首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone acetylation modulates gene expression, cellular differentiation, and survival and is regulated by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDAC inhibition results in accumulation of acetylated nucleosomal histones and induces differentiation and/or apoptosis in transformed cells. In this study, we characterized the effect of suberoylanilide hydroxamic acid (SAHA), the prototype of a series of hydroxamic acid-based HDAC inhibitors, in cell lines and patient cells from B-cell malignancies, including multiple myeloma (MM) and related disorders. SAHA induced apoptosis in all tumor cells tested, with increased p21 and p53 protein levels and dephosphorylation of Rb. We also detected cleavage of Bid, suggesting a role for Bcl-2 family members in regulation of SAHA-induced cell death. Transfection of Bcl-2 cDNA into MM.1S cells completely abrogated SAHA-induced apoptosis, confirming its protective role. SAHA did not induce cleavage of caspase-8, -9, or -3 in MM.1S cells during the early phase of apoptosis, and the pan-caspase inhibitor ZVAD-FMK did not protect against SAHA. Conversely, poly(ADP)ribose polymerase (PARP) was cleaved in a pattern indicative of calpain activation, and the calpain inhibitor calpeptin abrogated SAHA-induced cell death. Importantly, SAHA sensitized MM.1S cells to death receptor-mediated apoptosis and inhibited the secretion of interleukin 6 (IL-6) induced in bone marrow stromal cells (BMSCs) by binding of MM cells, suggesting that it can overcome cell adhesion-mediated drug resistance. Our studies delineate the mechanisms whereby HDAC inhibitors mediate anti-MM activity and overcome drug resistance in the BM milieu and provide the framework for clinical evaluation of SAHA, which is bioavailable, well tolerated, and bioactive after oral administration, to improve patient outcome.  相似文献   

2.
Activation of tumor necrosis factor receptor 1 or Fas leads to the generation of reactive oxygen species, which are important to the cytotoxic effects of tumor necrosis factor alpha (TNF-alpha) or Fas ligand. However, how these radicals are generated following receptor ligation is not clear. Using primary hepatocytes, we found that TNF-alpha or anti-Fas antibody-induced burst of oxygen radicals was mainly derived from the mitochondria. We discovered that Bid--a pro-death Bcl-2 family protein activated by ligated death receptors--was the main intracellular molecule signaling the generation of the radicals by targeting to the mitochondria and that the majority of oxygen radical production was dependent on Bid. Reactive oxygen species contributed to cell death and caspase activation by promoting FLICE-inhibitory protein degradation and mitochondrial release of cytochrome c. For the latter part, the oxygen radicals did not affect Bak oligomerization but instead promoted mitochondrial cristae reorganization and membrane lipid peroxidation. Antioxidants could reverse these changes and therefore protect against TNF-alpha or anti-Fas-induced apoptosis. In conclusion, our studies established the signaling pathway from death receptor engagement to oxygen radical generation and determined the mechanism by which reactive oxygen species contributed to hepatocyte apoptosis following death receptor activation.  相似文献   

3.
Adhesion of leukemic cells to vascular cells may confer resistance to chemotherapeutic agents. We hypothesized that disruption of leukemic cell cytoskeletal stability and interference with vascular cell interactions would promote leukemic cell death. We demonstrate that low and nontoxic doses of microtubule-destabilizing agent combretastatin-A4-phosphate (CA4P) inhibit leukemic cell proliferation in vitro and induce mitotic arrest and cell death. Treatment of acute myeloid leukemias (AMLs) with CA4P leads to disruption of mitochondrial membrane potential, release of proapoptotic mitochondrial membrane proteins, and DNA fragmentation, resulting in cell death in part through a caspase-dependent manner. Furthermore, CA4P increases intracellular reactive oxygen species (ROS), and antioxidant treatment imparts partial protection from cell death, suggesting that ROS accumulation contributes to CA4P-induced cytotoxicity in AML. In vivo, CA4P inhibited proliferation and circulation of leukemic cells and diminished the extent of perivascular leukemic infiltrates, prolonging survival of mice that underwent xenotransplantation without inducing hematologic toxicity. CA4P decreases the interaction of leukemic cells with neovessels by down-regulating the expression of the adhesion molecule VCAM-1 thereby augmenting leukemic cell death. These data suggest that CA4P targets both circulating and vascular-adherent leukemic cells through mitochondrial damage and down-regulation of VCAM-1 without incurring hematologic toxicities. As such, CA4P provides for an effective means to treat refractory organ-infiltrating leukemias.  相似文献   

