首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in receptor-mediated tumour imaging have resulted in the development of a new somatostatin analogue, DOTA-dPhe(1)-Tyr(3)-octreotide. This new compound, named DOTATOC, has shown high affinity for somatostatin receptors, ease of labelling and stability with yttrium-90 and favourable biodistribution in animal models. The aim of this work was to evaluate the biodistribution and dosimetry of DOTATOC radiolabelled with indium-111, in anticipation of therapy trials with (90)Y-DOTATOC in patients. Eighteen patients were injected with DOTATOC (10 microg), labelled with 150-185 MBq of (111)In. Blood and urine samples were collected throughout the duration of the study (0-2 days). Planar and single-photon emission tomography images were acquired at 0.5, 3-4, 24 and 48 h and time-activity curves were obtained for organs and tumours. A compartmental model was used to determine the kinetic parameters for each organ. Dose calculations were performed according to the MIRD formalism. Specific activities of >37 GBq/ micromol were routinely achieved. Patients showed no acute or delayed adverse reactions. The residence time for (111)In-DOTATOC in blood was 0.9+/-0.4 h. The injected activity excreted in the urine in the first 24 h was 73%+/-11%. The agent localized primarily in spleen, kidneys and liver. The residence times in source organs were: 2.2+/-1.8 h in spleen, 1.7+/-1.2 h in kidneys, 2.4+/-1.9 h in liver, 1.5+/-0.3 h in urinary bladder and 9. 4+/-5.5 h in the remainder of the body; the mean residence time in tumour was 0.47 h (range: 0.03-6.50 h). Based on our findings, the predicted absorbed doses for (90)Y-DOTATOC would be 7.6+/-6.3 (spleen), 3.3+/-2.2 (kidneys), 0.7+/-0.6 (liver), 2.2+/-0.3 (bladder), 0.03+/-0.01 (red marrow) and 10.1 (range: 1.4-31.0) (tumour) mGy/MBq. These results indicate that high activities of (90)Y-DOTATOC can be administered with low risk of myelotoxicity, although with potentially high radiation doses to the spleen and kidneys. Tumour doses were high enough in most cases to make it likely that the desired therapeutic response desired would be obtained.  相似文献   

2.
. A three-step avidin-biotin approach has been applied as a pretargeting system in radioimmunotherapy (RIT) as an alternative to conventional RIT with directly labelled monoclonal antibodies (MoAbs). Although dosimetric and toxicity studies following conventional RIT have been reported, these aspects have not previously been evaluated in a three-step RIT protocol. This report presents the results of pharmacokinetic and dosimetric studies performed in 24 patients with different tumours. Special consideration was given to the dose delivered to the red marrow and to the haematological toxicity. The possible additive dose to red marrow due to the release of unbound yttrium-90 was investigated. The protocol consisted in the injection of biotinylated MoAbs (first step) followed 1 day later by the combined administration of avidin and streptavidin (second step). After 24 h, biotin radiolabelled with 1.85–2.97 GBq/m2 of 90Y was injected (third step). Two different chelating agents, DTPA and DOTA, coupled to biotin, were used in these studies. Indium-111 biotin was used as a tracer of 90Y to follow the biodistribution during therapy. Serial blood samples and complete urine collection were obtained over 3 days. Whole-body and single-photon emission tomography images were acquired at 1, 16, 24 and 40 h after injection. The sequence of images was used to extrapolate 90Y-biotin time-activity curves. Numerical fitting and compartmental modelling were used to calculate the residence time values (τ) for critical organs and tumour, and results were compared; the absorbed doses were estimated using the MIRDOSE3.1 software. The residence times obtained by the numerical and compartmental models showed no relevant differences (<10%); the compartmental model seemed to be more appropriate, giving a more accurate representation of the exchange between organs. The mean value for the τ in blood was 2.0±1.1 h; the mean urinary excretion in the first 24 h was 82.5%±10.8%. Without considering any contribution of free 90Y, kidneys, liver, bladder and red marrow mean absorbed doses were 1.62±1.14, 0.27±0.23, 3.61±0.70 and 0.11±0.05 mGy/MBq, respectively; the effective dose was 0.32±0.06 mSv/MBq, while the dose to the tumour ranged from 0.62 to 15.05 mGy/MBq. The amount of free 90Y released after the injection proved to be negligible in the case of 90Y-DOTA-biotin, but noteworthy in the case of 90Y-DTPA-biotin (mean value: 5.6%±2.5% of injected dose), giving an additive dose to red marrow of 0.18±0.08 mGy per MBq of injected 90Y-DTPA-biotin. Small fractions of free 90Y originating from incomplete radiolabelling can contribute significantly to the red marrow dose (3.26 mGy per MBq of free 90Y) and may explain some of the high levels of haematological toxicity observed. These results indicate that pretargeted three-step RIT allows the administraton of high 90Y activities capable of delivering a high dose to the tumour and sparing red marrow and other normal organs. Although 90Y-biotin clears rapidly from circulation, the use of DOTA-biotin conjugate for a stable chelation of 90Y is strongly recommended, considering that small amounts of free 90Y contribute significantly in increasing the red marrow dose. Received 6 June and in revised form 19 September 1998  相似文献   

