首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central neural connections of the area postrema of the rat   总被引:8,自引:0,他引:8  
We applied the neuroanatomical tracers cholera toxin-horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase to investigate the neural connections of the area postrema (AP) in the rat. We find that the AP projects to the nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus bilaterally both rostral and caudal to obex; the nucleus ambiguus; the dorsal aspect of the spinal trigeminal tract and nucelus and the paratrigeminal nucleus; the region of the ventrolateral medullary catecholaminergic column; the cerebellar vermis; and a cluster of structures in the dorsolateral pons which prominently include a discrete set of subnuclei in the lateral parabrachial nucleus. The major central afferent input to the area postrema is provided by a group of neurons in the paraventricular and dorsomedial hypothalamic nuclei whose collective dendrites describe a horizontally oriented plexus which encircles the parvocellular nucleus of the hypothalamus bilaterally. In addition, the caudal NTS may project lightly to the AP. The lateral parabrachial nucleus provides a very light input as well. These connections, when considered in the context of the known vagal afferent input and reduced blood-brain barrier of AP, place this structure in a unique position to receive and modulate ascending interoceptive information and to influence autonomic outflow as well.  相似文献   

2.
The central distribution of the afferent and efferent components of the superior laryngeal nerve (SLN), which in the rat is ramified into the three branches of the rostral branch (R.Br), middle branch (M.Br), and caudal branch (C.Br), was examined after application of horseradish peroxidase conjugated with wheat germ agglutinin (HRP-WGA) to the proximal cut end of each branch. In addition, the afferent and efferent neural activities of each branch were recorded to investigate the functional properties. The present study provided several new findings as to the distribution of each branch and the functional properties of the SLN. The following conclusions were drawn: 1) the R.Br, containing only afferent fibers projecting to the ipsilateral lateral region of the nucleus of the solitary tract (NST), extends between slightly below the obex and the region approximately 0.6 mm rostral from the obex, and it corresponds to the interstitial subnucleus of the NST; 2) the M.Br, innervating the cricothyroid muscle, contains only efferent fibers originating ipsilaterally from the motoneurons localized within the ambiguus nucleus (Amb) and in the area ventrolateral to the Amb; and 3) the C.Br, which innervates the inferior pharyngeal constrictor muscle, contains both efferent and afferent fibers. HRP-WGA-labeled cells are distributed within both the Amb and the dorsal motor nucleus of the vagus nerve, ipsilateral to the injection site. Afferent proprioceptive fibers project to the ipsilateral interstitial subnucleus of the NST. The present results provide evidence that each branch of the SLN has distinctive functional properties and contributes to the laryngeal functions. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The distribution of D1/D5, D2/D3, D2/D3/D4, and individually, putative D2-D4 receptors across the dorsal vagal complex of the human medulla was assessed with quantitative receptor autoradiography. D1/D5 receptors were found in very low levels. D2 receptors were concentrated in the intermediate and medial subnuclei of the nucleus of the solitary tract (NTS), and in the dorsal motor nucleus of the vagus (DMN), while D3 receptors were more homogenous across the entire NTS, area postrema (AP), and DMN. In contrast, D4 receptors were found almost exclusively in the intermediate and medial subnuclei of the NTS, and in the DMN. These findings suggest that the “D2 family” of receptors is an important component of brain stem mechanisms regulating visceral function, including gastrointestinal systems, such as emesis, along with cardiovascular and pulmonary systems. Compounds with individual selectivity for D2, D3, or D4 receptors may be useful in the manipulation of neural networks regulating these visceral systems. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    Horseradish peroxidase was injected into the cervical vagus nerve or stomach wall of adult squirrel monkeys. Following cervical vagus nerve injections, labelled afferent fibres were present in the tractus solitarius and labelled fibres and terminals were present in medial and lateral parts of the nucleus of the tractus solitarius (NTS) ipsilaterally. Afferent labelling was also seen in the ipsilateral commissural nucleus and in the area postrema. Labelling was present contralaterally in caudal levels of the medial parts of the NTS, in the commissural nucleus, and in the area postrema. Afferent projections to the ipsilateral pars interpolaris of the spinal trigeminal nucleus and to the substantia gelatinosa of the C1 segment of the spinal cord were also labelled. Following injections of HRP into the anterior and posterior stomach walls, the tractus solitarius was labelled bilaterally. Afferent labelling was concentrated bilaterally in the dorsal parts of the medial division of the NTS, i.e., in the subnucleus gelatinosus, and in the commissural nucleus. The regions of NTS immediately adjacent to the tractus solitarius were largely unlabelled. Injections of HRP into the cervical vagus nerve resulted in heavy retrograde labelling of neurons in the ipsilateral dorsal nucleus of the vagus (DMX) and in the nucleus ambiguus (NA). In addition a few neurones were labelled in the intermediate zone between these two nuclei. Retrogradely labelled neurons were also present in the nucleus dorsomedialis in the rostral cervical spinal cord and in the spinal nucleus of the accessory nerve. Injections of HRP into the left cricothyroid muscle in two cases resulted in heavy retrograde labelling of large neurons in the left NA. Following stomach wall injections of HRP retrograde labelling of neurons was seen throughout the rostrocaudal and mediolateral extent of the DMX; there was no apparent topographical organization of the projection. In these cases, a group of labelled smaller neurons was found lying ventrolateral to the main part of the NA through its rostral levels. This study in a primate indicates that a large vagal afferent projection originates in the stomach wall and terminates primarily in the subnucleus gelatinosus of the NTS and in the commissural nucleus with a distribution similar to that described previously in studies in several subprimate mammalian species. The present results and those of other studies suggest some degree of segregation of visceral input within different subnuclei of the NTS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    5.
    Electrophysiological mapping was used to study frequency representation in the inferior colliculus (IC) of the mouse. In the lateral nucleus (LN) only part of the frequency range of hearing was represented and tonotopicity was separate from that in the rest of the IC. Highest frequencies occupied the medial part (M) of the central nucleus (CN). A single complete representation of the hearing range was present only if representations in the dorsal cortex (plus dorsomedial nucleus) and CN (including M) were combined. Continuous isofrequency planes making up these nuclei (without the lateral part of the CN) were reconstructed. They tilted from medial to lateral and from caudal to rostral. The steepness of the slopes increased from caudal to rostral and from dorsal to ventral (i.e., with increasing frequency). Isofrequency planes had similar angles of deviation from the horizontal plane as described for dendritic laminae in the CN. Differences of mapping in the lateral part of the CN from that in the rest of the CN could be explained by the different organization of laminae in this part. The relative amounts of IC depth and volume occupied by parts of the mouse audible frequency range were quantified. Frequency representation along IC depth was not proportional to that along cochlear length. Compared with the relative density of afferent nerve fiber supply within given frequency ranges represented along the basilar membrane, there is a relative under-representation in the IC up to 15-20 kHz and an over-representation of higher frequencies. Highest absolute tone sensitivity (lowest threshold) was found in neurons forming a column (running perpendicular to isofrequency planes) in the center of the IC. Results are discussed with regard to frequency representation, intrinsic neuronal organization, and functional segregation in the IC of mammals.  相似文献   