4.
5.
6.
Objective. Resveratrol is a naturally occurring polyphenol,which possesses chemotherapeutic potential through its abilityto trigger apoptosis. The objective of this study was to investigatethe major determinant for the apoptotic cell death inductionby resveratrol in fibroblast-like synoviocytes (FLS) derivedfrom patients with RA. Methods. The effect of resveratrol on apoptotic cell death wasquantified in a population of subG1 in RA FLS by flow cytometry.The underlying signalling mechanism for apoptotic death wasexamined by analysing mitochondrial membrane potential, activationof the caspase cascade and translocation of Bid. Results. We show that activation of caspase-8 is essential fortriggering resveratrol-induced apoptotic signalling via theinvolvement of the mitochondrial pathway in RA FLS. Our findingsalso suggest that this enhanced apoptosis caused by resveratroloccurred in RA FLS irrespective of p53 status. Exposure to resveratrolcaused extensive apoptotic cell death, along with a caspase-dependent(activation of caspase-9 and -3, poly ADPribose polymerase (PARP)cleavage and mitochondrial cytochrome c release) or caspase-independent[translocation of apoptosis-inducing factor (AIF) to the nucleus]signalling pathway. Analysis of upstream signalling events affectedby resveratrol revealed that the activated caspase-8 triggeredmitochondrial apoptotic events by inducing Bid cleavage withoutany alteration in the levels of Bax, Bcl-xL or Bcl2. The caspase-8inhibitor or over-expression of crmA abrogated cell death inducedby resveratrol and prevented processing of the downstream cascade. Conclusion. The results suggest that resveratrol causes activationof caspase-8, which in turn results in modulation of mitochondrialapoptotic machinery to promote apoptosis of RA FLS. KEY WORDS: Resveratrol, Fibroblast-like synoviocytes, Apoptosis, Caspase-8, Mitochondria membrane potential  相似文献   

7.
Mitochondria play a critical role in cardiac function, and are also increasingly recognized as end effectors for various cardioprotective signaling pathways. Mitochondria use oxygen as a substrate, so by default their respiration is inhibited during hypoxia/ischemia. However, at reperfusion a surge of oxygen and metabolic substrates into the cell is thought to lead to rapid reestablishment of respiration, a burst of reactive oxygen species (ROS) generation and mitochondrial Ca2+ overload. Subsequently these events precipitate opening of the mitochondrial permeability transition (PT) pore, which leads to myocardial cell death and dysfunction. Given that mitochondrial respiration is already inhibited during hypoxia/ischemia, it is somewhat surprising that many respiratory inhibitors can improve recovery from ischemia-reperfusion (IR) injury. In addition ischemic preconditioning (IPC), in which short non-lethal cycles of IR can protect against subsequent prolonged IR injury, is known to lead to endogenous inhibition of several respiratory complexes and glycolysis. This has led to a hypothesis that the wash-out of inhibitors or reversal of endogenous inhibition at reperfusion may afford protection by facilitating a more gradual wake-up of mitochondrial function, thereby avoiding a burst of ROS and Ca2+ overload. This paper will review the evidence in support of this hypothesis, with a focus on inhibition of each of the mitochondrial respiratory complexes.  相似文献   

