首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Neural cell migration and differentiation may participate in neural repair after adult brain injury; however, the survival and differentiation of newly born cells after different brain lesions are poorly understood. We have examined the migration and fate of bromodeoxyuridine (BrdU)-labeled cells after a highly reproducible focal ischemic lesion restricted to the frontoparietal cortex in adult rats. Thermocoagulation of pial blood vessels induces a circumscribed degeneration of all cortical layers while sparing the corpus callosum and striatum and increases cell proliferation in the subventricular zone (SVZ) and rostral migratory stream (RMS) within 7 days. We now show that, although the rostral migration of the newly born SVZ cells and their differentiation into neurons in the olfactory bulb were not affected by the lesion, numerous cells expressing the neuroblast marker doublecortin migrated laterally in the striatum and corpus callosum 5 days postinjury. In addition to the SVZ, BrdU-labeled cells were seen in the striatum, in the corpus callosum, and around the lesion. One month later, BrdU-labeled cells in the corpus callosum expressed transferrin and the pi isoform of glutathione-S-transferase (GST-pi), markers of oligodendrocytes. Other BrdU+ cells expressed a marker of astrocytes, but none expressed neuronal markers, suggesting that new neurons do not form or survive under these conditions. Numerous BrdU-labeled cells were still observed in the SVZ and RMS. The data show that focal cortical ischemia does not lead to the long-term survival of new neurons in the striatum or cortex but induces long-term alterations in the SVZ and the production of new oligodendrocytes that may contribute to neural repair.  相似文献   

2.
Goings GE  Sahni V  Szele FG 《Brain research》2004,996(2):213-226
The subventricular zone (SVZ) generates the largest number of migratory cells in the adult brain. SVZ neuroblasts migrate to the olfactory bulbs (OB) in the adult, whereas during development, SVZ cells migrate into many adjacent nuclei. Previously, we showed that cerebral cortex injury in the adult causes molecular and cellular changes which may recapitulate the developmental migratory directions. Consistent with this, growth factors, as well as models of illness or injury can cause adult SVZ cells to migrate into non-olfactory bulb nuclei. Here, we tested the hypothesis that cerebral cortex injury in the adult mouse induces changes in migration, by labeling adult SVZ cells with a retroviral vector and examining the distribution of cells 4 days and 3 weeks later. Four days after cortical lesions, disproportionately fewer retrovirally-labeled cells had migrated to the olfactory bulb in lesioned mice than in controls. Conversely, the number of cells found in non-olfactory bulb regions (primarily the area of the lesion and the corpus callosum) was increased in lesioned mice. The morphology of these emigrated cells suggested that they were differentiating into glial cells. Three weeks after cortical injury, the majority of retrovirally-labeled cells in both groups of mice had migrated into the granule and periglomerular layers of the olfactory bulb. At 3 weeks, we still observed retrovirally-labeled glial cells in the corpus callosum and in the area of the injury in lesioned mice. These results suggest that cortical lesions cause a transient change in migration patterns of SVZ progeny, which is characterized by decreases in migration to the olfactory bulb but increased migration towards the injury. Our studies also suggest that cortical lesions induce the production of new glial cells which survive for at least 3 weeks after injury. The data support the concept that in the adult, SVZ cells can generate progeny that migrate towards injured areas and thus potentially be harnessed for neural repair.  相似文献   

3.
The subventricular zone (SVZ) bordering the lateral ventricle is one of the few regions of adult brain that contains dividing cells. These cells can differentiate into neurons in vivo after migration into the olfactory bulb and in vitro in the presence of appropriate growth factors. Little is known, however, about the fate of these cells in vivo after brain injury in adults. We examined cell number and expression of differentiation markers in the SVZ of adult rats after cortical lesions. Aspiration lesions of the sensorimotor cortex in adult rats induced a transient doubling of the number of cells in the SVZ at the level of the striatum without consistent increases in bromodeoxyuridine-labeled cells. Immunoreactivity to the polysialylated neural cell adhesion molecule, expressed by the majority of cells of the SVZ during development, increased dramatically after lesion. In contrast, immunolabeling for molecules found in mature neurons and glia did not increase in the SVZ after lesion, and immunoreactivity for growth factors that induce differentiation of SVZ cells in vitro decreased or remained undetectable, suggesting that lack of appropriate growth factor expression may contribute to the lack of differentiation of the newly accumulated cells in vivo. The data reveal that cells of the SVZ are capable of plasticity in the adult rat after brain injury in vivo and that the newly accumulated cells retain characteristics seen during development. © 1996 Wiley-Liss, Inc.  相似文献   