3.
Purpose Somatostatin receptor scintigraphy with 111In-DOTA-DPhe1-Tyr3-octreotide (111In-DOTA-TOC) and 111In-DOTA-lanreotide (111In-DOTA-LAN) has been used for staging of neuroendocrine tumours (NETs). However, the comparative diagnostic value of these radioligands on a lesion basis has not yet been established. The aim of this study was to compare the diagnostic capacity of 111In-DOTA-TOC and 111In-DOTA-LAN scintigraphy in patients with NETs, evaluating whether significant differences exist in lesion imaging with these radioligands. Furthermore, dosimetric data were compared. Methods Forty-five patients with NETs were investigated with 111In-DOTA-TOC and 111In-DOTA-LAN scintigraphy. Scintigraphic results were compared with those of conventional imaging and/or surgery in each patient, and also 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in 20 patients. Results 111In-DOTA-TOC and 111In-DOTA-LAN scintigraphy were true positive in 42/45 (93%) and 39/45 (87%) patients, and imaged 74/91 (81%) and 73/91 (80%) tumour lesions, respectively. 111In-DOTA-TOC and 111In-DOTA-LAN detected liver metastases in 21 and 14 patients, mediastinal metastases in seven and 11 patients, and bone metastases in two and seven patients, respectively. These radioligands revealed lesions not seen by conventional imaging in seven and eight patients, respectively, or by 18F-FDG-PET in eight and seven patients, respectively. The estimated tumour absorbed doses for 90Y-DOTA-TOC were higher than those for 90Y-DOTA-LAN in 14 patients, whereas the opposite was true in 12 patients. Conclusion Both 111In-DOTA-TOC and 111In-DOTA-LAN are suitable for imaging tumour lesions in patients with NETs and can detect lesions that may not be seen by conventional imaging and 18F-FDG-PET. Compared with 111In-DOTA-LAN, 111In-DOTA-TOC has a superior diagnostic capacity for liver metastases, but a lower diagnostic capacity for metastatic lesions in mediastinum and bone.  相似文献   

4.
Neutral phospholipid vesicles (VesCan), which had been prepared for clinical use, were loaded with 37 MBq indium-111 and administered to seven patients with malignant tumours. The median lipid dose was 2.0 mg/kg. Sequential images showed rapid blood clearance at the early stage, with homogeneous uptake of 111In-labelled VesCan (111In-labelled V-liposomes) in the liver and spleen. Dosimetric estimates for these organs were 1.2 and 1.5 mGy/MBq, respectively, with a whole-body exposure dose of 0.076 mGy/MBq. Total renal excretion of 111In was less than 10% of the injected dose, occurring mainly as 111In-EDTA in three patients. Gamma camera images 24–48 h after administration revealed increased activity in the tumours of four patients. 111In-labelled V-liposomes may enable the demonstration of the tumour site without toxicity and with radiation doses comparable to other radionuclide imaging techniques. Correspondence to: A. Kubo  相似文献   