8.
Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.  相似文献   

9.
Effects of thyroid hormones on apoptotic cell death of human lymphocytes   总被引:7,自引:0,他引:7  
Apoptosis plays a critical role in the development and homeostasis of tissues, especially those with high cell turnover such as the lymphoid system. We have examined the effects of thyroid hormones, TSH and TRH, on apoptosis of human T lymphocytes. We found that T lymphocytes cultured with T3 and T4, but not TSH nor TRH, in vitro showed enhanced apoptosis, evidenced by DNA ladder formation and characteristic morphological changes. In addition, prolonged cultivation with thyroid hormones of the lymphocytes further enhanced the extent of apoptosis. We also found that treatment with thyroid hormones of T lymphocytes induced reduction of mitochondrial transmembrane potential (delta psi) and production of reactive oxygen species, both of which are intimately associated with apoptotic cell death. In addition, cellular expression of antiapoptotic Bcl-2 protein was clearly reduced by the treatment of lymphocytes with thyroid hormones in vitro. Thus, T lymphocytes treated with thyroid hormones accompany reduction of Bcl-2 protein expression, production of reactive oxygen species, and reduction of mitochondrial delta psi, resulting in apoptotic lymphocyte death. Moreover, we found that lymphocytes in patients with Graves' disease showed enhanced apoptosis compared with those in normal individuals. These results suggest that thyroid hormones have the potential to induce apoptotic cell death of human lymphocytes in vivo and in vitro.  相似文献   

10.
Bid-induced mitochondrial membrane permeabilization and cytochrome c release are central to apoptosis. It remains a mystery how tiny amounts of Bid synchronize the function of a large number of discrete organelles, particularly in mitochondria-rich cells. Looking at cell populations, the rate and lag time of the Bid-induced permeabilization are dose-dependent, but even very low doses lead eventually to complete cytochrome c release. By contrast, individual mitochondria display relatively rapid and uniform kinetics, indicating that the dose dependence seen in populations is due to a spreading of individual events in time. We report that Bid-induced permeabilization and cytochrome c release regularly demonstrate a wave-like pattern, propagating through a cell at a constant velocity without dissipation. Such waves do not depend on caspase activation or permeability transition pore opening. However, reactive oxygen species (ROS) scavengers suppressed the coordination of cytochrome c release and also inhibited Bid-induced cell death, whereas both superoxide and hydrogen peroxide sensitized mitochondria to Bid-induced permeabilization. Thus, Bid engages a ROS-dependent, local intermitochondrial potentiation mechanism that amplifies the apoptotic signal as a wave.  相似文献   

11.
The mechanisms of cytokine-induced β-cell death are poorly characterised. In rat insulin-producing RINm5F cells, the combination of interleukin-1β, interferon-γ and tumour necrosis factor- presently induced disruption of the mitochondrial membrane potential (Δψm) as demonstrated by reduced JC-1 fluorescence. The reduction of Δψm was maximal after 8 h and was preceded by increased formation of reactive oxygen species (ROS), as assessed by dichlorofluorescein-diacetate (DCFH-DA) fluorescence. A nitric oxide synthase-, but not a ROS-inhibitor, prevented cytokine-induced loss of Δψm. Overexpression of the anti-apoptotic protein Bcl-2 increased both JC-1 and DCFH-DA fluorescence, which was paralleled by protection against cytokine-induced apoptosis and necrosis. It is concluded that cytokines induce a nitric oxide-dependent disruption of Δψm and that this may be a necessary event for both β-cell apoptosis and necrosis. Bcl-2 may prevent β-cell death by counteracting mitochondrial permeability transition.  相似文献   

12.
We review the literature indicating that the adverse health effects of ambient particulate matter involve the generation of oxidative stress and inflammation, as well as immunomodulating effects by particle-associated chemicals. We discuss evidence that diesel exhaust particle organic extracts induce reactive oxygen species in macrophages and bronchial epithelial cells, two key cell types targeted by particulate matter in the lung. Reactive oxygen species activate the promoters of cytokines and chemokines involved in allergic inflammation through activator protein-1 and nuclear factor- kappaB signaling pathways, which may explain exacerbation of allergic inflammation. Organic diesel exhaust particle chemicals also induce apoptosis and necrosis in bronchial epithelial cells via a mitochondrial pathway. This may be responsible for epithelial shedding and bronchial hyperreactivity in asthma.  相似文献   

