首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We conducted non-invasive methods to investigate the mechanisms how an orthostasis improves fatigue resistance in human calf muscle during intense exercise. Eleven healthy volunteers performed two series of ten intervals of maximum dynamic exercise (15 s) and recovery (45 s) at almost horizontal body position under both, control conditions (CON) and lower body negative pressure (LBNP, −40 mbar). As from the second work interval, LBNP significantly improved fatigue resistance shown as a lower reduction in work and in contraction velocity (P < 0.01). During each work interval, EMG showed a small increase in amplitude (P < 0.01) and a steep drop by 20% in median frequency (P < 0.01). Under LBNP, both EMG parameters completely recovered during subsequent rest, whereas under CON recovery was incomplete (P < 0.01). During the first work interval, consumption of phosphocreatine (PCr) was almost the same for both conditions. In periods of recovery under LBNP, resynthesis of PCr and inorganic phosphate were significantly faster. PCr reached 10 to 20% higher levels (P < 0.01). LBNP caused an initial increase in intracellular pH (0.08 U (P < 0.01)). The subsequent time courses of pH were similar for CON and LBNP. During work, pH steeply increased by about 0.3 U. During subsequent recovery, pH dropped to values between 6.3 and 6.5. LBNP caused significantly higher levels of total haemoglobin and oxy-haemoglobin (P < 0.05). A simulated orthostasis increased fatigue resistance during high intense interval exercise because of a faster PCr resynthesis and may be because of improvements in the maintenance of motoneuronal activity.  相似文献   

2.
The recovery of high-energy phosphate levels in single human skeletal muscle fibres following short-term maximal (all-out) exercise was investigated. Three male volunteers exercised maximally for 25 s on an isokinetic cycling ergometer. Muscle biopsy samples from the vastus lateralis were collected at rest, immediately post-exercise and at 1.5 min of recovery. The subjects also performed a second exercise bout 1.5 min after the first, on a separate occasion. Single muscle fibres were dissected, characterized and assigned to one of four groups according to their myosin heavy chain (MyHC) isoform content; namely, type I, IIA, IIAx and IIXa (the latter two groups containing either less or more than 50% IIX MyHC). Fibres were analysed for adenosine 5'-triphosphate (ATP), inosine-5'-monophosphate (IMP), phosphocreatine (PCr) and creatine (Cr) levels. Type I fibres had a lower Cr content than type II fibres (P<0.01). Within type II fibres resting [PCr] increased with increasing MyHC IIX isoform content (r=0.59, P<0.01). Post-exercise [PCr] was very low in all fibre groups (P<0.01 versus rest) while great reductions in ATP were also observed (P<0.01 versus rest), especially in the type II fibre groups. [PCr] at 1.5 min of recovery was still lower compared to rest for all fibre groups (P<0.01) especially in the IIAx and IIXa fibres.  相似文献   

3.
This study investigated the recruitment of type I, IIA and IIAX fibres after seven isometric contractions at 40, 70 and 100% maximal voluntary knee extension torque (MVC, 1 s on/1 s off). Biopsies of the vastus lateralis muscle were collected from seven subjects at rest and immediately post-exercise. Fibre fragments were dissected from the freeze-dried samples and characterized as type I, IIA and IIAX using mATPase staining. Phosphocreatine (PCr) and creatine (Cr) content were measured in the remaining part of characterized fibres. A decline in the ratio of PCr to Cr (PCr/Cr) was used as an indication of activation. The mean peak torques were, respectively, 39 (2), 72 (2) and 87 (6)% MVC. Cumulative distributions of type I and IIA fibres were significantly shifted to lower PCr/Cr ratios at all intensities (Kolmogorov-Smirnov test, P<0.05). The cumulative distribution of type IIAX fibres showed a significant leftward shift only at 87% MVC (P<0.05). A hierarchical order of fibre activation with increasing intensity of exercise was found, with some indication of rate coding for type I and IIA fibres. Evidence for activation of type IIAX fibres was only found at 87% MVC.  相似文献   