    6.
    To further the understanding of gastrointestinal function in this species, and in particular to advance our own work concerning central emetic pathways, the cytoarchitecture and the distribution of eight neurochemicals were studied in the ferret dorsal vagal complex (DVC; area postrema, nucleus of the solitary tract [nTS] and dorsal motor nucleus of the vagus). The cytoarchitectural features of this region in the ferret were similar to those seen in other species; however, the ferret possesses a particularly large and distinct subnucleus gelatinosus of the nTS. Dense calcitonin gene-related peptide-immunoreactivity was found in the gelatinous, interstitial and commissural subnuclei of the nTS, with lesser amounts in other regions of the DVC. Enkephalin-immunoreactivity of varying densities was found throughout the DVC. Moderate to dense galanin-immunoreactivity was observed throughout the DVC, with the exception of the subnucleus gelatinosus of the nTS, from which it was virtually absent. Dense neuropeptide Y-immunoreactivity was observed in the subnucleus gelatinosus and interstitial subnucleus, with moderate staining in other regions of the DVC. Neurotensin immunoreactivity was very sparse or absent. Immunoreactivity for serotonin was sparsely distributed throughout the DVC. Moderate somatostatin-immunoreactivity was observed over a large portion of the DVC, but was virtually absent from the gelatinosus and interstitial subnuclei. Substance P immunoreactivity was observed throughout the DVC and was particularly dense in the dorsal/dorsolateral subnucleus and the dorsal aspects of the medial and commissural subnuclei. In terms of its cytoarchitecture the DVC of the ferret is more similar to the cat than the rat, especially with regard to the area postrema and the subnucleus gelatinosus of the nTS. The distribution of neuroactive substances was largely similar to other species; however, differences were present particularly in patterns of immunoreactivity for enkephalin, serotonin, neuropeptide Y and somatostatin.  相似文献   