13.
Most of the morphologic changes that are observed in apoptotic cells are caused by a set of cysteine proteases (caspases) that are activated during this process. In previous works from our group we found that treatment of rat fetal hepatocytes with transforming growth factor beta1 (TGF-beta1) is followed by apoptotic cell death. TGF-beta1 mediates radical oxygen species (ROS) production that precedes bcl-xL down-regulation, loss of mitochondrial transmembrane potential, release of cytochrome c, and activation of caspase-3 (Herrera et al., FASEB J 2001;15:741-751). In this work, we have analyzed how TGF-beta1 activates the caspase cascade and whether or not caspase activation precedes the oxidative stress induced by this factor. Our results show that TGF-beta1 activates at least caspase-3, -8, and -9 in rat fetal hepatocytes, which are not required for ROS production, glutathione depletion, bcl-xL down-regulation, and initial cytochrome c release. However, caspase activation mediates cleavage of Bid and Bcl-xL that could originate an amplification loop on the mitochondrial events. An interesting result is that transmembrane potential disruption occurs later than the initial cytochrome c release and is mostly blocked by the pan-caspase inhibitor Z-VAD.fmk, indicating that the decrease in mitochondrial transmembrane potential (Delta(Psi)m) may be a consequence of caspase activity rather than the mechanism by which TGF-beta induces cytochrome c efflux. Finally, although Z-VAD.fmk completely blocks nucleosomal DNA fragmentation, it only delays cell death, which suggests that activation of the apoptotic program by TGF-beta in fetal hepatocytes inevitably leads to death, with or without caspases.  相似文献   

14.
Melatonin has both the ability to induce intrinsic apoptosis in tumor cells while it inhibits it in non-tumor cells. Melatonin kills tumor cells through induction of reactive oxygen species generation and activation of pro-apoptotic pathways. In contrast, melatonin promotes the survival of non-tumor cells due to its antioxidant properties and the inhibition of pro-apoptotic pathways. In primary human villous trophoblast, a known pseudo-tumorigenic tissue, melatonin promotes the survival through inhibition of the Bax/Bcl-2 pathway while in BeWo choriocarcinoma cell line melatonin induces permeabilization of the mitochondrial membrane leading to cellular death. These findings suggest that the trophoblast is a good model to study the differential effects of melatonin on the intrinsic apoptosis pathway. This review describes the differential effects of melatonin on the intrinsic apoptosis pathway in tumor and non-tumor cells and presents the trophoblast as a novel model system in which to study these effects of melatonin.  相似文献   

15.
Histone deacetylase inhibitors (HDACi) are emerging new class of anticancer agents that act by inhibiting cell growth, inducing cell cycle arrest and apoptosis of various cancer cells. However, in some conditions, apoptosis can be blocked and non apoptotic cell death and irreversible growth arrest, namely senescence, can be activated as potential tumor-suppressor mechanism. Here we evaluated the dosage effects of HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) in a series of human leukaemia cell lines. We investigated, what concentration of SAHA and VPA can optimally induce apoptosis, growth inhibition or stress-induced premature senescence. We have found that SAHA inhibited proliferation and induced apoptosis in concentration 1000x lower than VPA. The senescence phenotype was preferentially induced by lower dosage of HDACi and required longer incubation time (5 days) while apoptosis was induced by higher dosage and appeared already after 24h. The optimal doses for the induction of cell death are 2,5-5 μM of SAHA and 2,5-5 mM of VPA. These doses of HDACi induce both apoptosis and senescence of studied leukemia cell lines.  相似文献   

16.
Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL-positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate-induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate-treated BCR-ABL-positive human leukemic cells. Moreover, zVAD-fmk-preincubated, imatinib mesylate-treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.  相似文献   

17.
Histone deacetylase (HDAC) inhibitors can induce programmed cell death in cancer cells, although the underlying mechanism is obscure. In this study, we show that two distinct HDAC inhibitors, butyrate and suberoylanilide hydroxamic acid (SAHA), induced caspase-3 activation and cell death in multiple human cancer cell lines. The activation of caspase-3 was via the mitochondria/cytochrome c-mediated apoptotic pathway because it was abrogated in mouse embryonic fibroblasts with knockout of Apaf-1, the essential mediator of the pathway. Overexpression of Bcl-XL in HeLa cells also blocked caspase activation by the HDAC inhibitors. Nevertheless, Apaf-1 knockout, overexpression of Bcl-XL, and pharmacological inhibition of caspase activity did not prevent SAHA and butyrate-induced cell death. The cells undergoing such caspase-independent death had unambiguous morphological features of autophagic cell death. Therefore, HDAC inhibitors can induce both mitochondria-mediated apoptosis and caspase-independent autophagic cell death. Induction of autophagic cell death by HDAC inhibitors has clear clinical implications in treating cancers with apoptotic defects.  相似文献   

