首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion-weighted single-shot echoplanar MR imaging for liver disease.   总被引:66,自引:0,他引:66  
OBJECTIVE: The aims of this study were to determine apparent diffusion coefficients (ADCs) of the abdominal organs and liver lesions, to determine the effect of the magnitude of b values on the ADCs, and to determine whether measured ADCs of liver tumors help differentiate benign from malignant lesions. SUBJECTS AND METHODS: Six healthy volunteers and 126 patients were examined with diffusion-weighted single-shot echo-planar imaging using multiple b values (maximum, 846 sec/mm2). The ADCs of the liver, spleen, kidney, 49 malignant liver lesions (33 hepatocellular carcinomas, 15 metastatic liver tumors, and one cholangiocellular carcinoma), and 30 benign lesions (17 cysts, 12 hemangiomas, and one angiomyolipoma) were calculated. RESULTS: The ADCs of the abdominal organs and liver lesions showed smaller values when calculated with the greater maximum b values. The ADCs of the benign lesions calculated with all the b values of less than 850 sec/mm2 (2.49+/-1.39 x 10(-3) mm2/sec) were significantly (p = .0024) greater than those of the malignant lesions (1.01+/-0.38 x 10(-3) mm2/sec). When the maximum b value is 846 sec/mm2, use of a threshold ADC of 1.6 x 10(-3) mm2/sec would result in a sensitivity of 98% and a specificity of 80% for differentiation of malignant liver lesions from benign lesions. CONCLUSION. Measurement of ADC has good potential for characterizing liver lesions, but the calculated ADCs could be affected by the magnitude of the maximum b value.  相似文献   

2.
PURPOSE: To evaluate whether apparent diffusion coefficients (ADCs) calculated from diffusion-weighted echo-planar magnetic resonance (MR) images can be used to characterize head and neck lesions. MATERIALS AND METHODS: Diffusion-weighted echo-planar MR imaging was performed with a 1.5-T MR unit in 97 head and neck lesions in 97 patients. Images were obtained with a diffusion-weighted factor, factor b, of 0, 500, and 1,000 sec/mm(2), and an ADC map was constructed. The ADCs of lesions, cerebrospinal fluid, and spinal cord were calculated. RESULTS: Acceptable images for ADC measurement were obtained in 81 (84%) patients. The mean ADC of malignant lymphomas, (0.66 +/- 0.17[SD]) x 10(-3) mm(2)/sec (n = 13), was significantly smaller (P <.001) than that of carcinomas. The mean ADC of carcinomas, (1.13 +/- 0.43) x 10(-3) mm(2)/sec (n = 36), was significantly smaller (P =.002) than that of benign solid tumors. The mean ADC of benign solid tumors, (1.56 +/- 0.51) x 10(-3) mm(2)/sec (n = 22), was significantly smaller (P =.035) than that of benign cystic lesions, (2.05 +/- 0.62) x 10(-3) mm(2)/sec (n = 10). No significant differences were seen in the mean ADC of cerebrospinal fluid and of spinal cord among four groups of lesions. When an ADC smaller than 1.22 x 10(-3) mm(2)/sec was used for predicting malignancy, the highest accuracy of 86%, with 84% sensitivity and 91% specificity, was obtained. CONCLUSION: Measurement of ADCs may be used to characterize head and neck lesions.  相似文献   