    7.
    Motor fibers of the accessory celiac and celiac vagal branches are derived from the lateral columns of the dorsal motor nucleus of the vagus nerve. These branches also contain sensory fibers that terminate within the nucleus of the tractus solitarii. This study traces the innervation of the intestines by using the tracer cholera toxin-horseradish peroxidase. In 53 rats, the tracer was injected into either the stomach, duodenum, jejunum, terminal ileum, cecum, or ascending colon. With all cecal injections, prominent retrograde labeling of cell bodies occurred bilaterally in the lateral columns of the dorsal motor nucleus of the vagus nerve above, at, and below the level of the area postrema. Dendrites of laterally positioned neurons projected medially and rostrocaudally within the dorsal motor nucleus of the vagus nerve and dorsomedially into both the medial subnucleus and parts of the commissural subnucleus of the nucleus of the tractus solitarii. Sensory terminal labeling occurred in the dorsolateral commissural subnucleus at the level of the rostral area postrema and the medial commissural subnucleus caudal to the area postrema. Additionally, there was sensory terminal labeling within a small confined area of the dorsomedial zone of the nucleus of the tractus solitarii immediately adjacent to the fourth ventricle at a level just anterior to the area postrema. Stomach injections labeled motoneurons of the medial column of the entire rostrocaudal extent of the dorsal motor nucleus of the vagus nerve and a sensory terminal field primarily in the subnucleus gelatinosus, with less intense labeling extending caudally into the medial and ventral commissural subnuclei. Dendrites of gastric motoneurons project rostrocaudally and mediolaterally within the dorsal motor nucleus of the vagus nerve and dorsolaterally within the nucleus of the tractus solitarii. They are most pronounced at the level of the rostral area postrema where many dendrites course dorsolaterally terminating primarily within the subnucleus gelatinosus. Injections of the duodenum labeled a small number of the cells within the medial aspects of the dorsal motor nucleus of the vagus nerve. Jejunal, ileal, and ascending colon injections labeled cells sparsely within the lateral aspects of the dorsal motor nucleus of the vagus nerve bilaterally. No afferent terminal labeling was evident after injection of these areas of the bowel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    8.
    9.
    Immunoreactivity for the substance P receptor (NK1 receptor) has been investigated by light and electron microscopy in the dorsal vagal complexes of adult rats and cats. The general pattern of NK1 immunoreactivity was similar for both rat and cat. Numerous NK1-immunoreactive neurons were present in the area postrema, the nucleus of the solitary tract, and the dorsal motor nucleus of the vagus nerve. The density of labelled neurons differed between the subnuclei of the nucleus of the solitary tract. Overall, the efferent neurons of the dorsal motor nucleus of the vagus nerve highly expressed NK1 when compared to neurons in the nucleus of the solitary tract. The results are discussed with reference to the viscerotopic organisation of the dorsal vagal complex. Ultrastructural analysis demonstrated that NK1 immunoreactivity was present only at the membrane surface of somatic and dendritic profiles of neurons. No labelling was found in axon terminals, axons, or glial processes. NK1 immunoreactivity, as revealed by a preembedding immunogold technique in serial ultrathin sections, was preferentially located at nonsynaptic sites. A semiquantitative study suggested that the density of NK1 receptors is statistically higher at membrane sites free of any contact (synaptic or not) with axon terminals. The subcellular localisation of NK1 immunoreactivity was similar for neurons of both rat and cat. These results suggest that in the dorsal vagal complex, substance P might act on NK1 receptors through a process of volume transmission. J. Comp. Neurol. 402:181–196, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    10.
    The coelomic root of the vagus nerve in goldfish is connected with sensory and motor nuclei of the medulla that are distinct from those serving the orobranchial roots of the same nerve. The primary sensory nucleus for coelomic sensation is itself divisible into medial and lateral subnuclei on the basis of afferent input and immunocytochemistry. The lateral subnucleus receives sensory input from the specialized chewing organ in the posterior pharynx and is poor in both substance P-like and tyrosine-hydroxylase-like immunoreactivities. The medial subnucleus receives input from the subdiaphragmatic gastrointestinal tract and is rich in substance P-like and tyrosine-hydroxylase-like immunoreactivities. The primary sensory fibers that innervate the gastrointestinal tract also project directly to the area postrema and to the vicinity of subdiaphragmatic visceral motor neurons. The vagal motor neuronal pool is divisible into three columns: paramedian (cardiac), medial, and lateral. The paramedian group innervates the heart and is situated in a loosely aggregated column at the boundary zone between the ventricular ependyma and the underlying brainstem. The medial vagal motor neurons innervate the subdiaphragmatic viscera, while the lateral column motor neurons innervate the posterior pharynx and muscles of the chewing organ. The motor neurons in this motor column are arranged in a topographic rostrocaudal order within the motor column according to the muscle of innervation. Thus both the general visceral sensory and general visceral motor nuclei of the medulla are organized into functional domains. Furthermore, in the goldfish, the special visceral (gustatory) and general visceral sensory nuclei form a continuous series in the medulla with the external and oral systems represented anteriorly and the pharyngeal and digestive systems represented posteriorly.  相似文献   