5.
Purpose For the internal radiotherapy of neuroendocrine tumours, the somatostatin analogue DOTATOC labelled with 90Y is frequently used [90Y-DOTA-Phe1-Tyr3-octreotide (SMT487-OctreoTher)]. Radiation exposure to the kidneys is critical in this therapy as it may result in renal failure. The aim of this study was to compare cumulative organ and tumour doses based upon dosimetric data acquired with the chemically identical 86Y-DOTA-Phe1-Tyr3-octreotide (considered as the gold standard) and the commercially available 111In-pentetreotide.Methods The cumulative organ and tumour doses for the therapeutic administration of 13.32 GBq 90Y-DOTA-Phe1-Tyr3-octreotide (three cycles, each of 4.44 GBq) were estimated based on the MIRD concept (MIRDOSE 3.1 and IMEDOSE). Patients with a cumulative kidney dose exceeding 27 Gy had to be excluded from subsequent therapy with 90Y-DOTA-Phe1-Tyr3-octreotide, in accordance with the directives of the German radiation protection authorities.Results The range of doses (mGy/MBq 90Y-DOTA-Phe1-Tyr3-octreotide) for kidneys, spleen, liver and tumour masses was 0.6–2.8, 1.5–4.2, 0.3–1.3 and 2.1–29.5 (86Y-DOTA-Phe1-Tyr3-octreotide), respectively, versus 1.3–3.0, 1.8–4.4, 0.2–0.8 and 1.4–19.7 (111In-pentetreotide), with wide inter-subject variability. Despite renal protection with amino acid infusions, estimated cumulative kidney doses in two patients exceeded 27 Gy.Conclusion Compared with 86Y-DOTA-Phe1-Tyr3-octreotide, dosimetry with 111In-pentetreotide overestimated doses to kidneys and spleen, whereas the radiation dose to the tumour-free liver was underestimated. However, both dosimetric approaches detected the two patients with an exceptionally high radiation burden to the kidneys that carried a potential risk of renal failure following radionuclide therapy.  相似文献   

6.
Somatostatin receptors are over-expressed in many tumours, mainly of neuroendocrine origin, thus enabling treatment with somatostatin analogues. Almost a decade of clinical experience of receptor radionuclide therapy with the analogue 90Y-[DOTA]0-Tyr3-octreotide [90Y-DOTATOC] has now been obtained at a few centres of excellence. This review reports on the present state of the art of receptor radionuclide therapy and discusses new perspectives.  相似文献   

7.
As a competitive diagnostic tool for the detection of malignant tumours and other pathological conditions, monoclonal antibodies have long been established. Herein we give the biokinetic data of the antibody BW 431/26 and the consequent radiation dose to patients. These parameters were recorded in 39 patients, using the antibody labelled either with technetium 99m or indium 111. Remarkable differences were observed between the two radionuclides. Whereas the indium-labelled one showed biexponential elimination kinetics, the technetium-labelled one is eliminated linearly over time. The distribution pattern of the two is identical, although the radiation dose varies quite a lot, being 20-fold higher with indium 111 when total body exposure is taken into account (for 111In the whole-body radiation exposure is 0.1 mGy/MBq; for 99mTc it is 0.0047 mGy/MBq). With respect to these results and considering the general availability of the technetium-labelled Ab, it is the best choice for diagnostic use.Offprint requests to: P. Benz  相似文献   