3.
PURPOSE: To prospectively evaluate diffusion-weighted (DW) magnetic resonance (MR) imaging with a split acquisition of fast spin-echo signals for diffusion imaging (SPLICE) sequence for tissue characterization of lung carcinomas by using apparent diffusion coefficients (ADCs). Materials and METHODS: An institutional review board approved this study; informed consent was obtained from patients. Thirty patients (nine women, 21 men; mean age, 68.0 years) with lung carcinoma underwent DW MR imaging with the SPLICE sequence. ADC of each lung carcinoma was calculated from DW MR images obtained with low and high b values. ADCs of lung carcinomas were statistically compared among histologic types. Nine surgically excised lung carcinomas were evaluated for correlation between ADCs and tumor cellularities. Analysis of variance was used to determine changes in ADCs and histologic lung carcinoma types. Spearman rank correlation was calculated between ADCs and tumor cellularities. RESULTS: ADCs for lung carcinomas were 1.63 x 10(-3) mm(2)/sec +/- 0.5 (mean +/- standard deviation) for squamous cell carcinoma, 2.12 x 10(-3) mm(2)/sec +/- 0.6 for adenocarcinoma, 1.30 x 10(-3) mm(2)/sec +/- 0.4 for large-cell carcinoma, and 2.09 x 10(-3) mm(2)/sec +/- 0.3 for small-cell carcinoma. ADC of adenocarcinoma was significantly higher than that of squamous cell carcinoma and large-cell carcinoma (P < .05). ADCs were 1.59 x 10(-3) mm(2)/sec +/- 0.5 and 1.70 x 10(-3) mm(2)/sec +/- 0.4 for moderately and poorly differentiated squamous cell carcinoma, respectively. ADCs were 2.52 x 10(-3) mm(2)/sec +/- 0.4 and 1.44 x 10(-3) mm(2)/sec +/- 0.3 for well- and poorly differentiated adenocarcinoma, respectively. ADC of well-differentiated adenocarcinoma was significantly higher than that of moderately and poorly differentiated squamous cell carcinoma and poorly differentiated adenocarcinoma (P < .05). With the Spearman rank test, ADCs of lung carcinomas correlated well with tumor cellularities (Spearman coefficient, -0.75; P < .02). CONCLUSION: ADCs of lung carcinomas overlap, but ADCs of well-differentiated adenocarcinoma appear to be higher than those of other histologic lung carcinoma types.  相似文献   

4.
PURPOSE: To evaluate the value of diffusion-weighted imaging (DWI) in distinguishing between benign and malignant breast lesions. MATERIALS AND METHODS: Fifty-two female subjects (mean age = 58 years, age range = 25-75 years) with histopathologically proven breast lesions underwent DWI of the breasts with a single-shot echo-planar imaging (EPI) sequence using large b values. The computed mean apparent diffusion coefficients (ADCs) of the breast lesions and cell density were then correlated. RESULTS: The ADCs varied substantially between benign breast lesions ((1.57 +/- 0.23) x 10(-3) mm(2)/second) and malignant breast lesions ((0.97 +/- 0.20) x 10(-3) mm(2)/second). In addition, the mean ADCs of the breast lesions correlated well with tumor cellularity (P < 0.01, r = -0.542). CONCLUSION: The ADC would be an effective parameter in distinguishing between malignant and benign breast lesions. Further, tumor cellularity has a significant influence on the ADCs obtained in both benign and malignant breast tumors.  相似文献   

5.
Yamada I  Aung W  Himeno Y  Nakagawa T  Shibuya H 《Radiology》1999,210(3):617-623
PURPOSE: To determine the true diffusion coefficients of abdominal organs and hepatic lesions with intravoxel incoherent motion (IVIM) echo-planar magnetic resonance (MR) imaging. MATERIALS AND METHODS: Seventy-eight patients suspected of having hepatic lesions were examined with IVIM echo-planar MR imaging at 1.5 T. There were 77 hepatic masses (27 hepatocellular carcinomas, 10 metastatic tumors, eight hemangiomas, and 32 cysts) in the 78 patients. The true diffusion coefficient D and the perfusion fraction f were calculated and compared with the apparent diffusion coefficient (ADC). RESULTS: Specific values of D were found for abdominal organs (liver, 0.72 x 10(-3) mm2/sec; spleen, 0.80 x 10(-3) mm2/sec; kidney, 1.38 x 10(-3) mm2/sec; gallbladder, 2.82 x 10(-3) mm2/sec) and for hepatic lesions (hepatocellular carcinoma, 1.02 x 10(-3) mm2/sec; metastasis, 1.16 x 10(-3) mm2/sec; hemangioma, 1.31 x 10(-3) mm2/sec; cysts, 3.03 x 10(-3) mm2/sec). The ADCs of solid organs and solid lesions were significantly higher than their D values, indicating a high contribution of perfusion to the ADCs. CONCLUSION: Perfusion contributes to the ADCs of abdominal organs and hepatic lesions. The D and f values are useful for the characterization of hepatic lesions.  相似文献   