4.
A member of the tumor necrosis factor receptor superfamily (TNFRSF), TROY/TNFRSF19/TAJ, is highly expressed in the brain of adult mice. Northern blot analysis using mRNA taken from regions of the adult CNS showed the expression of TROY in all regions examined, including the olfactory bulb, cerebral cortex, striatum, and hippocampus. In situ hybridization and immunohistochemistry revealed that TROY mRNA and protein were strongly expressed in the rostral migratory stream (RMS) and subventricular zone (SVZ) of adult mice. In the adult SVZ, some glial fibrillary acidic protein (GFAP)-positive cells (type B cells) are thought to be multipotent neural stem cells. These type B cells divide slowly and generate epidermal growth factor receptor (EGFR)-positive transit-amplifying precursor cells (type C cells) in the presence of epidermal growth factor (EGF). Type C cells give rise to neuron-specific class III beta-tubulin (TuJ1)-positive neuroblasts (type A cells) that migrate to the olfactory bulb along the RMS. TROY-expressing cells were GFAP-positive, EGFR-positive, and TuJ1-negative in the adult SVZ. From these findings, TROY appears to be expressed in type B and type C cells, but not in type A cells, which was supported by immunoelectron microscopy. In addition, TROY was expressed in GFAP-positive astrocytes of the various regions, such as the cerebral cortex, striatum, and hippocampus. Thus, TROY was expressed in uncommitted precursor cells and astroglial lineage cells, suggesting that TROY plays some roles in the regulation of gliogenesis in the adult CNS.  相似文献   

5.
Origin and function of olfactory bulb interneuron diversity   总被引:1,自引:0,他引:1  
In adult rodents, subventricular zone (SVZ) astrocytes (B cells) function as primary progenitors in the generation of new neurons that migrate to the olfactory bulb (OB), where they differentiate into multiple types of interneurons. It has been generally considered that individual adult SVZ stem cells are capable of generating different types of neurons and glial cells. However, recent studies indicate that these adult SVZ primary progenitors are heterogeneous and predetermined to generate specific types of neurons. Surprisingly, OB interneurons are generated by stem cells not only in the walls of the lateral ventricle facing the striatum but also in the rostral migratory stream and walls of the lateral ventricle facing the cortex and the septum. SVZ B cells in different locations within this extensive germinal region generate different kinds of interneurons. General physiological characteristics of major classes of OB interneurons have begun to emerge, but the functional contribution of each subtype remains unknown. The mosaic organization of the SVZ offers a unique opportunity to understand the origin of interneuron diversity and how this assortment of neurons contributes to plasticity of postnatal olfactory circuits.  相似文献   

6.
We have examined long-term growth-factor expanded human neural progenitors following transplantation into the adult rat brain. Cells, obtained from the forebrain of a 9-week old fetus, propagated in the presence of epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor were transplanted into the striatum, subventricular zone (SVZ), and hippocampus. At 14 weeks, implanted cells were identified using antisera recognizing human nuclei and the reporter gene green fluorescent protein. Different migration patterns of the grafted cells were observed: (i) target-directed migration of doublecortin (DCX, a marker for migrating neuroblasts)-positive cells along the rostral migratory stream to the olfactory bulb and into the granular cell layer following transplantation into the SVZ and hippocampus, respectively; (ii) non-directed migration of DCX-positive cells in the grey matter in striatum and hippocampus, and (iii) extensive migration of above all nestin-positive/DCX-negative cells within white matter tracts. At the striatal implantation site, neuronal differentiation was most pronounced at the graft core with axonal projections extending along the internal capsule bundles. In the hippocampus, cells differentiated primarily into interneurons both in the dentate gyrus and in the CA1-3 regions as well as into granule-like neurons. In the striatum and hippocampus, a significant proportion of the grafted cells differentiated into glial cells, some with long processes extending along white matter tracts. Although the survival time was over 3 months in the present study a large fraction of the grafted cells remained undifferentiated in a stem or progenitor cell stage as revealed by the expression of nestin and/or GFAP.  相似文献   