4.
This study was conducted to evaluate the effect of xylazine–ketamine–diazepam anesthesia on heart rate, respiration rate, rectal temperature, rumen motility, peripheral blood pH, PaO2, and PaCO2 in adult female nonpregnant Awassi sheep and adult female nonpregnant Damascus goats. Anesthesia was induced using 0.1 mg/kg, 5 mg/kg, and 0.25 mg/kg xylazine, ketamine, and diazepam respectively as a single intravenous injection. The heart rate, respiration rate, rectal temperature, rumen motility, peripheral arterial blood pH, PaO2, and PaCO2 were evaluated 15 min before and at 15, 30, and 60 min during anesthesia. In sheep, the heart rate, rumen motility, and PaO2 were decreased significantly (P < 0.05) at 15, 30, and 60 min following anesthesia. The respiration rate and rectal temperature and blood pH were decreased significantly (P < 0.05) at 30 and 60 min. The peripheral PaCO2 was increased significantly (P < 0.05) at 15 and 30 min. In goats, the heart rate and rumen motility were decreased significantly (P < 0.05) at 15, 30, and 60 min while the respiration rate was decreased only significantly (P < 0.05) at 60 min. Rectal temperature was decreased significantly (P < 0.05) at 30 and 60 min. The blood pH was decreased significantly (P < 0.05) at 15 and 30 min. PaO2 was only significantly (P < 0.05) decreased at 15 min while PaCO2 was increased significantly (P < 0.05) at 15 and 30 min.  相似文献   

5.
Creatine kinase (CK) isoenzymes are important structural and energy metabolism components in skeletal muscle. In this study, CK isoenzyme alterations were examined in male rats, with an 8% body mass weight attached to their tail. The rats were either forced to swim for 5 h (5S, n = 51), or were pre-trained for 8 days and then forced to swim for 5 h (T5S, n = 48). Rats were sacrificed either immediately (0 h PS), 3 h (3 h PS), or 48 h post-swimming (48 h PS). Serum CK was increased significantly (P < 0.01) 6.2- and 2.0-fold at 0 h PS following the 5S and T5S protocols, respectively. However, training (T5S protocol) significantly (P < 0.01) decreased CK release. Soleus and white gastrocnemius (WG) CK activity was significantly decreased following the 5S protocol (P < 0.05), but not following the T5S protocol. The CK-M activity of the soleus muscle was significantly (P < 0.05) decreased at 0 h PS following both the 5S and T5S protocols, and returned to control values at 3 h PS. The CK-M activity of the WG was significantly (P < 0.05) decreased at 0 h PS following the 5S protocol. Sarcomeric mitochondrial CK (sCK-Mit) was decreased significantly (P < 0.01) at 0 h PS (20%), 3 h PS (14%), 24 h PS (22%), and 48 h PS (15%) following the 5S protocol. However, sCK-Mit was decreased significantly (P < 0.01) only at 0 h PS (7%) following the T5S. The results of this study demonstrate that prolonged intense exercise causes a loss of skeletal muscle CK-M and sCK-Mit activity and that training prior to the prolonged intense exercise attenuates the exercise-induced CK-M and sCK-Mit loss in both red and white skeletal muscles. Accepted: 18 July 1999  相似文献   

6.
This study examined the effects of NH4Cl ingestion on phosphocreatine (PCr) metabolism during 9 min of moderate- (MOD) and heavy- (HVY) intensity constant-load isotonic plantar-flexion exercise. Healthy young adult male subjects (n = 8) completed both a control (CON) and NH4Cl ingestion (ACID) trial. Phosphorus-31 magnetic resonance spectroscopy was used to monitor changes in intracellular pH (pHi), [Pi], [PCr], and [ATP]. During the Middle (3–6 min) and Late (6–9 min) stages of HVY, ACID was associated with a higher (P < 0.05) intracellular hydrogen-ion concentration ([H+]i) [Middle: 246 (SD 36) vs. 202 (SD 36) mmol/l]; [Late: 236 (SD 35) vs. 200 (SD 39) mmol/l]. In addition, ACID was associated with a lower (P < 0.05) [PCr] relative to CON during the Early (0–3 min) [18.1 (SD 5.1) vs. 20.4 (SD 5.4) mmol/l] and Middle stages [14.1 (SD 5.4) vs. 16.7 (SD 6.0) mmol/l] of HVY. The amplitude of the primary component of PCr breakdown during the transition to HVY was greater in ACID than CON [14.5 (SD 5.8 vs. 11.3 (SD 4.8) mmol/l], however, the PCr slow component (continued slow decline in [PCr]) showed no difference (P > 0.05). The time constant for PCr breakdown (τPCr) was greater in HVY than MOD for both conditions [58 (SD 22) vs. 28 (SD 15) s ACID; 51 (SD 20) vs. 29 (SD 14) s CON] (P < 0.05). In summary, ACID increased PCr breakdown during the transition from MOD to HVY, but did not increase the magnitude of the PCr slow component.  相似文献   