    11.
    Immunocytochemical localization of the protein product of the proto-oncogene C-fos allows anatomical identification of physiologically activated neurons. The present study examined the subnuclear distribution of cFos protein in the rat caudal medulla following peripheral administration of cholecystokinin octapeptide, which reduces feeding and gastric motility by a vagally mediated mechanism. To begin phenotypic characterization of neurons activated to express cFos following cholecystokinin treatment, double-labeling techniques were used to identify vagal motor neurons and neurons immunoreactive for tyrosine hydroxylase, neuropeptide Y, and neurotensin. Activated cells were most prevalent in the subnucleus medialis of the nucleus of the solitary tract, less prevalent in the subnucleus commissuralis, and virtually absent in the subnuclei centralis and gelatinosus. Many activated cells occupied the caudal area postrema; some of these were catecholaminergic. In contrast, activated cells were sparse within the medial rostral area postrema. Other activated cells occupied the dorso- and ventrolateral medulla and the midline raphe nuclei. Retrograde labeling of vagal motor neurons confirmed that very few were activated. Those that were activated occupied the caudal dorsal motor nucleus. In the dorsomedial medulla, 51% of catecholaminergic neurons and 39% of neurons positive for neuropeptide Y were activated, but no neurotensin-positive neurons were activated. In the ventrolateral medulla, 25% of catecholaminergic neurons and 27% of neuropeptide Y-positive neurons were activated. By characterizing the subnuclear distribution and chemical phenotypes of neurons activated by exogenous cholecystokinin, these data contribute to elucidation of the neural circuits mediating the behavioral, physiological, and neuroendocrine effects produced by this peptide. © 1993 Wiley-Liss, Inc.  相似文献   

    12.
    The projections from the central nucleus of the amygdala to the dorsal vagal complex were examined in the rat by means of anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase and anterograde degeneration. Light microscopic findings confirmed that the amygdala projects to the dorsal motor nucleus (DMV) and the nucleus of the solitary tract. Electron microscopic experiments demonstrated degenerating axosomatic and axodendritic terminals in the DMV following electrolytic lesions in the central nucleus of the amygdala.  相似文献   

    13.
    We attempted to confirm reports that medullary catecholamine-synthesizing neurons in the rat contribute axons to the vagus nerve. Vagal preganglionic neurons in the medulla were identified by the retrograde intra-axonal transport of Fast Blue from the cervical vagus. Catecholamine-synthesizing neurons were identified using a specific antibody against tyrosine hydroxylase. A rhodamine-labelled second antibody was used to ensure that Fast Blue and tyrosine hydroxylase could be viewed entirely independently. We did not find any medullary neurons which contained both tyrosine hydroxylase and Fast Blue. Although further investigations by other laboratories are necessary, we believe that previous studies, using punctate versus diffuse horseradish peroxidase staining to doubly label neurons may have produced false positive results.  相似文献   