8.
Scintigraphy with [111In-diethylenetriamine pentaacetic acid0-D-Phe1]-octreotide (DTPAOC) is used to demonstrate neuroendocrine and other somatostatin-receptor-positive tumors. Despite encouraging results, this 111In-labeled compound is not well suited for peptide-receptor-mediated radiotherapy of somatostatin-receptor-positive tumors. Another somatostatin analog, [1,4,7,10-tetraazacyclododecane-N,N',N",N'-tetraacetic acid0, D-Phe1, Tyr3]-octreotide (DOTATOC), can be labeled with the beta-emitter 90Y in a stable manner. METHODS: We compared the distribution, kinetics and dosimetry of 111In-DTPAOC and 111In-DOTATOC in eight patients to predict the outcomes of these parameters in patients who will be treated with 90Y-DOTATOC. RESULTS: Serum radioactivity levels for the radiopharmaceuticals did not differ significantly 2-24 h after injection (P>0.05). Up to 2 h postinjection they were slightly, but significantly, lower after administration of 111In-DOTATOC (P < 0.01 at most time points). The percentage of peptide-bound radioactivity in serum did not differ after administration of either compound. Urinary excretion was significantly lower after administration of 111In-DOTATOC (P < 0.01). The visualization of known somatostatin-receptor-positive organs and tumors was clearer after administration of 111In-DOTATOC than after administration of 111In-DTPAOC. This was confirmed by significantly higher calculated uptakes in the pituitary gland and spleen. The uptake in the tumor sites did not differ significantly (P > 0.05), although in three of the four patients in whom tumor uptake could be calculated, it was higher after administration of 111In-DOTATOC. CONCLUSION: The distribution and excretion pattern of 111In-DOTATOC resembles that of 111In-DTPAOC, and the uptake in somatostatin-receptor-positive organs and most tumors is higher for 111In-DOTATOC. If 90Y-DOTATOC shows an uptake pattern similar to 111In-DOTATOC, it is a promising radiopharmaceutical for peptide-receptor-mediated radiotherapy in patients with somatostatin-receptor-positive tumors.  相似文献   

9.
99mTc-EDDA/HYNIC-Tyr3-octreotide (99mTc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for 99mTc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after 99mTc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99mTc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3+/-0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv.  相似文献   

10.
Dosimetry and therapeutic application of [(131)I]-Tyr3-octreotide were evaluated in three patients with metastatic paraganglioma and carcinoid tumor. The in vitro stability of [(131)I]-Tyr3-octreotide was verified. Tumor uptake and residence time were between 0.02 and 0.1% and 0.5 to 9.8 h, respectively. The calculated tumor radiation doses were between 0.105 and 0.696 mGy.MBq(-1). No intolerance or adverse effects were observed after the therapeutic doses (3.3-6.6 GBq). A partial tumor response was obtained in one patient and no response occurred in two patients.  相似文献   

11.
Dosimetry and therapeutic application of [131I]-Tyr3-octreotide were evaluated in three patients with metastatic paraganglioma and carcinoid tumor. The in vitro stability of [131I]-Tyr3-octreotide was verified. Tumor uptake and residence time were between 0.02 and 0.1% and 0.5 to 9.8 h, respectively. The calculated tumor radiation doses were between 0.105 and 0.696 mGy·MBq−1. No intolerance or adverse effects were observed after the therapeutic doses (3.3–6.6 GBq). A partial tumor response was obtained in one patient and no response occurred in two patients.  相似文献   

12.
The use of the generator produced radionuclide 195mAu, half life 30 s, has become feasible for several different investigations, e.g. cardiac studies. To assess the absorbed dose from the long lived radionuclide 195Au (the daughter of 195mAu, half life 183 days), a biodistribution study of 195Au was performed in animals. Seven rabbits were injected with eluate from a 195mHg-195mAu generator and the retention and the biodistribution of the long lived gold isotope was investigated. The activity was localized mainly in the liver and the kidneys. Transforming the data to man resulted in an absorbed dose from 195Au from 1 elution (approximately 925 MBq 195mAu) of 2.2 mGy to the kidney and 1.3 mGy to the liver and an effective dose equivalent of 0.26 mSv. The total effective dose equivalent from all radionuclides in the eluate (195mAu, 195Au, 195mHg and 195Hg), was estimated to be 0.65 mSv for a single injection (925 MBq 195mAu).  相似文献   