6.
CT and radiography of bacterial respiratory infections in AIDS patients   总被引:4,自引:0,他引:4  
OBJECTIVE: Acute vertebral collapse is common, and it is sometimes difficult to determine whether the cause is benign or malignant. Recently, diffusion-weighted imaging has been reported to be useful for differentiating the two types. The purpose of this study was to evaluate diffusion abnormalities quantitatively in benign and malignant compression fractures using line scan diffusion-weighted imaging. SUBJECTS AND METHODS. Line scan diffusion-weighted imaging was prospectively performed in 17 patients with 20 acute vertebral compression fractures caused by osteoporosis or trauma, in 12 patients with 16 vertebral compression fractures caused by malignant tumors, and in 35 patients with 47 metastatic vertebrae without collapse. Images were obtained at b values of 5 and 1,000 sec/mm(2). The apparent diffusion coefficient (ADC) was measured in vertebral compression fractures and metastatic vertebrae without collapse. RESULTS: The ADC (mean +/- SD) was 1.21 +/- 0.17 x 10(-3) mm(2)/sec in benign compression fractures, 0.92 +/- 0.20 x 10(-3) mm(2)/sec in malignant compression fractures, and 0.83 +/- 0.17 x 10(-3) mm(2)/sec in metastatic vertebral lesions without collapse. The ADC was significantly higher in benign compression fractures than in malignant compression fractures (p < 0.01), although the two types showed considerable overlap. CONCLUSION: Although the quantitative assessment of vertebral diffusion provides additional information concerning compressed vertebrae, the benign and malignant compression fracture ADC values overlap considerably. Therefore, even a quantitative vertebral diffusion assessment may not always permit a clear distinction between benign and malignant compression fractures.  相似文献   

7.
PURPOSE: To investigate the relevance of increasing b-values in evaluating liver fibrosis through the agreement of two diffusion-weighted (DW) sequences. MATERIALS AND METHODS: A total of 29 cirrhotic patients and 29 healthy volunteers were studied on a 1.5T system. Two single-shot spin-echo echo-planar sequences were acquired using sets of increasing b-values: 0, 150, 250, and 400 seconds/mm(2) (first sequence: DW1a) and 0, 150, 250, 400, 600, and 800 seconds/mm(2) (second sequence: DW2a). Apparent diffusion coefficients (ADCs) of the hepatic parenchyma were calculated on ADC maps. Noise-scaled single-point ADCs were calculated for each sequence from b = 400 seconds/mm(2). RESULTS: ADCs resulted significantly lower in cirrhotic patients compared to controls using both DW1a (mean 1.14 +/- 0.20 x 10(-3)mm(2)/second vs. 1.54 +/- 0.12 x 10(-3)mm(2)/second; P < 0.0001) and DW2a (mean 0.91 +/- 0.18 x 10(-3)mm(2)/second vs. 1.04 +/- 0.18 x 10(-3)mm(2)/second; P = 0.0089). DW1 and DW2, respectively significantly differed in diagnostic performance at receiver operating characteristic (ROC) curve analysis (P = 0.003), showing AUCs of 0.93 (sensitivity 89.7%, specificity 100%) and 0.73 (sensitivity 62.1%, specificity 79.3%), respectively. Noise-scaled single-point ADCs showed a progressive convergence to similar values in cirrhotic and healthy livers at b = 800 seconds/mm(2) (1.12 +/- 0.27 x 10(-3)mm(2)/second vs. 1.13 +/- 0.17 x 10(-3)mm(2)/second). CONCLUSION: A DW sequence is accurate in assessing liver fibrosis using intermediate (400 seconds/mm(2)) rather than high (800 seconds/mm(2)) maximum b-values, but after proper recalculation of ADCs the effects of perfusion rather than diffusion should be considered responsible for the higher accuracy at lower b-values.  相似文献   

