首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(n-3) PUFA deficiency and repletion effects on bone mechanical properties have not been examined. The primary research aim was to evaluate whether changes in the fatty acid composition of bone tissue compartments previously reported to influence bone formation rates would affect bone modeling and mechanical properties. In this investigation, three groups of rats were studied, second generation (n-3)-deficient, (n-3)-repleted, and a control (n-3)-adequate. The (n-3)-adequate diet contained alpha-linolenic acid [LNA, 18:3(n-3), 2.6% of total fatty acids] and docosahexaenoic acid [DHA, 22:6(n-3), 1.3% of total fatty acids]. Fatty acid composition of the hindlimb tissues (bone and muscle) of chronically (n-3)-deficient rats revealed a marked increase in (n-6) PUFA [20:4(n-6), 22:4(n-6), and 22:5(n-6)] and a corresponding decrease in (n-3) PUFA [18:3(n-3), 20:5(n-3), 22:5(n-3) and 22:6(n-3)]. Measurement of bone mechanical properties (energy to peak load) of tibiae showed that (n-3) deficiency diminished structural integrity. Rats repleted with (n-3) fatty acids demonstrated accelerated bone modeling (cross-sectional geometry) and an improved second moment in tibiae compared with control (n-3)-adequate rats after 28 d of dietary treatment. This study showed that repletion with dietary (n-3) fatty acids restored the ratio of (n-6)/(n-3) PUFA in bone compartments and reversed compromised bone modeling in (n-3)-deficient rats.  相似文献   

2.
Melatonin (MEL) plays an essential role in physiologic functions associated with darkness. We examined the effects of docosahexaenoic acid (DHA)-enriched phospholipids from pig brains (BPL) or hen eggs (EPL), as sources of DHA, on lipid FA composition of pineal membranes and daytime and nighttime concentrations of 6-sulfatoxymelatonin (aMT6) in adult male control and (n-3)-deficient rats fed BPL and EPL diets for 5 wk. In two experiments, at 3 wk of age, rats were divided into subgroups and fed semipurified diets containing either peanut oil [(n-3)-deficient group] or peanut plus rapeseed oil (control group) and two dietary formulas containing either 3.5 g/100 g diet of BPL (Experiment 1) or 5.0 g/100 g diet of EPL (Experiment 2). BPL and EPL diets provided approximately 200 mg of DHA/100 g diet. During the daytime, aMT6 concentrations were not significantly different among groups. Conversely, the (n-3)-deficient rats had significantly lower nighttime aMT6 concentrations than the control rats. BPL and EPL did not affect urinary nighttime aMT6 concentration in the control group, whereas (n-3)-deficient + BPL or EPL groups exhibited significantly higher nighttime aMT6 concentrations than the (n-3)-deficient group (76 and 110%, respectively). The level of DHA was significantly higher in the pineal glands of control rats than in (n-3)-deficient rats. In rats fed EPL and BPL, the level of DHA reached a plateau, between 10 and 11 mg/100 mg total fatty acids in control + BPL or EPL and (n-3)-deficient + BPL or EPL groups. These findings suggest that new DHA-enriched formulas may be used as an efficient alternative source of (n-3) polyunsaturated fatty acids to normalize MEL secretion.  相似文献   

3.
Docosahexaenoic acid [22:6(n-3), DHA] is important for optimal infant central nervous system development, and lead (Pb) exposure during development can produce neurological deficits. Long-Evans strain rats were fed either an (n-3) deficient [(n-3) Def] diet to produce brain DHA deficiency, or an adequate [(n-3) Adq] diet through 2 generations. At the birth of the 2nd generation, the dams were subdivided into 4 groups and supplied drinking water containing either 5.27 mmol/L (Pb) or sodium (Na) acetate until weaning. Rats were killed at 3 wk (weaning) and 11 wk (maturity) for brain Pb and fatty acid analysis. Spatial task and olfactory-cued behavioral assessments were initiated at 9 wk. Rats in the (n-3) Def group had a 79% lower concentration of brain DHA compared with the (n-3) Adq group with no effect of Pb exposure. At weaning, Pb concentrations were 7.17 +/- 0.47 nmol Pb/g of brain (wet weight) in the (n-3) Adq-Pb group and 6.49 +/- 0.63 nmol Pb/g of brain (wet weight) in the (n-3) Def-Pb group. At maturity, the brains contained 1.30 +/- 0.22 and 1.07 +/- 0.12 nmol Pb/g (wet weight), respectively. In behavioral testing, significant effects of both Pb and DHA deficiency were observed in the Morris water maze probe trial and in 2-odor olfactory discrimination acquisition and olfactory-based reversal learning tasks. Both lactational Pb exposure and (n-3) fatty acid deficiency led to behavioral deficits with additive effects observed only in the acquisition of 2-odor discriminations.  相似文献   