13.
[90Y]DOTA-dPhe1-Tyr3-octreotide ([90Y]-SMT487) has been suggested as a promising radiotherapeutic agent for somatostatin receptor-expressing tumours. In order to quantify the in vivo parameters of this compound and the radiation doses delivered to healthy organs, the analogue [86Y]DOTA-dPhe1-Tyr3-octreotide was synthesised and its uptake measured in baboons using positron emission tomography (PET). [86Y]DOTA-dPhe1-Tyr3-octreotide was administered at two different peptide concentrations, namely 2 and 100 μg peptide per m2 body surface. The latter concentration corresponded to a radiotherapeutic dose. In a third protocol [86Y]DOTA-dPhe1-Tyr3-octreotide was injected in conjunction with a simultaneous infusion of an amino acid solution that was high in l-lysine in order to lower the renal uptake of radioyttrium. Quantitative whole-body PET scans were recorded to measure the uptake kinetics for kidneys, liver, lung and bone. The individual absolute uptake kinetics were used to calculate the radiation doses for [90Y]DOTA-dPhe1-Tyr3-octreotide according to the MIRD recommendations extrapolated to a 70-kg human. The highest radiation dose was received by the kidneys, with 2.1–3.3 mGy per MBq [90Y]DOTA-dPhe1-Tyr3-octreotide injected. For the 100 μg/m2 SMT487 protocol with amino acid co-infusion this dose was about 20%–40% lower than for the other two treatment protocols. The liver and the red bone marrow received doses ranging from 0.32 to 0.53 mGy and 0.03 to 0.07 mGy per MBq [90Y]DOTA-dPhe1-Tyr3-octreotide, respectively. The average effective dose equivalent amounted to 0.23–0.32 mSv/MBq. The comparatively low estimated radiation doses to normal organs support the initiation of clinical phase I trials with [90Y]DOTA-dPhe1-Tyr3-octreotide in patients with somatostatin receptor-expressing tumours. Received 26 September and in revised form 18 November 1998  相似文献   

14.
Scintigraphy with 123I-Tyr-3-octreotide has several major drawbacks as regards its metabolic behavior, its cumbersome preparation and the short physical half-life of the radionuclide. The use of another radiolabeled analog of somatostatin, 111In-DTPA-D-Phe-1-octreotide, has consequently been proposed. DTPA-D-Phe-1-octreotide can be radiolabeled with 111In in an easy single-step procedure. DTPA-D-Phe-1-octreotide is cleared predominantly via the kidneys. Fecal excretion of radioactivity amounts to only a few percent of the administered radioactivity. For the radiation dose to normal tissues, the most important organs are the kidneys, the spleen, the urinary bladder, the liver and the remainder of the body. The calculated effective dose equivalent is 0.08 mSv/MBq. Optimal 111In-DTPA-D-Phe-1-octreotide scintigraphic imaging of various somatostatin receptor-positive tumors was obtained 24 hr after injection. In the six patients studied, tumor localization with 123I-Tyr-3-octreotide and with 111In-DTPA-D-Phe-1-octreotide were found to be similar. However, the normal pituitary is more frequently visualized with the latter radiopharmaceutical. In conclusion, 111In-DTPA-D-Phe-1-octreotide appears to be a sensitive somatostatin receptor-positive tissue-seeking radiopharmaceutical with some remarkable advantages: easy preparation, general availability, appropriate half-life and absence of major interference in the upper abdominal region, because of its renal clearance. Therefore, 111In-DTPA-D-Phe-1-octreotide may be suitable for use in SPECT of the abdomen, which is important in the localization of small endocrine gastroenteropancreatic tumors.  相似文献   

15.
目的对90Y树脂微球选择性内放射治疗过程进行放射防护检测和剂量评估,为放射防护工作提供参考。方法对90Y树脂微球介入手术治疗各操作环节和患者体表的外照射水平进行检测,估算相关人员的受照剂量水平。结果90Y树脂微球分装及转运过程的剂量率水平为1.12~454μSv/h,手术操作过程为2.06~58.2μSv/h;3名患者术后0.5 h,体表5 cm和1 m处的剂量率分别为22.7~64.1和0.82~2.55μSv/h。按照每年200例患者的工作量,90Y树脂微球药物操作对工作人员年个人有效剂量贡献为0.12~1.03 mSv/年,术后患者对公众、家属及陪护志愿者的个人有效剂量贡献为0.02~0.24 mSv/年。结论在患者治疗、护理和出院过程中,工作人员、陪护志愿者和公众的照射剂量均低于(GB 18871-2002«电离辐射防护与辐射源安全基本标准»)中的剂量限值和医疗机构设定的管理目标值。  相似文献   