7.
In the brain of adult mice, cell division persists in the subventricular zone (SVZ) of the lateral ventricles. These SVZ cells migrate rostrally 3–5 mm to the olfactory bulb, where they differentiate into neurons. We have investigated the distribution of PSA-N-CAM in the adult mouse forebrain. Immunoreactivity for PSA-N-CAM precisely reveals the migratory pathway of SVZ cells. This pathway of PSA-N-CAM positive cells starts in the lateral wall of the lateral ventricle, where immunopositive cells form weblike patterns. The PSA-N-CAM positive pathway extends rostrally between the corpus callosum and the striatum into the anterior ventral telencephalon, and then into the core of the olfactory bulb. Experiments in which [3H]-thymidine was injected systemically indicated that the majority of the dividing cells on the SVZ of the lateral ventricle and along the migratory pathway are positive to PSA-N-CAM or closly associated with PSA-N-CAM. Microinjection of [3H]-thymidine into the SVZ of the lateral ventricle to label a small patch of dividing SVZ cells shows that neuroblasts that migrated away from the injection site are positive or are closely associated with other cells that are positive for PSA-N-CAM. Migrating cells are tethered together, forming long chains of immunopositive cells. The migratory pathway is formed by 30–40 of these immunopositive chains. Radially oriented individual PSA-N-CAM positive cells were observed in the olfactory bulb. These cells seem to have broken away from chains of immunopositive cells in the core of the olfactory bulb and to be migrating to more superficial layers. Little is known about the mechanisms of tangential migration during development and in adulthood. The cell-cell arrangement revealed by PSA-N-CAM staining suggests new models for this form of neuronal migration. PSA-N-CAM staining suggests new models for this form of neuronal migration. PSA-N-CAM localization along the migratory pathway to the olfactory bulb suggests that in the adult brain this molecule plays a role in migration of neuronal precursors. © 1995 Willy-Liss, Inc.  相似文献   

8.
9.
Neurogenesis in the adult mammalian brain continues in the subventricular zone (SVZ). Neuronal precursors from the SVZ migrate along the rostral migratory stream to replace olfactory bulb interneurons. After the destruction of the nigro-striatal pathway (SN-lesion), some SVZ precursors begin to express tyrosine hydroxylase (TH) and neuronal markers (NeuN). Grafting of chromaffin cells (CCs) into the denervated striatum increases the number of TH+ cells (SVZ TH+ cells; Arias-Carrión et al., 2004). This study examines the functional properties of these newly differentiating TH+ cells. Under whole-cell patch-clamp, most SVZ cells recorded from lesioned and grafted animals (either TH+ or TH-) were non-excitable. Nevertheless, a small percentage of SVZ TH+ cells had the electrophysiologic phenotype of mature dopaminergic neurons and showed spontaneous postsynaptic potentials. Dopamine (DA) release was measured in SVZ and striatum from both control and SN-lesioned rats. As expected, 12 weeks after SN lesion, DA release decreased drastically. Nevertheless, 8 weeks after CCs graft, release from the SVZ of SN-lesioned rats recovered, and even surpassed that from control SVZ, suggesting that newly formed SVZ TH+ cells release DA. This study shows for the first time that in response to SN-lesions and CC grafts neural precursors within the SVZ change their developmental program, by not only expressing TH, but more importantly by acquiring excitable properties of mature dopaminergic neurons. Additionally, the release of DA in a Ca(2+)-dependent manner and the attraction of synaptic afferents from neighboring neuronal networks gives further significance to the overall findings, whose potential importance is discussed.  相似文献   

10.
In the brain of adult rodents, young neurons arising from the subventricular zone (SVZ) of the lateral ventricle migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb. The aim of this study was to determine whether surgical lesions placed through the RMS could affect the rostral migration of these newly formed neurons. Confocal and electron microscopy were used to characterize their anatomical organization within the intact and lesioned forebrains. As soon as 7 days and up to 45 days after placing a surgical lesion through the proximal portions of the RMS, numerous cells immunostained for polysialylated neural cell adhesion molecule (PSA-NCAM) were detected both (1) throughout the lesional cavity extending from the cortex to the anterior commissura, and (2) within the tissue located caudal to the lesion. In both regions, these PSA-NCAM-immunostained cells were labeled for neuronal markers but were negative for glial fibrillary acidic protein (GFAP). After administration of the proliferation marker bromodeoxyuridine (BrdU), nuclear labeling was associated with cells immunostained for PSA-NCAM but GFAP-negative, that accumulated within the lesional cavity and in the tissue caudal to the lesion. For the longest postlesional delays, a number of the PSA-NCAM-immunostained neurons located in various portions of the lesional cavity exhibited intense immunostaining for gamma-aminobutyric acid, whereas only a few of them exhibited faint immunostaining for tyrosine hydroxylase. These data indicate that surgical lesions placed through the RMS of adult rats impede the migration toward the olfactory bulb of the neuroblasts arising from the SVZ, inducing their accumulation and their partial differentiation in forebrain regions caudal to the lesion.  相似文献   