4.
High levels of 4,7,10,13,16-docosapentaenoic acid [22:5(n-6)], a fatty acid usually associated with (n-3) fatty acid deficiency, have been reported in the retina of young rabbits. We studied the fatty acid composition of the rabbit retina throughout development, from birth to adult life. We also attempted to modify the fatty acid composition of the retina by the feeding of fish oil, high in docosahexaenoic acid [22:6(n-3), DHA]. Female rabbits were fed either a control or 2% fish oil diet through pregnancy and the nursing period. Weaned rabbits received the mothers' diet. In the retinas of control rabbits, 22:5(n-6) represented 3.7% of total fatty acids at birth, reached 15.1% at 9 wk and declined to 5.6% in adult rabbits. However, 22:6(n-3) increased steadily from birth onwards, from 3.8% of total fatty acids at birth to 19.6% in adults. Dietary fish oil increased the trace concentrations of long-chain (n-3) fatty acids in the milk to 10% of total fatty acids, reduced retinal 22:5(n-6) to less than or equal to 0.5% at all ages, and increased DHA to approximately 30% by 9 wk. Retinal phosphatidylethanolamine was even more sensitive to the impact of the fish oil diet, with DHA levels in newborn rabbits rising from 10% (control diet) to 43% of total fatty acids. These results demonstrated that 22:5(n-6) in the normal rabbit retina remains elevated (compared with other species) at all ages even as retinal DHA increases. The great increase of DHA in newborns whose mothers were fed fish oil suggests placental transfer of DHA and incorporation into retinal lipids.  相似文献   

5.
BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  相似文献   

6.
The fatty acid composition of membrane phospholipids affects the physicochemical properties of the membrane and thus influences cell function. In this study, the effects of 1-4 sequential pregnancies on the phospholipid fatty acid compositions of the maternal liver and erythrocytes were determined in female rats fed diets containing alpha-linolenic acid (ALA), ALA and preformed docosahexaenoic acid (DHA; ALA+DHA), or minimal ALA (low ALA). Virgin females, fed the diets for commensurate durations, served as a control for reproduction. Liver and erythrocyte total phospholipid compositions were determined at weaning by TLC/GC. In both tissues, significant main effects of diet and reproductive status were detected for many fatty acids, but a significant interaction of diet, reproductive status, and duration of treatment (no. of reproductive cycles or equivalent time period for virgins) was detected only for DHA, 22:6(n-3). Primiparous dams fed the ALA and low ALA diet had decreased liver DHA content of 31% and 74%, respectively, compared with virgin females fed the ALA diet. Liver DHA did not decrease further after additional reproductive cycles. Liver DHA content was unchanged in parous dams fed the ALA+DHA diet, but virgin females fed this diet exhibited a 50% increase in liver DHA after 13 wk of treatment. Changes in erythrocyte DHA were of similar magnitude and time course to those observed in liver, suggesting that this tissue may serve as a marker for liver DHA status.  相似文献   

7.
The purpose of this study was to determine whether the dose of (n-3) fatty acids (FA) administered, independent of the relative ratio of (n-6) to (n-3) FA in the food, influences plasma FA composition in dogs. Healthy female, geriatric beagles (7-10 y old) were fed foods containing (n-6) to (n-3) FA ratios of either 40.0:1 or 1.4:1 for 12 wk (study 1) or 36 wk (study 2). In study 3, beagles were fed food with the same 1:1 ratio of (n-6) to (n-3) FA, but with increasing concentrations of (n-6) and (n-3) FA. Plasma FA concentrations were measured after completing the feeding studies. In studies 1 and 2, dogs fed fish oil-enriched food with a high (n-3) FA concentration had higher plasma total (n-3) FA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) concentrations and lower plasma total (n-6) FA, linoleic acid, and arachidonic acid concentrations than dogs fed corn oil-enriched food with a low (n-3) FA concentration (P < 0.001). Both inclusion of fish oil (P < 0.001) and increased food intake independent of treatment effects increased the plasma DHA (P = 0.05) concentration. Furthermore, constancy of the dose of (n-3) FA administered over long periods of time was necessary to maintain plasma levels of total (n-3) FA, EPA, and DHA. In study 3, up to certain dietary concentrations (6.3 g total (n-3) FA/kg food for DHA and 9.8 g total (n-3) FA/kg food for EPA), the dose of (n-3) FA administered, independent of the (n-6) to (n-3) FA ratio, determined the plasma (n-3) FA composition. Results from our studies indicate that approximately 175 mg DHA/(kg body weight . d) is required to attain maximum plasma levels of DHA.  相似文献   