8.
PURPOSE: To compare the apparent diffusion coefficients (ADCs) of myxoid and nonmyxoid soft-tissue tumors using line-scan diffusion-weighted imaging (LSDWI), and to investigate the myxoid matrix influence on ADCs of soft-tissue tumors. MATERIALS AND METHODS: This study enrolled 44 patients with soft tissue tumors. They were divided into two groups: one with myxoid-containing soft-tissue tumors (N = 23) and the other with nonmyxoid soft-tissue tumors (N = 21). The 44 patients were also classified histologically into 26 with malignant soft-tissue tumors and 18 with benign soft-tissue tumors. LSDWI was performed using b values of 5 and 1000 second/mm(2). The ADCs of the tumors were calculated and compared for myxoid and nonmyxoid tumors and for benign and malignant tumors. RESULTS: The ADC (mean +/- SD) was 1.92 +/- 0.41 x 10(-3) mm(2)/second in myxoid containing tumors, whereas the ADC was 0.97 +/- 0.33 x 10(-3) mm(2)/second in nonmyxoid tumors. The ADCs of the myxoid and nonmyxoid tumors were significantly different (P < 0.01). The ADCs were 1.45 +/- 0.59 x 10(-3) mm(2)/second in malignant tumors and 1.50 +/- 0.64 x 10(-3) mm(2)/second in benign tumors. The ADCs of benign and malignant soft-tissue tumors were not significantly different. CONCLUSION: The ADCs of myxoid-containing soft-tissue tumors were significantly higher than those of nonmyxoid soft-tissue tumors. The myxoid matrix influences ADCs of both benign and malignant soft-tissue tumors.  相似文献   

9.
PURPOSE: Diagnosis and quantification of hepatic fibrosis are especially important in patients with chronic liver disease. Liver biopsy remains the gold standard for diagnosis of cirrhosis but has several limitations. The purpose of this study was to determine the usefulness of diffusion-weighted MR imaging, for the diagnosis of cirrhosis and quantification of hepatic fibrosis, and to define the best sequence parameters for this evaluation. METHODS AND MATERIALS: Diffusion-weighted imaging using a 1.5 T MR unit was performed in 14 healthy volunteers and 13 cirrhotic patients. Sets of 8 images with different b values (200, 400, 600, and 800 sec/mm2) and different TR (3500 and 5000 ms) were acquired with breath-holding. Apparent diffusion coefficients (ADCs) were calculated. Correlation between Child-Pugh scores, serum hyaluronate concentrations and ADCs were performed. RESULTS: ADCs were significantly lower in cirrhotic patients (2,055 10-3) compared to controls (2,915 10-3) (p<0.05) when the b value was 200 s/mm2 and the TR was 5000 ms. Significant correlations were observed between Child-Pugh scores and ADCs (p<0.05), and between serum hyaluronate concentrations and ADCs (p<0.05), when the b value was 400 sec/mm2 and the TR was 5000 ms. CONCLUSION: Our preliminary study showed that the measurement of ADCs has good potential for diagnosis and quantification of hepatic fibrosis, especially when using b values of 200 sec/mm2 and 400 sec/mm2.  相似文献   

10.
BACKGROUND AND PURPOSE: Conventional imaging techniques cannot be used to unambiguously and reliably differentiate malignant from benign vertebral compression fractures. Our hypothesis is that these malignant and benign vertebral lesions can be better distinguished on the basis of tissue apparent diffusion coefficients (ADCs). The purpose of this study was to test this hypothesis by using a quantitative diffusion imaging technique. METHODS: Twenty-seven patients with known cancer and suspected metastatic vertebral lesions underwent 1.5-T conventional T1-weighted, T2-weighted, and contrast-enhanced T1-weighted imaging to identify the lesions. Diffusion-weighted images of the areas of interest were acquired by using a fast spin-echo diffusion pulse sequence with b values of 0-250 s/mm(2). The abnormal regions on the diffusion-weighted images were outlined by using the conventional images as guides, and the ADC values were calculated. On the basis of pathologic results and clinical findings, the cases were divided into two categories: benign compression fractures and metastatic lesions. The ADC values for each category were combined and plotted as histograms; this procedure was followed by statistical analysis. RESULTS: The patient group had 12 benign fractures and 15 metastases. The mean ADC values, as obtained from the histograms, were (1.9 +/- 0.3) x 10(-4) mm(2)/s and (3.2 +/- 0.5) x 10(-4) mm(2)/s for metastases and benign fractures, respectively. CONCLUSION: Our results indicate that quantitative ADC mapping, instead of qualitative diffusion-weighted imaging, can provide valuable information in differentiating benign vertebral fractures from metastatic lesions.  相似文献   