    14.
    Electrical stimulation of 3 to 9 V, 100 impules/s 1-ms duration/impulse, applied to the right or left dorsal motor nucleus of the vagus nerve (DNV) produced a significant increase in volume, acidity, and gastric acid output in 14 cats under sodium pentobarbital anesthesia. The increase in acid output occurred during the first 15 min of stimulation or immediately after the stimulation and in some cats lasted for the next 30 min to more than 2 h. In no case did the stimulation within the DNV evoke a decrease in gastric acid secretion. Similar electrical stimulation in sites outside the DNV had no effect on gastric acid secretion. Motor effects such as opening of the mouth, movements of the tongue and whiskers, and salivation were observed to occur randomly during stimulation at sites both inside and outside the DNV zone and were not correlated with changes in gastric acid secretion. After recovery from the acute experiment, two cats were tested under chronic conditions. Electrical stimulation with low voltage applied to the previously effective electrode tips repeatedly produced an increase in the volume of secretion in one cat and an increase in both volume and acidity of secretion in the other cat. This study provided further evidence that the DNV is a secretomotor center.  相似文献   

    15.
    The medullary distribution of afferent fibers and cells of origin of the cervical vagal trunk and of the vagal innervation of the stomach have been studied using the anterograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP were made into the cervical vagus nerve, the stomach wall, the proximal small intestine, or the peritoneal cavity. Two to four days following the injections, the rats were perfused and the medullae oblongatae and nodose ganglia were processed using the tetramethyl benzidine method. Cervical vagus nerve injections of HRP resulted in heavy anterograde labeling in the ipsilateral nucleus of the tractus solitarius (NTS) and the commissural nucleus. Lighter labeling was seen in these regions on the contralateral side, but did not extend as far rostrally in the NTS. Labeling was also seen in the area postrema. Retrogade labeling of somata was present in the ipsilateral side in the nodose ganglion, throughout the whole extent of the dorsal motor nucleus of the vagus, much of the nucleus ambiguus and in rostral levels of the cervical spinal cord. After stomach injections, labeling indicative of afferent fibers was observed bilaterally in the dorsomedial and medial portions of the NTS and in the commissural nucleus. Labeled efferent fibres arose from neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus and the cervical spinal cord. Retrogradely labeled somata were found bilaterally, throughout the rostrocaudal length of the dorsal motor nucleus in all cases with stomach injections. In some, but not all cases, labeled somata were seen bilaterally in compact areas within the nucleus ambiguus, particularly rostrally. Control injections of HRP into the intestinal wall and peritoneal cavity indicated that the stomach was the primary source of afferent and efferent labeling in the medulla following subdiaphragmatic injections.  相似文献   

    16.
    Nitric oxide (NO) in the brainstem is implicated in the control of swallowing and oesophageal peristalsis. This study examines the role of brainstem NO in the maintenance of lower oesophageal sphincter (LOS) tone, relaxation and contraction. In urethane-anaesthetized cats, oesophageal peristalsis and sphincter pressures were continuously monitored. Drugs were administered into the fourth ventricle. Oesophageal peristalsis and sphincter relaxation and contraction were induced by superior laryngeal nerve stimulation or intra-oesophageal balloon distention. Basal sphincter pressure was significantly reduced after the i.c.v. administration of the nitric oxide synthase (NOS) inhibitor, l-Ng-monomethyl arginine. The inhibitor's d-isomer had no significant effect on basal sphincter pressure, while l-arginine partially reversed the effect. The NOS inhibitor had no effect on sphincter relaxation, whereas the contraction of the sphincter following relaxation was significantly inhibited. Central nitric oxide synthase inhibition reduces basal LOS tone and contraction amplitude but has no effect on swallow or balloon distention induced sphincter relaxation. Therefore, central release of NO acts in the pathway to stimulate dorsal motor nucleus of the vagus neurones projecting to excitatory neurones in the sphincter. Inhibition of nitric oxide synthase in the CNS does not prevent relaxation of the LOS, suggesting that other pathways that do not utilize NO are important in the induction of LOS relaxation.  相似文献   