8.
Several sources of long-chain polyunsaturated fatty acids (LCP) have been evaluated for infant-formula supplementation. These sources differ in their chemical structure [triglyceride (TG) or phospholipid (PL)], arrangement of fatty acids on the TG or PL backbone, fatty acid composition and presence of other lipid components. All of these characteristics influence fat digestion, may affect fat and fatty acid absorption, and hence, LCP bioavailability and metabolism in infancy. The main objective of this work was to establish the influence of different dietary LCP sources on overall fat and LCP absorption in early life. We compared fat and fatty acid excretions at weaning in rats fed control diets or diets supplemented with LCP as TG or PL. Two separate experiments were conducted. In Experiment 1, weanling rats were fed for 3 wk a control diet (C1), a diet with TG from tuna and fungal oils (TF-TG) or a diet with PL from pig brain concentrate (PB-PL). In Experiment 2, weanling rats were fed for 3 wk a control diet (C2), a diet containing egg-TG (EG-TG) or a diet containing egg-PL (EG-PL). Fat, mineral and saturated fatty acid excretions in feces were higher in rats fed PB-PL compared with those fed TF-TG diet. In Experiment 2, groups did not differ in fat and mineral excretions. However, the EG-PL group had lower fecal excretions of saturated fatty acids than the C2 and EG-TG groups. The 16:1(n-7), 18:1(n-9), 18:2(n-6) and 22:6(n-3) levels in feces were higher in the EG-TG group than in the EG-PL group. In summary, total fat and LCP excretions differed among rats fed diets supplemented with LCP from different sources.  相似文献   

9.
This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement.  相似文献   

10.
To examine the incorporation of n-3 polyunsaturated fatty acids (PUFAs) into erythrocyte membranes during and after moderate n-3 PUFA intake, 12 healthy men were fed three diets for 6-wk periods in a 3 x 3 crossover design, supplying different amounts of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3): a control diet, a fish diet (0.15 g EPA/d, 0.41 g DHA/d), and a fish + oil diet (5 g fish oil/d; 0.99 g EPA/d and 0.99 g DHA/d). A 6-wk washout period was allowed between diets. Between 6 and 12 wk after the fish + oil diet, erythrocyte EPA and DHA were still declining and it was only after 18 wk that erythrocyte EPA had returned to baseline whereas DHA had not. Investigators examining variables that are influenced by altered membrane fatty acid composition should be aware of these prolonged effects when designing studies. Protracted washout periods (greater than 18 wk) make the classic crossover design prohibitive and a parallel design becomes essential.  相似文献   

11.
BACKGROUND: Maternal essential fatty acid status declines during pregnancy, and as a result, neonatal concentrations of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) may not be optimal. OBJECTIVE: Our objective was to improve maternal and neonatal fatty acid status by supplementing pregnant women with a combination of alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6), the ultimate dietary precursors of DHA and AA, respectively. DESIGN: From week 14 of gestation until delivery, pregnant women consumed daily 25 g margarine supplying either 2.8 g ALA + 9.0 g LA (n = 29) or 10.9 g LA (n = 29). Venous blood was collected for plasma phospholipid fatty acid analyses at weeks 14, 26, and 36 of pregnancy, at delivery, and at 32 wk postpartum. Umbilical cord blood and vascular tissue samples were collected to study neonatal fatty acid status also. Pregnancy outcome variables were assessed. RESULTS: ALA+LA supplementation did not prevent decreases in maternal DHA and AA concentrations during pregnancy and, compared with LA supplementation, did not increase maternal and neonatal DHA concentrations but significantly increased eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3) concentrations. In addition, ALA+LA supplementation lowered neonatal AA status. No significant differences in pregnancy outcome variables were found. CONCLUSIONS: Maternal ALA+LA supplementation did not promote neonatal DHA+AA status. The lower concentrations of Osbond acid (22:5n-6) in maternal plasma phospholipids and umbilical arterial wall phospholipids with ALA+LA supplementation than with LA supplementation suggest only that functional DHA status improves with ALA+LA supplementation.  相似文献   