18.
Abstract: Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant action. Thus, melatonin has proven useful in the treatment of tumors in association with chemotherapeutic drugs. This study was performed to evaluate the effect of melatonin on the cytotoxicity and apoptosis induced by three different chemotherapeutic agents, namely 5‐fluorouracil (5‐FU), cisplatin, and doxorubicin in the rat pancreatic tumor cell line AR42J. We found that both melatonin and the three chemotherapeutic drugs induce a time‐dependent decrease in AR42J cell viability, reaching the highest cytotoxic effect after 48 hr of incubation. Furthermore, melatonin significantly augmented the cytotoxicity of the chemotherapeutic agents. Consistently, cotreatment of AR42J cells with each of the chemotherapeutic agents in the presence of melatonin increased the population of apoptotic cells, elevated mitochondrial membrane depolarization, and augmented intracellular reactive oxygen species (ROS) production compared to treatment with each chemotherapeutic agent alone. These results provide evidence that in vitro melatonin enhances chemotherapy‐induced cytotoxicity and apoptosis in rat pancreatic tumor AR42J cells and, therefore, melatonin may be potentially applied to pancreatic tumor treatment as a powerful synergistic agent in combination with chemotherapeutic drugs.  相似文献   

19.
Apoptosis signal-regulating kinase 1 (ASK1) mediates cytokines and oxidative stress (ROS)-induced apoptosis in a mitochondria-dependent pathway. However, the underlying mechanism has not been defined. In this study, we show that ASK1 is localized in both cytoplasm and mitochondria of endothelial cells (ECs) where it binds to cytosolic (Trx1) and mitochondrial thioredoxin (Trx2), respectively. Cys-250 and Cys-30 in the N-terminal domain of ASK1 are critical for binding of Trx1 and Trx2, respectively. Mutation of ASK1 at C250 enhanced ASK1-induced JNK activation and apoptosis, whereas mutation of ASK1 at C30 specifically increased ASK1-induced apoptosis without effects on JNK activation. We further show that a JNK-specific inhibitor SP600125 completely blocks TNF induced JNK activation, Bid cleavage, and Bax mitochondrial translocation, but only partially inhibits cytochrome c release and EC death, suggesting that TNF induces both JNK-dependent and JNK-independent apoptotic pathways in EC. Mitochondria-specific expression of a constitutively active ASK1 strongly induces EC apoptosis without JNK activation, Bid cleavage, and Bax mitochondrial translocation. These data suggest that mitochondrial ASK1 mediates a JNK-independent apoptotic pathway induced by TNF. To determine the role of Trx2 in regulation of mitochondrial ASK1 activity, we show that overexpression of Trx2 inhibits ASK1-induced apoptosis without effects on ASK1-induced JNK activation. Moreover, specific knockdown of Trx2 in EC increases TNF/ASK1-induced cytochrome c release and cell death without increase in JNK activation, Bid cleavage, and Bax translocation. Our data suggest that ASK1 in cytoplasm and mitochondria mediate distinct apoptotic pathways induced by TNF, and Trx1 and Trx2 cooperatively inhibit ASK1 activities.  相似文献   

20.
Bcl-2 family proteins play a crucial role in tissue homeostasis and apoptosis (programmed cell death). Bid is a proapoptotic member of the Bcl-2 family, promoting cell death when activated by caspase-8. Following an NMR-based approach (structure-activity relationships by interligand NOE) we were able to identify two chemical fragments that bind on the surface of Bid. Covalent linkage of the two fragments led to high-affinity bidentate derivatives. In vitro and in-cell assays demonstrate that the compounds prevent tBid translocation to the mitochondrial membrane and the subsequent release of proapoptotic stimuli and inhibit neuronal apoptosis in the low micromolar range. Therefore, by using a rational chemical-biology approach, we derived antiapoptotic compounds that may have a therapeutic potential for disorders associated with Bid activation, e.g., neurodegenerative diseases, cerebral ischemia, or brain trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号