16.
Purpose Radioiodine-negative thyroid cancer presents diagnostic and therapeutic difficulties, warranting the implementation of new imaging and treatment strategies. The purpose of this study was twofold. First, we investigated in vitro the binding characteristics of 111In-DOTA-lanreotide (111In-DOTA-LAN) and 111In-DOTA-DPhe1-Tyr3-octreotide (111In-DOTA-TOC) to cells derived from differentiated thyroid cancer (DTC). Second, we evaluated the value of somatostatin receptor (SSTR) scintigraphy with these radioligands, as compared with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), for the detection of tumour lesions in DTC patients.Methods Binding of 111In-DOTA-LAN and 111In-DOTA-TOC to cells isolated from surgically removed thyroid tissue was evaluated in vitro by performing saturation and displacement studies. Eighteen DTC patients with elevated thyroglobulin (12 radioiodine-negative, six radioiodine-positive) were investigated with 111In-DOTA-LAN, 111In-DOTA-TOC and 18F-FDG PET scans.Results Large numbers of SSTR binding sites for 111In-DOTA-LAN and 111In-DOTA-TOC were found on the cells investigated. Both SSTR radioligands exhibited a high binding affinity for these SSTR binding sites. 111In-DOTA-LAN and 111In-DOTA-TOC scintigraphy detected 37 and 33 lesions, respectively, in 17 (94%) patients each, whereas 18F-FDG PET revealed 30 lesions in 15 (83%) patients. Uptake of both SSTR radioligands was found in several radioiodine-negative sites. No striking differences in lesion imaging by 111In-DOTA-LAN and 111In-DOTA-TOC were found. In both radioiodine-negative and radioiodine-positive patients, more lesions were SSTR-positive/18F-FDG-negative than were 18F-FDG-positive/SSTR-negative.Conclusion Adding a SSTR scan with these radioligands to the diagnostic work-up increases the diagnostic capacity in DTC, and should be considered particularly in radioiodine-negative patients with elevated thyroglobulin levels.These studies were supported in part by the Austrian National Bank (Anniversary Foundation, Projects No. 7487 and 8185) and by a Foundation of the Mayor of the City of Vienna.  相似文献   

17.
Purpose During [90Y]DOTATOC therapy, for determination of kidney doses a conventional approach using co-injected [111In]DOTATOC was evaluated for validity, reliability and reproducibility as well as for the influence of methodological variations and bremsstrahlung. Biologically effective doses were estimated by calculating the relative effectiveness (RE) of kidney doses.Methods Fractionated [90Y]DOTATOC therapy (n=20 patients, 3.1±0.7 GBq/therapy cycle, 45 therapy cycles) included co-injection of 157±37 MBq [111In]DOTATOC and a nephroprotective infusion regimen. From serial gamma camera/probe measurements, individual region of interest (ROI) sets were established and kidney doses were determined according to MIRDOSE3 (corrected for individual kidney mass) by use of three methodological variants: (1) correction for interfering organs (liver/spleen) and background activity, (2) correction for interfering organs alone and (3) no corrections. A phantom study was performed with 111 In alone and with 111In +90Y to estimate the influence of 90Y bremsstrahlung.Results Mean kidney dose (method 1, n=20 patients, 20 therapy cycles) was 1.51±0.60 Gy/GBq [90Y]DOTATOC (1.41±0.48 Gy/GBq for n=20 patients, 45 therapy cycles). With partial correction (method 2) or no correction (method 3) for interfering activity, kidney doses increased significantly, to 2.71±1.26 Gy/GBq and 3.15±1.22 Gy/GBq, respectively. The span of REs ranged from 1.02 to 1.24. Inter-observer variability was as high as ±32% (±2SD). 90Y bremsstrahlung accounted for a 4–11% underestimation of obtained target activity.Conclusion The obtained kidney doses are highly influenced by methodological variations. Full correction for interfering activity clearly underestimates kidney doses. By comparison, 90Y bremsstrahlung and variability in the relative effectiveness of kidney doses cause minor bias. Inter-observer variability must be considered when interpreting kidney doses.  相似文献   