12.
Low tissue levels of (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. The effects of 1-4 sequential reproductive cycles on maternal brain phospholipid fatty acid composition were determined in female rats fed diets containing alpha-linolenic acid (ALA), containing ALA and pre-formed DHA (ALA+DHA), or lacking ALA (low-ALA). Virgin females, fed the diets for commensurate durations served as a control for reproduction. Whole-brain total phospholipid composition was determined at weaning by TLC/GC. A single reproductive cycle on the low-ALA diet decreased brain DHA content by 18% compared to ALA primiparas (P < 0.05), accompanied by incorporation of docosapentaenoic acid ((n-6) DPA, 22:5(n-6)) to 280% of ALA primiparas (P < 0.05). DHA was not further decreased after subsequent cycles; however, there was an additional increase in (n-6) DPA after the second cycle (P < 0.05). Brain DHA of virgin females fed the low-ALA diet for 27 wk decreased 15% (P < 0.05), but was accompanied by a more modest increase in (n-6) DPA than in parous low-ALA dams (P < 0.05). Virgin females and parous dams fed the diet containing ALA+DHA exhibited only minor changes in brain fatty acid composition. These observations demonstrate that brain DHA content of adult animals is vulnerable to depletion under dietary conditions that supply inadequate (n-3) PUFAs, that this effect is augmented by the physiological demands of pregnancy and lactation, and that maternal diet and parity interact to affect maternal brain PUFA status.  相似文献   

13.
Lactation hampers normalization of the maternal arachidonic acid (AA) status, which is reduced after pregnancy and can further decline by the presently recommended increased consumption of (n-3) long-chain PUFA [(n-3) LCPUFA]. This may be unfavorable for breast-fed infants, because they also require an optimum supply of (n-6) LCPUFA. We therefore investigated the LCPUFA responses in nursing mothers upon increased consumption of AA and (n-3) LCPUFA. In a parallel, double-blind, controlled trial, lactating women received for 8 wk no extra LCPUFA (control group, n = 8), 200 (low AA group, n = 9), or 400 (high AA group, n = 8) mg/d AA in combination with (n-3) LCPUFA [320 mg/d docosahexaenoic acid (DHA), 80 mg/d eicosapentaenoic acid, and 80 mg/d other (n-3) fatty acids], or this dose of (n-3) LCPUFA alone [DHA + eicosapentaenoic acid group, n = 8]. Relative concentrations of AA, DHA, and sums of (n-6) and (n-3) LCPUFA were measured in milk total lipids (TL) and erythrocyte phospholipids (PL) after 2 and 8 wk and changes were compared by ANCOVA. The combined consumption of AA and (n-3) LCPUFA caused dose-dependent elevations of AA and total (n-6) LCPUFA concentrations in milk TL and did not significantly affect the DHA and total (n-3) LCPUFA increases caused by (n-3) LCPUFA supplementation only. This latter treatment did not significantly affect breast milk AA and total (n-6) LCPUFA concentrations. AA and DHA concentrations in milk TL and their changes were strongly and positively correlated with their corresponding values in erythrocyte PL (r(2) = 0.27-0.50; P 相似文献   