11.
OBJECTIVE: The purpose of this study was to detect quantitative diffusion-weighted abnormalities in the lacrimal glands of patients with Sjogren's syndrome. MATERIALS AND METHODS: Diffusion-weighted MRI was performed on 31 healthy volunteers and 11 Sjogren's syndrome patients with impaired lacrimal function. The volunteers and patients underwent MRI with a single-shot spin-echo echo-planar technique using a 47-mm microscopy coil. The apparent diffusion coefficient (ADC) of the lacrimal and parotid glands was obtained with b factors of 500 and 1,000 sec/mm(2). T1-weighted and fat-suppressed T2-weighted MR microscopic images were also obtained to evaluate the gland morphology and signals. RESULTS: MR microscopy provided high-resolution images of the lacrimal glands that enabled ADC measurements. The ADCs of the normal lacrimal glands showed no significant sex- or age-related changes. The ADCs for the lacrimal glands were significantly higher than those of the parotid glands in the same subjects (mean +/- SD, 891 +/- 103 vs 703 +/- 84 x 10(-6) mm(2)/sec, respectively; p < 0.0001, Mann-Whitney U test). We found that ADCs of the lacrimal glands in Sjogren's syndrome patients were significantly lower than those from the normal glands of age-matched healthy volunteers (736 +/- 34 vs 923 +/- 84 x 10(-6) mm(2)/sec; p < 0.0001, Mann-Whitney U test). CONCLUSION: These findings suggest that the measurement of ADCs may be a useful tool to assess abnormalities of the lacrimal glands in patients with Sjogren's syndrome.  相似文献   

12.
目的评估MR扩散加权成像(DWI)对肝脏肿瘤性病变、特别是影像学表现不典型肿瘤性病变的诊断价值及其良恶性鉴别诊断价值。资料与方法对2010年8月至2011年5月的55例患者(34例为肿瘤患者怀疑有肝脏转移,21例CT、B超等影像学检查拟诊肝脏占位性病变无法进行定性诊断)行MR常规序列及DWI,共发现92个病灶(25个原发性肝癌,27个肝转移瘤,3个肝胆管细胞癌,2个肝硬化结节,2个肝脏局灶性结节增生,7个肝血管瘤,26个肝囊肿)。通过分析肝脏病灶信号强度随b值不同的变化及病灶表观扩散系数(ADC)值的大小(平均数±标准差)等对肝脏肿瘤性病变、特别是不典型肿瘤性病变的良恶性进行诊断及鉴别诊断,以病理结果或随访结果为标准计算其敏感性及特异性。结果 MR DWI上,b=50 s/mm2、500s/mm2及b=50 s/mm2、1000 s/mm2时,良性病变的信号衰减程度高于恶性病变,即b为50 s/mm2、1000 s/mm2时,恶性病变为高信号,而良性病变呈相对等信号或低信号,良恶性病灶信号强度差异明显。恶性病变的ADC值(b值为50 s/mm2、1000 s/mm2时计算)[(0.845±0.0110)×10-3mm2/s,n=55]明显低于良性病变的ADC值(b值为50 s/mm2、1000 s/mm2时计算)[(2.230±0.0497)×10-3mm2/s,n=37],经秩和检验差异具有统计学意义(Z=-7.905,P<0.01),敏感性及特异性分别为96.36%和83.78%。结论 DWI对肝脏肿瘤性病变、特别是影像学表现不典型肿瘤性病变具有较大诊断价值,对肝脏肿瘤性病变的良恶性鉴别诊断是一种简单、实用的影像学检查方法。  相似文献   