7.
 The hypothesis that high-intensity (HI) intermittent exercise impairs mitochondrial function was investigated with different microtechniques in human muscle samples. Ten male students performed three bouts of cycling at 130% of peak O2 consumption (V ·O2,peak). Muscle biopsies were taken from the vastus lateralis muscle at rest, at fatigue and after 110 min recovery. Mitochondrial function was measured both in isolated mitochondria and in muscle fibre bundles made permeable with saponin (skinned fibres). In isolated mitochondria there was no change in maximal respiration, rate of adenosine 5’-triphosphate (ATP) production (measured with bioluminescence) and respiratory control index after exercise or after recovery. The ATP production per consumed oxygen (P/O ratio) also remained unchanged at fatigue but decreased by 4% (P<0.05) after recovery. In skinned fibres, maximal adenosine 5’-diphosphate (ADP)-stimulated respiration increased by 23% from rest to exhaustion (P<0.05) and remained elevated after recovery, whereas the respiratory rates in the absence of ADP and at 0.1 mM ADP (submaximal respiration) were unchanged. The ratio between respiration at 0.1 and 1 mM ADP (ADP sensitivity index) decreased at fatigue (P<0.05) but after the recovery period was not significantly different from that at rest. It is concluded that mitochondrial oxidative potential is maintained or improved during exhaustive HI exercise. The finding that the sensitivity of mitochondrial respiration to ADP is reversibly decreased after strenuous exercise may indicate that the control of mitochondrial respiration is altered. Received: 17 June 1998 / Received after revision: 11 November 1998 / Accepted: 26 November 1998  相似文献   

8.
To investigate recruitment of slow-twitch (ST) and fast-twitch (FT) muscle fibres, as well as the involvement of the various quadriceps femoris muscle portions during repeated, intense, one-legged knee-extensor exercise, 12 healthy male subjects performed two 3-min exercise bouts at ~110% maximum thigh O2 consumption (EX1 and EX2) separated by 6 min rest. Single-fibre metabolites were determined in successive muscle biopsies obtained from the vastus lateralis muscle (n=6) and intra-muscular temperatures were continuously measured at six quadriceps muscle sites (n=6). Creatine phosphate (CP) had decreased (P<0.05) by 27, 73 and 88% in ST fibres and 25, 71 and 89% in FT fibres after 15 and 180 s of EX1 and after 180 s of EX2, respectively. CP was below resting mean–1 SD in 15, 46, 84 and 100% of the ST fibres and 9, 48, 85 and 100% of the FT fibres at rest, after 15 and 180 s of EX1 and after 180 s of EX2, respectively. A significant muscle temperature increase (Tm) occurred within 2–4 s at all quadriceps muscle sites. Tm varied less than 10% between sites during EX1, but was 23% higher (P<0.05) in the vastus lateralis than in the rectus femoris muscle during EX2. Tm in the vastus lateralis was 101 and 109% of the mean quadriceps value during EX1 and EX2, respectively. We conclude that both fibre types and all quadriceps muscle portions are recruited at the onset of intense knee-extensor exercise, that essentially all quadriceps muscle fibres are activated during repeated intense exercise and that metabolic measurements in the vastus lateralis muscle provide a good indication of the whole-quadriceps muscle metabolism during repeated, intense, one-legged knee-extensor exercise.  相似文献   