14.
【目的】 探讨生命早期不同年龄阶段脑摄取、聚集二十二碳六烯酸(DHA)(C22:6n-3)及相关去饱和酶的变化。 【方法】 使用6~8周龄清洁级C57BL/6J雌性小鼠,分别给予n-3 多不饱和脂肪酸(n-3 PUFAs)缺乏饲料和含n-3 PUFAs饲料喂养6周,然后雌雄合笼交配繁殖,新生仔鼠分别于生后7、21 d和42 d时取血、脑和肝脏。采用甲酯化-气相色谱分析对血浆、脑和肝脏中脂肪酸谱进行分析;采用荧光定量PCR方法对脑和肝脏中脂肪酸去饱和酶1(FADS1)和脂肪酸去饱和酶2(FADS2)基因mRNA表达进行检测。 【结果】 对不同年龄小鼠组织脂肪酸的比较发现,脑中DHA和总n-3 PUFAs含量在两种不同饲料组均随年龄增加而升高;而肝中的含量则随年龄增加而降低。与n-3 PUFAs缺乏组相比,饲料中添加n-3 PUFAs可使仔鼠生后7、21 d和42 d时脑和肝脏中DHA和总n-3 PUFAs含量均显著升高;升高的程度在脑组织中随年龄增加而降低,而在肝脏组织中则不随年龄变化。对不同年龄段FADS表达的比较发现,FADS1和FADS2 mRNA在脑组织中的表达量于42 d时显著高于7 d和21 d,而在肝组织中的表达量于各年龄段之间无显著性差异。与n-3 PUFAs缺乏组相比,饲料中添加n-3 PUFAs可使仔鼠生后7 d和21 d时脑组织FADS1和FADS2表达水平显著降低,而42 d时的表达无变化;肝组织中这两种酶mRNA水平在7 d和21 d时无变化,42 d时FADS1显著降低。 【结论】 发育期脑对DHA的聚集需求随着年龄增大而逐渐减少;FADS在脑中的表达水平随年龄增大而升高。同时,饲料n-3 PUFAs缺乏状态对脑聚集DHA以及FADS的影响在年龄小时更明显。  相似文献   

15.
The effect of feeding redfish (Sebastes marinus or mantella) oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the fatty acid compositions of individual phospholipids in selected neural tissues was studied in growing male rats. Control animals were given sunflower oil in the diet for the 5-wk feeding trial. Lipid analyses revealed that EPA (20:5n-3) became significantly enriched in all phospholipid fractions (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) in the tissues studied (brain, retina and sciatic nerve) in the two n-3 fatty acid dietary groups relative to controls. Corresponding changes were also found in the 22:5n-3 contents of these tissues, whereas little or no significant elevation in DHA (22:6n-3) was found. In contrast, the percentages by weight of the n-6 fatty acids including 18:2n-6, 20:4n-6 (arachidonic acid, AA), 22:4n-6 and 22:5n-6 were generally lower in the various phospholipids/tissues of the animals given fish oil or the n-3 fatty acid concentrate; the levels of 22:5n-6 and 22:4n-6 were markedly affected in this regard. These results indicate that dietary n-3 fatty acids (as EPA plus DHA) can greatly affect the fatty acid compositions of the various membrane phospholipids in nervous tissues within a relatively short time. These biochemical alterations may be important for functional changes including altered membrane fluidity, cellular responses, ion transport and the biosyntheses of AA- and EPA-derived prostaglandins and leukotrienes.  相似文献   

16.
BACKGROUND: An increase in plasma n-3 fatty acid content, particularly eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), is observed after consumption of fish oil-enriched supplements. Because alpha-linolenic acid (18:3n-3; ALA) is the direct precursor of EPA and DHA, ALA-enriched supplements such as flax may have a similar effect, although this hypothesis has been challenged because of reported low conversion of ALA into DHA. OBJECTIVE: To address this question, we designed a clinical trial in which flax oil, fish-oil, and sunflower oil (placebo group) capsules were given to firefighters (n = 62), a group traditionally exposed to cardiovascular disease risk factors. DESIGN: Firefighters were randomly divided into 6 experimental groups receiving 1.2, 2.4, or 3.6 g flax oil/d; 0.6 or 1.2 g fish oil/d; or 1 g sunflower oil/d for 12 wk. Blood was drawn every 2 wk, and the total phospholipid fatty acid composition of red blood cells was determined. RESULTS: As expected, fish oil produced a rapid increase in erythrocyte DHA and total n-3 fatty acids. The consumption of either 2.4 or 3.6 g flax oil/d (in capsules) was sufficient to significantly increase erythrocyte total phospholipid ALA, EPA, and docosapentaenoic acid (22:5n-3) fatty acid content. There were no differences among groups in plasma inflammatory markers or lipid profile. CONCLUSIONS: The consumption of ALA-enriched supplements for 12 wk was sufficient to elevate erythrocyte EPA and docosapentaenoic acid content, which shows the effectiveness of ALA conversion and accretion into erythrocytes. The amounts of ALA required to obtain these effects are amounts that are easily achieved in the general population by dietary modification.  相似文献   

