilitatory effect on cortical function.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. To study whether reduced levels of endogenous GDNF affect the striatal dopaminergic transmission we estimated the basal extracellular levels of dopamine in vivo, the basal expression of FosB-related proteins in striatal brain areas as well as the effects of acute and repeated cocaine on locomotor activity and dopamine output in mice lacking one GDNF allele (heterozygous GDNF+/- mice). As expected the striatal GDNF protein content was found to be smaller in the GDNF+/- mice than in their wild-type littermates. Unexpectedly the extracellular dopamine concentration in the GDNF+/- mice in the dorsal striatum (CPu) was 2.0-fold, and in the nucleus accumbens (NAc) 1.6-fold the concentration found in the wild-type littermates. Also FosB/DeltaFosB-like immunoreactivity was found to be elevated in the CPu as well as in the core and in the shell of NAc of the GDNF+/- mice as compared with the wild-type mice. This suggests chronic postsynaptic activation of these brain areas and is in line with elevated extracellular dopamine concentrations. Cocaine's effects acutely and after repeated treatment on locomotor activity were similar in the GDNF+/- and the wild-type mice. Neither did cocaine's acute effects on dopamine output differ between the mice of the two strains. Our findings demonstrate that reduced levels of endogenous GDNF induce alterations in dorsal striatal and accumbal dopaminergic transmission, and stress the importance of endogenous GDNF in the regulation of the dopaminergic neurons.  相似文献   

13.
Summary. The caudate putamen is a neurochemically and functionally heterogeneous nucleus. Understanding the correlation between these regional variations in neurochemistry and function could greatly aid in the treatment of neurological disorders associated with this area of the brain. Since dopaminergic dysfunction has been implicated in some of these disorders, regional variations in the neurochemistry of this transmitter system are of particular interest. The dopaminergic response to 2.5 mg/Kg D-amphetamine was examined by in vivo voltammetry in 7 dorsal and 7 ventral regions of the caudate-putamen in the urethane anaesthetized rat. Extracellular dopamine concentration increased in all the areas examined. However, the effect was regionally heterogeneous-areas separated by as little as 1 mm showing significantly different responses in terms of both the absolute change and the rate of change in dopamine concentration. A significant general trend was also evident. Amphetamine produced an increasing effect in extracellular dopamine concentrations in the dorsal and lateral areas of the nucleus. It was concluded that the regionally heterogeneous effects of amphetamine on extracellular dopamine could be attributed to regional variations in the density of dopamine transport sites within the caudate-putamen. Since this transport site is the site of entry of a number of neurotoxins this finding may contribute to our understanding of the functional loss associated with disorders such as Parkinson's disease. Received April 17, 2002; accepted December 2, 2002 Published online March 5, 2003 Acknowledgements We thank Dr. B. K. Yamamoto for assistance reviewing an early draft of the paper. All experiments were performed strictly adhering to the policy on the use of animals in neuroscience research as drafted by the Society for Neuroscience. Authors' address: Dr. G. Glynn, School of Pharmacy and Allied Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, U.S.A., e-mail: GGlynn@creighton.edu  相似文献   