9.
During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase has been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5–7 weeks, while the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml min−1 kg−1, respectively; P < 0.01). The maximal activities of the Krebs cycle enzymes in the trained and untrained muscle were as follows: citrate synthase, 22.4 vs. 18.2 μmol min−1 g−1 (23%, P < 0.05); oxoglutarate dehydrogenase, 1.88 vs. 1.54 μmol min−1 g−1 (22%, P < 0.05); and succinate dehydrogenase, 3.88 vs. 3.28 μmol min−1 g−1 (18%, P < 0.05). The difference between the trained and untrained muscles with respect to peak oxygen uptake (80 ml min−1 kg−1) corresponded to a flux through the Krebs cycle of 1.05 μmol min−1 g−1, and the corresponding difference in oxoglutarate dehydrogenase activity (at 38°C) was 0.83 μmol min−1 g−1. These parallel increases suggest that there is no excess mitochondrial capacity during maximal exercise with a small muscle mass.  相似文献   

10.
The phosphocreatine (PCr) recovery overshoot in skeletal muscle is a transient increase of PCr concentration above the resting level after termination of exercise. In the present study [PCr], [ATP], [Pi] and pH were measured in calf muscle during rest, during plantar flexion exercise until exhaustion and recovery, using the 31P NMR spectroscopy. A significantly greater acidification of muscle cells and significantly lower phosphorylation potential (ΔG ATP) at the end of exercise was encountered in the group of subjects that evidenced the [PCr] overshoot as well as [ADP] and [Pi] undershoots than in the group that did not. We postulate that the role of the PCr overshoot-related transiently elevated [ATP]/[ADPfree] ratio is to activate different processes (including protein synthesis) that participate in repairing numerous damages of the muscle cells caused by intensive exercise-induced stressing factors, such as extensive muscle acidification, a significant decrease in ΔG ATP, an elevated level of reactive oxygen species or mechanical disturbances.  相似文献   

11.
To examine neuromuscular fatigue and recovery, ten male strength athletes [mean (SE) 27.5 (1.4) years] performed a moderate- and a high-intensity strength exercise protocol. In the high-intensity protocol, the load was 100% of the subject's three-repetition maximum (3-RM) for squats and front squats, and 100% of the subject's 6-RM for knee extensions. In the moderate-intensity protocol, the load was 70% of the high-intensity protocol, and both protocols lasted 90 min. The contractile properties of the leg extensor muscles were tested using isokinetic knee extensions, electrical stimulation, and squat jumps. Tests were done before exercise, 5–20 min after exercise, and frequently for 33 h after exercise. The decrements in knee extension performance were greater after the high-intensity protocol (12–14%), as compared to the moderate-intensity protocol (6–7%, P < 0.01). Similar decrements were seen in squat-jumping performance after the high-intensity protocol. Decrements in electrically evoked force were also greatest after the high-intensity protocol (P < 0.05), and were more pronounced at 20 Hz stimulation than at 50 Hz stimulation (P < 0.05). The recovery of performance showed a biphasic pattern, with a rapid recovery within the first 11 h after exercise, followed by a leveling off or a second drop in performance 11–22 h after exercise. All variables were back to baseline by 3 h after the moderate-intensity protocol, while all variables were back to baseline by 33 h after the 100% protocol. The role of structural changes (excitation-contraction coupling and contractile proteins) in the long-lasting performance decrements seen after the high-intensity protocol is discussed. Accepted: 14 February 2000  相似文献   

12.
The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres were cultured in a serum-free medium at slack length (mean sarcomere length 2.3 μm) for 8 to 22 days. The medium was supplemented with (final concentrations): (1) bovine insulin (6 nmol/L or 200–600 nmol/L), (2) 0.2% bovine albumin or (3) 0.2% bovine albumin in combination with insulin (120 nmol/L). In culture medium with insulin, 50% of the muscle fibres became in-excitable within 7–12 days, whereas the other 50% were stable. Caffeine contractures of in-excitable muscle fibres produced 80.4 ± 2.4% of initial peak tetanic force, indicating impaired excitation–contraction (E–C) coupling in in-excitable fibres. In the presence of albumin, all cultured muscle fibres were stable for at least 10 days. Muscle fibres cultured in medium with insulin or albumin exclusively did not hypertrophy or change the number of sarcomeres in series. In contrast, muscle fibres cultured with both albumin and insulin showed an increase in tetanic force and fibre cross-sectional area of 19.6 ± 2.8% and 32.5 ± 4.9%, respectively, (means ± SEM.; P = 0.007) after 16.3 ± 1.7 days, whereas the number of sarcomeres in series remained unchanged. We conclude that albumin prevents muscle fibre damage and preserves E–C coupling in culture. Furthermore, albumin is important in regulating muscle fibre adaptation by a synergistic action with growth factors like insulin.  相似文献   