13.
OBJECTIVE: We wanted to evaluate the role of diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) for detecting breast tumors, as compared with the T1- and T2-weighted images. MATERIALS AND METHODS: Forty-one female patients underwent breast MRI, and this included the T1-, T2-, DWI and dynamic contrast-enhanced images. Sixty-five enhancing lesions were detected on the dynamic contrast-enhanced images and we used this as a reference image for detecting tumor. Fifty-six breast lesions were detected on DWI and the histological diagnoses were as follows: 43 invasive ductal carcinomas, one mucinous carcinoma, one mixed infiltrative and mucinous carcinoma, seven ductal carcinomas in situ (DCIS), and four benign tumors. First, we compared the detectability of breast lesions on DWI with that of the T1- and T2-weighted images. We then compared the ADCs of the malignant and benign breast lesions to the ADCs of the normal fibroglandular tissue. RESULTS: Fifty-six lesions were detected via DWI (detectability of 86.2%). The detectabilities of breast lesions on the T1- and T2-weighted imaging were 61.5% (40/65) and 75.4% (49/65), respectively. The mean ADCs of the invasive ductal carcinoma (0.89+/-0.18 x 10(-3)mm(2)/second) and DCIS (1.17+/-0.18 x 10(-3)mm(2)/ second) are significantly lower than those of the benign lesions (1.41+/-0.56 x 10(-3)mm(2)/second) and the normal fibroglandular tissue (1.51+/-0.29 x 10(-3)mm(2)/ second). CONCLUSION: DWI has a high sensitivity for detecting breast tumors, and especially for detecting malignant breast tumors. DWI was an effective imaging technique for detecting breast lesions, as compared to using the T1- and T2-weighted images.  相似文献   

14.
Quantitative diffusion imaging in breast cancer: a clinical prospective study   总被引:12,自引:0,他引:12  
PURPOSE: To study the correlation between apparent diffusion coefficient (ADC) and pathology in patients with undefined breast lesion, to validate how accurately ADC is related to histology, and to define a threshold value of ADC to distinguish malignant from benign lesions. MATERIALS AND METHODS: Seventy-eight patients (110 lesions) were referred for positive or dubious findings. Three-dimensional fast low-angle shot (3D-FLASH) with contrast injection was applied. EPI diffusion-weighted imaging (DWI) with fat saturation was performed, and ROIs were selected on subtraction 3D-FLASH images before and after contrast injection, and copied on an ADC map. Inter- and intraobserver analyses were performed. RESULTS: At pathology 22 lesions were benign, 65 were malignant, and 23 were excluded. The ADCs of malignant and benign lesions were statistically different. In malignant tumors the ADC was (mean +/- SEM) 0.95 +/- 0.027 x 10(-3)mm(2)/second, and in benign tumors it was 1.51 +/- 0.068 x 10(-3)mm(2)/second. According to receiver operating characteristic (ROC) curves, we found a threshold between malignant and benign lesions for highest sensitivity and specificity (both 86%) around 1.13 +/- 0.10 x 10(-3)mm(2)/second. For a threshold of 0.95 +/- 0.10 x 10(-3)mm(2)/second, specificity was 100% but sensitivity was very low. Inter- and intraobserver studies showed good reproducibility. CONCLUSION: The ADC may help to differentiate benign and malignant lesions with good specificity, and may increase the overall specificity of breast MRI.  相似文献   

15.
Diffusion-weighted MRI in the characterization of soft-tissue tumors   总被引:10,自引:0,他引:10  
PURPOSE: To explore the potential of perfusion-corrected diffusion-weighted magnetic resonance imaging (MRI) in characterizing soft-tissue tumors. METHODS AND MATERIALS: Diffusion-weighted MRI was performed in 23 histologically proven soft-tissue masses using a diffusion-weighted spin-echo sequence with diffusion gradient strengths yielding five b-values (0-701 seconds/mm(2)). True diffusion coefficients and perfusion fractions were estimated and compared with apparent diffusion coefficients (ADCs). RESULTS: ADC values of all tumors, subcutaneous fat, and muscle were significantly higher than true diffusion coefficients, indicating a contribution of perfusion to the ADC. True diffusion coefficients of malignant tumors (1.08 x 10(-3) mm(2)/second) were significantly lower than those of benign masses (1.71 x 10(-3) mm(2)/second), whereas ADC values between these groups were not significantly different. CONCLUSION: Perfusion-corrected diffusion-weighted MRI has potential in differentiating benign from malignant soft-tissue masses.  相似文献   