14.
The anterograde tracer Phaseolus vulgaris-leucoagglutinin was used to examine the topographical organization of the projections to the striatum arising from the various cytoarchitectonic subdivisions of the prefrontal cortex in the rat. The relationship of the prefrontal cortical fibres with the compartmental organization of the ventral striatum was assessed by combining PHA-L tracing and enkephalin-immunohistochemistry. The prefrontal cortex projects bilaterally with an ipsilateral predominance to the striatum, sparing only the lateral part of the caudate-putamen complex. Each of the cytoarchitectonic subfields of the prefrontal cortex has a longitudinally oriented striatal terminal field that overlaps slightly with those of adjacent prefrontal areas. The projections of the medial subdivision of the prefrontal cortex distribute to rostral and medial parts of the striatum, whereas the lateral prefrontal subdivision projects to more caudal and lateral striatal areas. The terminal fields of the orbital prefrontal areas involve midventral and ventromedial parts of the caudate-putamen complex. The projection of the ventral orbital area overlaps with that of the prelimbic area in the ventromedial part of the caudate-putamen. In the "shell" region of the nucleus accumbens, fibres arising from the prelimbic area concentrate in areas of high cell density that are weakly enkephalin-immunoreactive, whereas fibres from the infralimbic area avoid such areas. Rostrolaterally in the "core" region of the nucleus accumbens, fibres from deep layer V and layer VI of the dorsal part of the prelimbic area avoid the enkephalin-positive areas surrounding the anterior commissure and distribute in an inhomogeneous way over the intervening moderately enkephalin-immunoreactive compartment. The other prefrontal afferents show only a preference for, but are not restricted to, the latter compartment. In the border region between the nucleus accumbens and the ventromedial part of the caudate-putamen complex, patches of strong enkephalin immunoreactivity receive prefrontal cortical input from deep layer V and layer VI, whereas fibres from more superficial cortical layers project to the surrounding matrix. Individual cytoarchitectonic subfields of the prefrontal cortex thus have circumscribed terminal domains in the striatum. In combination with data on the organization of the midline and intralaminar thalamostriatal and thalamoprefrontal projections, the present results establish that the projections of the prefrontal cortical subfields converge in the striatum with those of their midline and intralaminar afferent nuclei. The present findings further demonstrate that the relationship of the prefrontal corticostriatal fibres with the neurochemical compartments of the ventral striatum can be influenced by both the areal and the laminar origin of the cortical afferents, depending on the particular ventral striatal region under consideration.  相似文献   

15.
To determine the influence of neurons of the ventral hippocampus on dopamine (DA) turnover in other limbic areas, spontaneous and amphetamine-induced locomotion as well as DA and its metabolites were assayed in nucleus accumbens, medial prefrontal cortex and anteromedial striatum, 14 and 28 days after bilateral ibotenic acid (IA) or sham lesions of the ventral hippocampus in the rat. Spontaneous locomotion was increased 28 days postoperatively, while D-amphetamine induced locomotion was augmented both 14 and 28 days postoperatively in IA lesioned animals. DA levels in the nucleus accumbens were decreased on the 14th, but increased on the 28th day after the lesion. Dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and the DOPAC/DA ratio in the medial prefrontal cortex (MPFC) were reduced 28 days postoperatively. Moreover, there was a significant negative correlation between the DOPAC/DA ratio in the MPFC and DA levels in the nucleus accumbens at this time point. These data indicate that a lesion of the ventral hippocampus can produce differential changes in cortical and limbic DA activity. Implications for an animal model of schizophrenia are considered.  相似文献   

16.
Considering the most recent contributions, the limbic cortical areas, originally known as the greater limbic lobe, besides the cingulated and the parahippocampal gyri also includes the insula and the posterior orbital cortex. In contrast to the nonlimbic cortical areas that project to the basal ganglia (particularly over the dorsal aspects of the striatum, constituted by the caudate nucleus and by the putamen), the limbic cortical areas are characterized by projecting to the hypothalamus and also to the ventral striatum (particularly to the nucleus accumbens). Once all the striatum projects to the globus pallidus which projects to the thalamus and then to the cortex, generating cortical-subcortical reentrant circuits, while the dorsal striatum and pallidum related cortico-subcortical loops are involved with motor activities, the ventral cortical-striatal-pallidal system is particularly related with behavior functions. The extended amygdala (central medial amygdala, stria terminalis or dorsal component, ventral component, and bed nucleus of stria terminalis) receives inputs primarily from the limbic cortical areas, is particularly modulated by the prefrontal cortex, and receives also direct connections from the thalamus that enables the amygdala to generate nonspecific and quick responses through its projections to the hypothalamus and to the brainstem. The ventral striatal-pallidal and the extended amygdala are then two basal forebrain macro-anatomical systems, that together with the basal nucleus of Meynert and with the septal-diagonal band system, constitute the main structures that are particularly connected with the limbic cortical areas, and that altogether project to the hypothalamus and to the brainstem which give rise to the autonomic, endocrine and somatosensory components of the emotional experiences, and that regulate the basic activities of drinking, eating, and related to the sexual behavior.  相似文献   