13.
The purpose of this study was to investigate the effect of concurrent strength and endurance training on strength, endurance, endocrine status and muscle fibre properties. A total of 45 male and female subjects were randomly assigned to one of four groups; strength training only (S), endurance training only (E), concurrent strength and endurance training (SE), or a control group (C). Groups S and E trained 3 days a week and the SE group trained 6 days a week for 12 weeks. Tests were made before and after 6 and 12 weeks of training. There was a similar increase in maximal oxygen consumption (O2 max) in both groups E and SE (P < 0.05). Leg press and knee extension one repetition maximum (1 RM) was increased in groups S and SE (P < 0.05) but the gains in knee extension 1 RM were greater for group S compared to all other groups (P < 0.05). Types I and II muscle fibre area increased after 6 and 12 weeks of strength training and after 12 weeks of combined training in type II fibres only (P < 0.05). Groups SE and E had an increase in succinate dehydrogenase activity and group E had a decrease in adenosine triphosphatase after 12 weeks of training (P < 0.05). A significant increase in capillary per fibre ratio was noted after 12 weeks of training in group SE. No changes were observed in testosterone, human growth hormone or sex hormone binding globulin concentrations for any group but there was a greater urinary cortisol concentration in the women of group SE and decrease in the men of group E after 12 weeks of training (P < 0.05). These findings would support the contention that combined strength and endurance training can suppress some of the adaptations to strength training and augment some aspects of capillarization in skeletal muscle. Accepted: 10 November 1998  相似文献   

14.
Muscle phosphocreatine (PCr) recovery time constant (an index of muscle aerobic capacity) and contractile ATP cost were estimated from a gated (31)P NMR protocol which does not require intense, repetitive exercise. Subjects performed 2-s duration, maximum voluntary isometric ankle dorsiflexion contractions at 30-s intervals for 8 min (total 15 contractions), while single-shot (31)P spectra (51.7 MHz, TR 3 s) were acquired from the anterior compartment muscle. Spectra from the sixth through 15th contractions were retrospectively sorted, yielding 10 spectra (each 10 averages) gated to times before and after contraction. There was no significant decrease in muscle pH, allowing the calculation of contractile ATP cost directly from the percentage change in PCr during contraction cycles [8.86 +/- 0.82% (SE, n = 11) of PCr at rest], corresponding to an ATP cost of 1.69 +/- 0.16 mM/s (range 0.99-2.49 mM/s), assuming an 8.2 mM ATP concentration. The time constant for PCr recovery (tau 41.8 +/- 4.2 s, range 22.0-60.8 s) was calculated from tau = -Deltat/ln[D/(D + Q)], where Q is the percentage change in PCr due to contraction, D is the additional steady-state percentage drop in PCr from rest and Deltat is the interval between contractions. In the same subjects, the monoexponential PCr recovery time constant after more intense, repetitive isometric ankle dorsiflexion exercise (30 s at 0.5 Hz, 50% duty cycle) was similar to (36.2 +/- 3.5 s, range 16.5-58.8 s) and well correlated with (r = 0.82) the gated result. In contrast to the gated protocol, muscle pH decreased from 7.01 +/- 0.01 to 6.78 +/- 0.04 during recovery after the repetitive protocol. Hence the gated protocol allows the estimation of muscle ATP cost and PCr recovery without intense exercise or muscle acidification.  相似文献   