16.
We investigated the diagnostic importance of focal defects in the apparent diffusion coefficient (ADC)-based differentiation between lymphoma and squamous cell carcinoma (SCCs) nodes in the neck. The ADCs were analyzed for 79 lymphoma nodes from 26 patients and 88 SCC nodes from 45 patients. The ADCs of the lymphoma nodes without focal defects (0.449 +/- 0.096 x 10(-3) mm(2)/s) were significantly lower than those of the SCC nodes without focal defects (0.960 +/- 0.310 x 10(-3) mm(2)/s). However, the ADCs were not significantly different between the lymphoma and SCC nodes with focal defects (1.091 +/- 0.405 and 1.423 +/- 0.529 x 10(-3) mm(2)/s, respectively), and the differentiation was therefore ineffective. By comparison, the ADCs of the focal defects in the lymphoma nodes (1.091 +/- 0.405 x 10(-3) mm(2)/s) were significantly lower than those of the focal defects in the SCC nodes (1.905 +/- 0.640 x 10(-3) mm(2)/s). Accordingly, when the diseased nodes with or without focal defects are separately assessed using different ADC criteria (0.600 x 10(-3) mm(2)/s for entire nodes and 1.450 x 10(-3) mm(2)/s for focal defects), the overall diagnostic accuracy was significantly improved. These results suggest the importance of focal defects when differentiating lymphoma and SCC nodes based on ADC measurements.  相似文献   

17.
PURPOSE: To determine the optimal b values required for diffusion-weighted (DW) imaging of the liver in the detection and characterization of benign and malignant hepatic lesions. MATERIALS AND METHODS: MR images obtained in 76 patients including 28 malignant hepatic lesions (21 hepatocellular carcinomas and 7 metastases) and 27 benign lesions (12 hemangiomas and 15 cysts) were reviewed. DW-echo planner images (EPIs; b values with 100, 200, 400, and 800 s/mm2) were reviewed solely first, and then with T2-weighted EPIs (b=0 s/mm2). RESULTS: Sensitivity for malignant lesions (74%) was highest on DW-EPIs with b value of 100 s/mm2 and T2-weighted EPIs combined (P<0.05), and sensitivity for benign lesions (87%) was highest on DW-EPIs with b value of 800 s/mm2 and T2-weighted EPIs (P<0.05). Specificities were comparably high for all sequences. The Az values for malignant lesions were 0.94, 0.90, 0.87, and 0.89, and those for benign lesions were 0.91, 0.89, 0.87, and 0.94 on DW-EPIs with b values of 100, 200, 400, and 800 and T2-weighted EPIs combined, respectively. Hepatic cysts were clearly distinguished with the cutoff ADC value of 2.5x10(-3) mm2/s using a b value of 400 s/mm2 or greater. CONCLUSION: DW-EPIs with middle b values were not required in the detection and characterization of benign and malignant hepatic lesions.  相似文献   

18.
PURPOSE: To establish quantitative standards for age-related changes in diffusion restriction of cerebral white matter in healthy children and to compare data with results in children with white matter diseases. MATERIALS AND METHODS: Diffusion-weighted magnetic resonance (MR) imaging was performed in 44 children (age range, 7 days to 7.5 years) without brain abnormalities and in 13 children with proved leukodystrophy. Apparent diffusion coefficient (ADC) and apparent anisotropy (AA) were measured in 11 regions of interest within white matter. Age-related changes were analyzed with regression analysis. RESULTS: During normal brain myelination, ADCs in different anatomic regions were high at birth (range, 1.04 x 10(-9) m(2)/sec +/- 0.05 [SD] to 1.64 x 10(-9) m(2)/sec +/- 0.09) and low after brain maturation (range, 0.75 x 10(-9) m(2)/sec +/- 0.02 to 0.92 x 10(-9) m(2)/sec +/- 0.02). AA was low at birth (range, 0.05 +/- 0.01 to 0.52 +/- 0.04) and high after brain maturation (range, 0.25 +/- 0.02 to 0.85 +/- 0.03). Age relationship could be expressed with monoexponential functions for all anatomic regions. Anisotropy preceded the myelination-related changes at MR imaging. ADC and AA in four children with Pelizaeus-Merzbacher disease were identical with results in healthy newborn children and showed no age dependency. In peroxisomal disorders, Krabbe disease, and mitochondriopathy, demyelination on T1- and T2-weighted MR images led to expected findings at diffusion-weighted MR imaging, with high ADC and low AA, whereas in Canavan disease and metachromatic leukodystrophy, the opposite findings were revealed, with low ADC within the demyelinated white matter. CONCLUSION: During early brain myelination, diffusion restriction in normal white matter increases. Anisotropy precedes myelination changes that are visible at MR imaging. Compared with T1- and T2-weighted MR imaging, diffusion-weighted MR imaging in white matter diseases reveals additional information.  相似文献   