17.
Mice homozygous for the autosomal recesive gene weaver (wv) exhibit a regionally specific depletion of forebrain dopamine (DA). DA is reduced approximately 70% in the dorsal striatum of homozygotes (wv/wv) relative to heterozygous (+/wv) controls while DA content in ventral striatum is relatively unchanged. The goal of the present study was to determine the regional effects of the weaver mutation on striatal DA receptors and DA uptake sites using quantitative autoradiography. Catecholamine histofluorescence was used to examine midbrain DA-containing cell bodies. Compared to behaviorally normal (+/-) littermates, the binding of [3H]spiroperidol to D2 sites was significantly increased in the dorsal but not ventral striatum of wv/wv mice. Binding of the D1 ligand, [3H]SCH23390, was significantly decreased throughout the striatum of wv/wv mice. The binding of [3H]mazindol to DA uptake sites was dramatically reduced in all wv/wv striatal regions except the ventrolateral portion. Compared to +/-littermates, wv/wv mice had far fewer fluorescent cell bodies in the substantia nigra and a less pronounced reduction of ventral tegmental area fluorescent somata. These findings support the hypothesis that heterogeneities exist in the genetic control of the mesotelencephalic DA system. The results underscore the usefulness of the weaver mouse in the study of mesostriatal sub-systems, receptor regulation, and potentially as a model of human neuropathologies that affect distinct populations of cells in the mesotelecephalic system.  相似文献   

18.
Regulation of striatal dopamine receptors by estrogen.   总被引:2,自引:0,他引:2  
The ability of estrogen to modulate the expression of ventral and dorsal striatal dopamine receptors D(1), D(2,) and D(3) was examined in vivo using semi-quantitative in situ hybridization and ligand binding autoradiography. Two-week treatment with subcutaneous pellets of 17beta-estradiol (25 mg) downregulated D(2) dopamine receptor mRNA in both dorsal and ventral striatum (shell and core regions of nucleus accumbens). No significant changes in D(1) or D(3) mRNA expression were detected. Ligand binding autoradiography did not reveal changes in D(1), D(2,) or D(3) receptor protein expression. We also assessed the ability of 17beta-estradiol to regulate D(2) gene promoter activity in NB41A3 neuroblastoma cells that express this gene endogenously using co-transfections with an estrogen receptor expression vector. While a small fragment of the D(2) promoter could be activated 2.5-fold by estrogen, a larger portion of the D(2) gene was not regulated by this treatment. Estrogens do not appear to have a net effect on striatal dopamine receptor expression. The observed downregulation of D(2) receptor mRNA in the dorsal and ventral striatum in vivo could be secondary to the increased striatal dopamine release induced by estrogen. Synapse 34:222-227, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

19.
Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence.  相似文献   

20.
The effects of alterations in peripheral corticosterone levels on multiple dopamine neurochemical estimates were examined in inbred Fischer and Lewis inbred rat strains. 2x2 ANOVA's (treatment x strain) showed a main effect for treatment (1 week CORT versus placebo) on the concentrations of the dopamine metabolites homovanillic acid and dihydroxyphenylacetic acid in the medial prefrontal cortex, with lower levels after treatment, but no significant treatment versus strain interaction. There was no effect of CORT treatment on DA metabolites in the nucleus accumbens shell or dorsal striatum. DOPA accumulation in any terminal region examined and tyrosine hydroxylase protein content in the ventral tegmental area were also not affected by 1 week of corticosterone in either strain. One week after adrenalectomy, homovanillic acid but not dihydroxyphenylacetic acid concentrations were significantly increased in the medial prefrontal cortex, dorsal striatum, and nucleus accumbens shell in the Lewis but not the Fischer strain, with a significant treatment x strain interaction only in the dorsal striatum. Based on these findings, the effect of adrenalectomy on DOPA accumulation and extracellular DA concentrations was examined in the Lewis strain only. Adrenalectomy produced a decrease in DOPA accumulation in the dorsal striatum with no significant change in the other regions. Adrenalectomy did not alter estimates of extracellular dopamine concentrations determined by in vivo no net flux microdialysis but did significantly increase in vivo dopamine recovery in the dorsal striatum. The findings indicate a pattern of changes in neurochemical measurements consistent with a small magnitude inhibition of basal dopamine metabolism, but not with a change neuronal activity, release or reuptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号