15.
The thermoregulatory responses of ten paraplegic (PA; T3/4-L4) and nine able-bodied (AB) upper body trained athletes were examined at rest and during prolonged arm-cranking exercise and passive recovery. Exercise was performed for 90 min at 80% peak heart rate, and at 21.5 (1.7)°C and 47.0 (7.8)% relative humidity on a Monark cycle ergometer (Ergomedic 814E) adapted for arm exercise. Mean peak oxygen uptake values for the PA and AB athlete groups were 2.12 (0.41) min−1 and 3.19 (0.38) l · min−1, respectively (P<0.05). At rest, there was no difference in aural temperature between groups [36.2 (0.4)°C for both groups]. However, upper body skin temperatures for the PA athletes were approximately 1.0 °C warmer than for the AB athletes, whereas lower body skin temperatures were cooler than those for the AB athletes (1.3 °C and 2.7 °C for the thigh and calf, respectively). Upper and lower body skin temperatures for the AB athletes were similar. During exercise, blood lactate peaked after 15 min of exercise for both groups [3.33 (1.26) mmol · l−1 and 4.30 (1.03) mmol · l−1 for the PA and AB athletes, respectively, P<0.05] and decreased throughout the remainder of the exercise period. Aural temperature increased by 0.7 (0.5)°C and 0.6 (0.4)°C for the AB and PA athletes, respectively. Calf skin temperature for the PA athletes increased during exercise by 1.4 (2.8)°C (P<0.05), whereas a decrease of 0.8 (2.0)°C (P<0.05) was observed for the AB athletes. During the first 20 min of recovery from exercise, the calf skin temperature of the AB athletes decreased further [−2.6 (1.3)°C; P<0.05]. Weight losses and changes in plasma volume were similar for both groups [0.7 (0.5) kg and 0.7 (0.4) kg; 5.4 (4.9)% and 9.7 (6.2)% for the PA and AB athletes, respectively]. In conclusion, the results of this study suggest that the PA athletes exhibit different thermoregulatory responses at rest and during exercise and passive recovery to those of upper body trained AB athletes. Despite this, during 90 min of arm-crank exercise in a cool environment, the PA athletes appeared to be at no greater thermal risk than the AB athletes. Accepted: 7 May 1997  相似文献   

16.
The effect of training under conditions of local leg ischaemia on muscle area and fibre dimensions was studied in nine males. Leg ischaemia was induced by enclosing the legs in a pressure chamber and sealing the opening with a rubber membrane at the level of the crotch. Air pressure over the legs was 50 mmHg. The subjects performed 16 sessions (45 min) of one-legged supine strenuous ischaemic training during 4 weeks. Exercise intensity was maintained as high as possible during the whole session. The contralateral leg served as a control leg and remained passive during exercise. Before and after the training period, muscle fibre dimensions were determined from biopsy samples taken from the m. vastus lateralis, and leg muscle dimensions were assessed by magnetic resonance imaging (MRI). In the trained leg, mean fibre area increased by 12% (P < 0.05). The MRI-assessed cross-sectional area of the vastus group increased by 4% (P=0.01). In the control leg, mean fibre area and the cross-sectional area of the vastus group were unchanged, while those of the adductor muscle group decreased by 4% (P < 0.05). It is concluded that a short period of strenuous ischaemic endurance training increases the cross-sectional area of the ischaemically trained muscle group, as measured both by MRI and from muscle biopsy samples. In contrast, the adductor muscles in the contralateral thigh showed a decreased cross-sectional area (as assessed by MRI), possibly due to the effects of the strenuous contralateral training, by mechanisms that have yet to be identified. Accepted: 26 December 1999  相似文献   

17.
The aim of this study was to determine if severe exercise-induced muscle damage alters the plasma concentrations of glutamine and zinc. Changes in plasma concentrations of glutamine, zinc and polymorphonuclear elastase (an index of phagocytic cell activation) were examined for up to 10 days following eccentric exercise of the knee extensors of one leg in eight untrained subjects. The exercise bout consisted of 20 repetitions of electrically stimulated eccentric muscle actions on an isokinetic dynamometer. Subjects experienced severe muscle soreness and large increases in plasma creatine kinase activity indicative of muscle fibre damage. Peak soreness occurred at 2 days post-exercise and peak creatine kinase activity [21714 (6416) U · l−1, mean (SEM)] occurred at 3 days post-exercise (P < 0.01 compared with pre-exercise). Plasma elastase concentration was increased at 3 days post-exercise compared with pre-exercise (P < 0.05), and is presumably indicative of ongoing phagocytic leucocyte infiltration and activation in the damaged muscles. There were no significant changes in plasma zinc and glutamine concentrations in the days following eccentric exercise. We conclude that exercise-induced muscle damage does not produce changes in plasma glutamine or zinc concentrations despite evidence of phagocytic neutrophil activation. Accepted: 3 November 1997  相似文献   