19.
Glioblastoma multiforme with atypical diffusion-weighted MR findings   总被引:1,自引:0,他引:1  
The aim of this study is to review the diffusion-weighted MRI findings of glioblastomas, to investigate those with atypical characteristics and to emphasise the reasons responsible for the atypical features on diffusion-weighted MR images. 48 cases of histologically proven glioblastomas were included in this study. In addition to conventional sequences of routine tumour protocol, diffusion-weighted MRI with spin-echo echo-planar sequence was performed. The cystic-necrotic components of the lesions, according to the conventional sequences, were determined on the diffusion-weighted MR images and were classified as typical or atypical. The presence of high signal intensity was accepted as an atypical feature while low signal intensity was accepted as typical. The apparent diffusion coefficient (ADC) values of the cystic components were calculated. The statistical significance of the typical and atypical glioblastomas was evaluated with the students t-test. In six of the cases apparent high signal intensity in diffusion weighted MR images was interpreted. In three cases the high signal intensity occupied all of the cystic component and in the other three most of the cystic component. The ADC values of the lesions varied between 0.86 x 10(-3) mm(2) s(-1) and 1.39 x 10(-3) mm(2) s(-1) (mean value 1.06+/-0.17 x 10(-3) mm(2) s(-1)). In 42 of the lesions the cystic-necrotic component demonstrated low signal intensity and the ADC values varied between 1.56 x 10(-3) mm(2) s(-1) and 3.32 x 10(-3) mm(2) s(-1) (mean value 2.36+/-0.46 x 10(-3) mm(2) s(-1)). The difference between ADC values of atypical and typical lesions was statistically significant (p<0.001). The vast majority of glioblastomas do not exhibit restricted diffusion in diffusion-weighted MRI, but some of them display homogeneous or heterogeneous high signal intensity and decrease of ADC values. Diffusion-weighted MRI alone is not helpful in the differentiation of malignant tumours from abscesses with low ADC values and similar conventional MRI findings.  相似文献   

20.
PURPOSE: We evaluated the efficacy of using the apparent diffusion coefficient (ADC) to differentiate soft tissue tumors. MATERIALS AND METHODS: We examined 88 histologically proven tumors (44 benign, 8 intermediate, 36 malignant) using diffusion-weighted magnetic resonance images. Images of the tumors were obtained using a single-shot, spin-echo type echo-planar imaging sequence. The tumors were classified histologically as myxoid or nonmyxoid. We then compared the ADC values of the myxoid and nonmyxoid tumors; the benign and malignant myxoid tumors; and the benign, intermediate, and malignant nonmyxoid tumors. RESULTS: The mean ADC value of the myxoid tumors (2.08 +/- 0.51 x 10(-3) mm(2)/s) was significantly greater than that of the nonmyxoid tumors (1.13 +/- 0.40 x 10(-3) mm(2)/s) (P < 0.001). There was no significant difference in the mean ADC values between benign myxoid tumors (2.10 +/- 0.50 x 10(-3) mm(2)/s) and malignant myxoid tumors (2.05 +/- 0.58 x 10(-3) mm(2)/s). The mean ADC value of benign nonmyxoid tumors (1.31 +/- 0.46 x 10(-3) mm(2)/s) was significantly higher than that of malignant nonmyxoid tumors (0.94 +/- 0.25 x 10(-3) mm(2)/s) (P < 0.001). CONCLUSION: The ADC value might be useful for diagnosing the malignancy of nonmyxoid soft tissue tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号