    17.
    Background Oxytocin (OXT) has been implicated in reproduction and social interactions and in the control of digestion and blood pressure. OXT‐immunoreactive axons occur in the dorsal vagal complex (DVC; nucleus tractus solitarius, NTS, dorsal motor nucleus of the vagus, DMV, and area postrema, AP), which contains neurons that regulate autonomic homeostasis. The aim of the present work is to provide a systematic investigation of the OXT‐immunoreactive innervation of dorsal motor nucleus of the vagus (DMV) neurons involved in the control of gastrointestinal (GI) function. Methods We studied DMV neurons identified by (i) prior injection of retrograde tracers in the stomach, ileum, or cervical vagus or (ii) induction of c‐fos expression by glucoprivation with 2‐deoxyglucose. Another subgroup of DMV neurons was identified electrophysiologically by stimulation of the cervical vagus and then juxtacellularly labeled with biotinamide. We used two‐ or three‐color immunoperoxidase labeling for studies at the light microscopic level. Key Results Close appositions from OXT‐immunoreactive varicosities were found on the cell bodies, dendrites, and axons of DMV neurons that projected to the GI tract and that responded to 2‐deoxyglucose and juxtacellularly labeled DMV neurons. Double staining for OXT and choline acetyltransferase revealed that OXT innervation was heavier in the caudal and lateral DMV than in other regions. OXT‐immunoreactive varicosities also closely apposed a small subset of tyrosine hydroxylase‐immunoreactive NTS and DMV neurons. Conclusions & Inferences Our results provide the first anatomical evidence for direct OXT‐immunoreactive innervation of GI‐related neurons in the DMV.  相似文献   

    18.
    The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern the role of specific neurotrophins in the functions of these visceral sensory and motor neurons in vivo. J. Comp. Neurol. 393:102–117, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    19.
    Neurons of the dorsal motor nucleus of the vagus nerve were studied following injections of horseradish peroxidase into the vagus nerve in a monkey (Macaca fascicularis). In frozen sections, the dorsal motor nucleus appeared to be completely filled by labeled medium-sized (20-30 micron in long axis) neurons. Labeled dendrites from these neurons often extended outside the borders of the nucleus into the nucleus of the tractus solitarius. In 1 micron thick plastic sections and ultrathin sections of the dorsal motor nucleus, two distinct types of neurons were observed with the light and electron microscope. Medium-sized neurons with abundant cytoplasm and an oval nucleus were retrogradely labeled with HRP, while small (10-15 micron in long axis) neurons with a paucity of organelles and an invaginated nucleus remained unlabeled. Medium-sized neurons outnumbered the small neurons by approximately five to one. The synaptic organization of the dorsal motor nucleus in monkey was studied and compared with that in cat. The porportions of different types of axosomatic synapses were similar in both species. Terminals containing round vesicles and making symmetrical or asymmetrical contact with the postsynaptic structure were more common than synaptic terminals containing pleomorphic vesicles. In both species, there was a slightly greater synaptic density on the medium-sized neurons than on the small neurons. The synaptic density in the monkey dorsal nucleus was greatest on the smallest dendrites in the neuropil and least on the somata.  相似文献   

    20.
    Bradycardia was produced by electrical stimulation and injection of glutamate (200 nl, 1 M) to the regions in and around the extremely caudal parts of the inferior olivary nucleus (ION) in chloralose-urethane anesthetized cats. Either medullary transection at 4 mm rostral to the obex, spinal transection at C2-3 or both transections together did not abolish the ION-induced bradycardia. Bradycardia induced by stimulating one ION was slightly reduced and completely abolished by unilateral and bilateral vagotomies, respectively. The ION-evoked bradycardia was also slightly reduced by a raphe lesion. This lesion together with unilateral vagotomy abolished only the bradycardia induced from the ION on the vagotomized side. In 28 left vagotomized cats, the left ION-induced bradycardia was subjected to the effects of destroying the right ION, dorsal motor/solitary nucleus (DM/SN) and ambiguous nucleus (AN). The bradycardia was completely abolished by ION lesion (7/7), greatly reduced (7/13) or completely abolished (6/13) by DM/SN lesion, and slightly increased (5/8) or decreased (3/8) by AN lesion. We concluded that cells and/or fibers in and around the ION may project fibers to the ipsilateral DM/SN and through the raphe nucleus to the contralateral ION which may send fibers to the other DM/SN.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号