18.
This 12-month prospective controlled intervention evaluated the effect of a general school based physical activity program on muscle strength, physical performance and body composition in prepubertal girls. Fifty-three girls aged 7–9 years involved in a school based exercise program [40 min/day of general physical activity per school day (200 min/week)] were compared with 50 age-matched girls who participated in the general Swedish physical education curriculum (mean 60 min/week). Body composition (DXA), isokinetic peak torque (PT) of the knee extensors and flexors at 60 and 180°/s, and vertical jump height (VJH) were assessed at baseline and 12 months. The annual gain in weight was similar between the groups, but there was a greater increase in total body and regional lean mass (P < 0.05) and fat mass (P < 0.01) in the exercise group. Mean gains in knee extensor PT at 60 and 180°/s were 7.0–7.6% greater in the exercise group (P ranging <0.05–<0.001). No significant differences were detected in VJH. In conclusion, increasing school based physical education to at least 3 h/week provides a feasible strategy to enhance the development of muscle strength and lean mass in prepubertal girls.  相似文献   

19.
The purpose of the present study was to investigate the effect of recruitment on the relationship between peak torque and physiological cross-sectional area (PCSA) in human muscle. A group of 11 healthy men participated in this study. Isokinetic knee extension torques at seven (0, 30, 60, 120, 180, 240, and 300° · s−1) velocities were determined. Magnetic resonance imaging (MRI) was performed to calculate PCSA of right quadriceps femoris (QF) muscle. Exercise-induced contrast shifts in spin-spin relaxation time (T2)-weighted MRI were taken at rest and immediately after repetitive knee-extension exercise and T2 of QF were calculated. The MRI pixels with T2 values more than 1 SD greater than the means at rest were considered to represent QF muscle that had contracted. The area of activated PCSA within the total in QF was expressed as percentage activated PCSA and used as an index of muscle recruitment. The PCSA correlated with peak torque at 0° · s−1 (r=0.615, P < 0.05); in contrast, activated PCSA correlated with peak torque at 120° · s−1 (r=0.603, P < 0.05) and 180° · s−1 (r=0.606, P < 0.05). Additionally, there was a significant difference in correlation coefficients between the activated PCSA-peak torque relationship and the PCSA-torque relationship (P < 0.05). These results suggested that muscle recruitment affects the PCSA-torque relationship. Accepted: 11 August 2000  相似文献   

20.
 To determine the effect of acute plasma volume (PV) expansion on substrate utilization, blood metabolites and catecholamines to prolonged, moderate intensity cycle exercise, eight untrained men mean maximal oxygen uptake,O2max 4.10 (SEM 0.32) l · min−1 were infused (10 ml·kg−1) with a 6% dextran (DEX) solution. These responses were also compared to those elicited using a short-term training (TR) protocol involving cycling for 90 to 120 min · day−1 at 60% O2max for 3 consecutive days. In general DEX, which resulted in a calculated expansion of PV by 23.9%, was without effect in modifying exercise oxygen uptake or the reduction in the respiratory exchange ratio (R) observed during prolonged exercise. In addition, the concentrations of blood glucose, glycerol, alanine and serum free fatty acids, although altered (P < 0.05) by exercise, were not altered by DEX. Blood lactate concentration was only higher (P < 0.05) at 30 min of exercise during DEX compared to the control. With the exception of blood lactate concentration, which was reduced (P < 0.05), TR did not change R or the concentrations of other blood metabolites. The concentrations of nonadrenaline and adrenaline, were depressed (P < 0.05) by DEX and TR at 60 and 90 min of exercise. These results would suggest that mechanisms as yet undefined can compensate for the estimated 10% reduction in arterial oxygen content mediated by acute PV expansion and enable prolonged exercise to be performed without adjustments in substrate selection and substrate mobilization. Accepted: 23 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号