11.
12.
The presence of a germinal layer and the capacity to generate neurons, once thought restricted to the embryonic brain, persists in the forebrain of both postnatal and adult mammals. The two regions in which this phenomenon has been extensively demonstrated are the hippocampal dentate gyrus and the lateral ventricle subventricular zone (SVZ). SVZ-derived cells migrate along the rostral migratory stream into the olfactory bulb, where they differentiate into local interneurons. In this study, using tracer injections into the SVZ at different postnatal ages, we investigated the occurrence of secondary migratory pathways in the mouse subcortical forebrain. During the course of the first week postnatal, in addition to the well-characterized rostral migratory stream, SVZ-derived progenitors migrate in a ventral migratory mass across the nucleus accumbens into the basal forebrain and along a ventrocaudal migratory stream originating at the elbow between the vertical and horizontal limbs of the rostral migratory stream. These cells give rise to granule neurons in the Islands of Calleja and olfactory tubercle pyramidal layer, respectively. In adult, a very small number of cells continue to migrate along the ventrocaudal migratory stream, whereas no migration was observed across the nucleus accumbens. These data demonstrate that in early postnatal and, to a minor extent in adult mice, SVZ-derived cells contribute new neurons to the subcortical forebrain.  相似文献   

13.
14.
Adult neurogenesis occurs in the subgranular zone (SGZ) and subventricular zone (SVZ). New SGZ neurons migrate into the granule cell layer of the dentate gyrus (DG). New SVZ neurons seem to enter the association neocortex and entorhinal cortex besides the olfactory bulb. Alzheimer disease (AD) is characterized by neuron loss in the hippocampus (DG and CA1 field), entorhinal cortex, and association neocortex, which underlies the learning and memory deficits. We hypothesized that, if the AD brain can support neurogenesis, strategies to stimulate the neurogenesis process could have therapeutic value in AD. We reviewed the literature on: (a) the functional significance of adult-born neurons; (b) the occurrence of endogenous neurogenesis in AD; and (c) strategies to stimulate the adult neurogenesis process. We found that: (a) new neurons in the adult DG contribute to memory function; (b) new neurons are generated in the SGZ and SVZ of AD brains, but they fail to differentiate into mature neurons in the target regions; and (c) numerous strategies (Lithium, Glatiramer Acetate, nerve growth factor, environmental enrichment) can enhance adult neurogenesis and promote maturation of newly generated neurons. Such strategies might help to compensate for the loss of neurons and improve the memory function in AD.  相似文献   

15.
Olfactory bulb interneurons are continuously generated throughout development and in adulthood. These neurons are born in the subventricular zone (SVZ) and migrate along the rostral migratory stream into the olfactory bulb where they differentiate into local interneurons. To investigate the differentiation of GABAergic interneurons of the olfactory bulb we used a transgenic mouse which expresses green fluorescent protein (GFP) under the control of the glutamic acid decarboxylase 65 kDa (GAD65) promoter. During development and in adulthood GFP was expressed by cells in the SVZ and along the entire length of its rostral extension including the distal portion within the olfactory bulb. The occurrence of GAD65 mRNA in these zones was confirmed by PCR analysis on microdissected regions along the pathway. Polysialic acid neural cell adhesion molecule, a marker of migrating neuroblasts in adults, was coexpressed by the majority of the GFP-positive SVZ-derived progenitor cells. Cell tracer injections into the SVZ indicated that approximately 26% of migrating progenitor cells expressed GFP. These data show the early differentiation of migrating SVZ-derived progenitors into a GAD65-GFP-positive phenotype. These cells could represent a restricted lineage giving rise to GAD65-positive GABAergic olfactory bulb interneurons.  相似文献   

16.
17.
Neural stem cells can be isolated from the mouse embryonic cortex but do not persist in the adult cortex. In contrast, neural stem cells from the striatal embryonic germinal zone persist in the adult subependyma. Emx1-lineage analysis revealed that cortex-derived neural stem cells survive and migrate ventrally into the subependyma where they intermix with the host striatal neural stem cells [S. Willaime-Morawek et al. (2006)J. Cell Biol. 175, 159-168]. Cortex-derived cells proliferate faster in the subependyma and reach the olfactory bulb earlier than striatum-derived cells. In the olfactory bulb, cortex-derived cells produce more cells and more dopaminergic neurons in the glomerular layer than striatum-derived cells. Cortex-derived cells also give rise to more astrocytes and less neurons in the striatum than striatum-derived cells. Thus, history matters; cortex-derived neural stem cells in the subependyma give rise to progeny in the olfactory bulb and striatum but in different proportions than striatum-derived neural stem cells.  相似文献   