18.
We report here the results of a validation study of the avidin/indium-111 biotin approach in patients with skeletal lesions. This study involved 54 patients with orthopaedic conditions: 20 patients with intermediate suspected osteomyelitis of the trunk, 19 patients with infection/inflammation of prosthetic joint replacements, and 15 patients with suspected osteomyelitis of appendicular bones. Avidin (3 mg) was injected as an i.v. bolus, followed 4 h later by 111In-biotin; imaging was acquired 30 min and 16–18 h after administration of 111In-biotin. Technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO)-labelled leucocyte scintigraphy was performed in 39/54 patients. The overall sensitivity of the avidin/111In-biotin scan was 97.7% (versus 88.9% for 99mTc-HMPAO leucocyte scintigraphy). While the diagnostic performance of avidin/111In-biotin scintigraphy was similar to that of 99mTc-HMPAO leucocyte scintigraphy in patients with prosthetic joint replacements or osteomyelitis of appendicular bones, the avidin/111In-biotin approach clearly performed better than 99mTc-HMPAO leucocyte scintigraphy in patients with suspected osteomyelitis of the trunk (100% sensitivity, specificity and accuracy versus 50% sensitivity, 100% specificity and 66.7% accuracy for 99mTc-HMPAO-leucocyte scintigraphy). These results demonstrate the feasibility of the avidin/111In-biotin approach for imaging sites of infection/inflammation in the clinical setting. Although no systematic advantages of avidin/111In-biotin scintigraphy were found versus 99mTc-HMPAO leucocyte scintigraphy, the newer scintigraphic method is more practicable and involves lower biological risk for the operators. Received 9 November 1998 and in revised form 1 February 1999  相似文献   

19.
Indium- 111 labelled DTPA-D-Phe1-octreotide (DTPA-OC, OctreoScan) has been introduced into clinical routine for the detection of somatostatin receptor (SSTR)-positive tumours, which are predominantly of neuroendocrine origin. Potential further applications in other SSTR-positive cancers (e.g. small cell lung cancer, breast cancer, melanoma) have been limited mainly by the restricted availability and the high radionuclide costs. Previous attempts to introduce technetium-99m labelled analogues of octreotide have not been very successful in terms of the labelling procedure, in vivo biodistribution and/or tumour detection capabilities. The aim of this study was to assess the performance of the new 99mTc-labelled analogue HYNIC-D-Phe1-Tyr3-octreotide (HYNIC-TOC), using tricine as co-ligand, for the detection of SSTR-positive tumours in patients in comparison with 111In-DTPA-OC. Overall, 13 patients were examined using 99mTc-tricine-HYNIC-TOC. Twelve patients had proven SSTR-positive tumours, while one patient presented with an SSTR-negative tumour. In 9 of the 13 patients both tracers (99mTc-tricine-HYNIC-TOC and 111In-DTPA-OC) were used. Serial whole-body scans, spot views and/or single-photon emission tomography studies were performed. Images were qualitatively and semi-quantitatively (ROI analyses) evaluated. The biodistribution of 99mTc-tricine-HYNIC-TOC in patients showed high physiological uptake in kidneys, moderate uptake in liver and spleen and little uptake in the gut. The tracer showed predominantly renal and negligible hepatobiliary excretion. Known SSTR-positive tumour sites showed rapid and intense tracer accumulation. 99mTc-tricine-HYNIC-TOC demonstrated rapid tissue uptake within the first hour after injection and had basically no significant clearance (<20%) from normal or tumour tissue thereafter. In contrast, 111In-DTPA-OC showed continuous clearance from normal tissues as well as renal and very little hepatobiliary excretion. Nevertheless, the patterns of accumulation of 99mTc-tricine-HYNIC-TOC in tumours and normal organs were comparable to those of 111In-DTPA-OC. A lesion-by-lesion comparison showed comparable tumour detection capabilities in intrahepatic tumour sites and superior capabilities of 99mTc-tricine-HYNIC-TOC in respect of extrahepatic lesions. In conclusion, 99mTc-tricine-HYNIC-TOC shows promise as a tracer for SSTR imaging, given its favourable clinical characteristics (specific and high receptor affinity, good biodistribution, renal excretion, low radiation exposure, high imaging quality, on-demand availability) and cost-effectiveness. 99mTc-tricine-HYNIC-TOC allows earlier diagnosis (10 min-4 h) compared with 111In-DTPA-OC (4-24 h).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号