18.
Evidence of newly generated neurons in the human olfactory bulb   总被引:15,自引:0,他引:15  
The subventricular zone (SVZ) is known to be the major source of neural stem cells in the adult brain. In rodents and nonhuman primates, many neuroblasts generated in the SVZ migrate in chains along the rostral migratory stream (RMS) to populate the olfactory bulb (OB) with new granular and periglomerular interneurons. In order to know if such a phenomenon exists in the adult human brain, we applied single and double immunostaining procedures to olfactory bulbs obtained following brain necropsy in normal adult human subjects. Double immunofluorescence labelling with a confocal microscope served to visualize cells that express markers of proliferation and immature neuronal state as well as markers that are specific to olfactory interneurons. Newborn cells that express cell cycle proteins [Ki-67, proliferating cell nuclear antigen (PCNA)] were detected in the granular and glomerular layers (GLs) of the human olfactory bulb; these cells coexpressed markers of immature neuronal state, such as Doublecortin (DCX), NeuroD and Nestin. Numerous differentiating cells expressed molecular markers of early committed neurons [beta-tubulin class III (TuJ1)] and were also immunoreactive for glutamic acid decarboxylase (GAD), a marker of GABAergic neurons, or tyrosine hydroxylase (TH), a marker of dopaminergic neurons. Other early committed neurons expressed the calcium-binding proteins calretinin (CR) or parvalbumin (PV). These results provide strong evidence for the existence of adult neurogenesis in the human olfactory system. Despite its relatively small size compared to that in rodents and nonhuman primates, the olfactory bulb in humans appears to be populated, throughout life, by new granular and periglomerular neurons that express a wide variety of chemical phenotypes.  相似文献   

19.
Dopaminergic loss is known to be one of the major hallmarks of Parkinson disease (PD). In addition to its function as a neurotransmitter, dopamine plays significant roles in developmental and adult neurogenesis. Both dopaminergic deafferentation and stimulation modulate proliferation in the subventricular zone (SVZ)/olfactory bulb system as well as in the hippocampus. Here, we study the impact of 6-hydroxydopamine (6-OHDA) lesions to the medial forebrain bundle on proliferation and neuronal differentiation of newly generated cells in the SVZ/olfactory bulb axis in adult rats. Proliferation in the SVZ decreased significantly after dopaminergic deafferentation. However, the number of neural progenitor cells expressing the proneuronal cell fate determinant Pax-6 increased in the SVZ. Survival and quantitative cell fate analysis of newly generated cells revealed that 6-OHDA lesions induced opposite effects in the two different regions of neurogenesis in the olfactory bulb: a transient decrease in the granule cell layer contrasts to a sustained increase of newly generated neurons in the glomerular layer. These data point towards a shift in the ratio of newly generated interneurons in the olfactory bulb layers. Dopaminergic neurogenesis in the glomerular layer tripled after lesioning and consistent with this finding, the total number of tyrosine hydroxylase (TH)-positive cells increased. Thus, loss of dopaminergic input to the SVZ led to a distinct cell fate decision towards stimulation of dopaminergic neurogenesis in the olfactory bulb glomerular layer. This study supports the accumulating evidence that neurotransmitters play a crucial role in determining survival and differentiation of newly generated neurons.  相似文献   

20.
Recent publications have shown that the lateral wall of the lateral ventricles in the Macaca fascicularis brain, in particular the subventricular zone (SVZ), contains neural stem cells throughout adulthood that migrate through a migratory pathway (RMS) to the olfactory bulb (OB). To date, a detailed and systematic cytoarchitectural and ultrastructural study of the monkey SVZ and RMS has not been done. We found that the organization of the SVZ was similar to that of humans, with the ependymal layer surrounding the lateral ventricles, a hypocellular GAP layer formed by astrocytic and ependymal expansions, and the astrocyte ribbon, composed of astrocytic bodies. We found no cells corresponding to the type C proliferating precursor of the rodent brain. Instead, proliferating cells, expressed as Ki‐67 immunoreactivity, were predominantly young neurons concentrated in the anterior regions, and occasional astrocytes of the ribbon. We observed displaced ependymal cells of still unknown significance. New neurons tended to organize in chain‐like structures, which were surrounded by astrocytes. This pattern was highly reminiscent of that observed in rodent RMS, but not in humans. These chains spread from the frontal SVZ along a GAP‐like layer, uniquely composed of astrocytic expansions, to the olfactory bulb (OB). The number of neuronal chains and the number of chain‐forming cells decreased gradually upon reaching the OB. The purpose of this work is to provide a reference for future studies in the field of adult neurogenesis that may lead to an understanding of the fate and functionality of newborn neurons in primates, and ultimately in humans. J. Comp. Neurol. 514:533–554, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号