17.
Dietary (n-6) and (n-3) fatty acids have been implicated as important regulators of bone metabolism. The main objective of this research was to define the response of whole-body growth, fatty acid status and bone mass to a reduced dietary (n-6):(n-3) fatty acid ratio. A secondary objective was to determine whether there is an amount of fat x fatty acid ratio interaction for these outcomes. Piglets (n = 32) were randomized to 1 of 4 diets: group 1: [30 g fat/L + (n-6):(n-3) ratio 4.5:1]; group 2: [30 g fat/L + (n-6):(n-3) ratio 9.0:1]; group 3: [60 g fat/L + (n-6):(n-3) ratio 4.5:1]; and group 4: [60 g fat/L + (n-6):(n-3) ratio 9.0:1]. After 21 d, outcomes assessed included growth, fatty acid status and bone mass and metabolism. Growth and bone mass did not differ among the four groups nor did arachidonic acid (AA as g/100 g fatty acids) in plasma, adipose and brain. Piglets fed diets 1 and 3 with the lower (n-6):(n-3) ratio had lower liver AA (P < 0.001). Those fed diets 1 and 2 containing 30 g fat/L had lower docosahexaenoic acid (DHA as g/100 g fatty acids) in liver (P < 0.001), plasma (P = 0.019) and adipose tissue (P = 0.045). However, piglets fed diets 1 and 3 had higher (P < 0.001) brain DHA than those fed diets with a higher (n-6):(n-3) ratio. Higher plasma DHA was associated with less bone resorption (r = -0.44, P = 0.01). Therefore, elevation of dietary (n-3) fatty acids supports growth and fatty acid status while not compromising bone mass. The results may be of relevance to the nutritional management of preterm infants whose DHA status is often too low and bone resorption too high.  相似文献   

18.
We investigated the effects of dietary docosahexaenoic acid (DHA, 22:6 n-3) and phosphatidylcholine (PC) on maze behavior and brain fatty acids in mice. Male Crj:CD-1 mice (3 wk old) were fed a diet containing 2% DHA and 3% palm oil (DHA group); 5% PC (PC group); 1% DHA, 2.5% PC and 1.5% palm oil (DHA + PC group); 5% palm oil (Palm oil control group) or MF laboratory chow (MF control group) for 7 mo. After this time maze-learning ability was assessed. The time required to reach the maze exit and the number of times that a mouse strayed into blind alleys in the maze were measured three times every four days. After the last learning test, all mice were sacrificed and plasma and brain were analyzed for fatty acid composition. The DHA and PC groups required less time to reach the maze exit and strayed less into blind alleys than the control group in the third trial. The difference between the DHA or PC groups and control mice was statistically significant (p < 0.05). In the total lipids of plasma and brain of mice fed DHA, there was a significant increase in DHA levels and a concomitant decrease in arachidonic acid (AA, 20:4 n-6). Similar changes in fatty acid composition were observed in brain phosphatidylcholine and phosphatidylethanolamine for this group of mice. However, this pattern of changes in brain fatty acids was not evident in the PC group. Our data suggest that maze-learning ability in mice is enhanced by intakes of DHA and PC. However, the mechanisms by which the DHA and PC diets improved learning ability appear to be different. A synergistic effect of DHA and PC on learning ability is not apparent in the DHA + PC group.  相似文献   

19.
The effect of dietary supplementation with n-3 fatty acids, primarily docosahexaenoic acid (DHA) with high purity, on the fatty acid composition, especially very-long-chain fatty acids (VLCFA) longer than DHA, with four or six double bonds, in the rod outer segment (ROS) membranes of young Sprague-Dawley rats was investigated. After several weeks of feeding, diets high in n-3 fatty acids increased the DHA level significantly, while there were decreased levels of most n-6 fatty acids, such as arachidonic acid and 22:5n-6. Six kinds of VLCFA were detected by gas chromatography-mass spectrometry (GC-MS). Feeding a high n-3 fatty acid diet significantly increased the content of some n-3 VLCFAs such as 26:4n-3 and 30:4n-3 in ROS membranes, but not all detected n-3 VLCFAs. This study demonstrates that the dietary level of n-3 fatty acids not only affects the level of DHA, but also the levels of VLCFA in ROS membranes.  相似文献   

20.
The purpose of this paper is to discuss the role of n-6 and n-3 polyunsaturated fatty acids in coronary heart disease (CHD). The level of n-6 and n-3 fatty acids in plasma and cardiac phospholipids was examined in relation to CHD in man. The fatty acid profile of cardiac phospholipids was also examined in relation to various risk factors of CHD, such as the composition of dietary fat, aging and stress. Life expectancy in Iceland is higher than in other Nordic countries, and the cardiovascular diseases mortality is lower in Iceland in the older age groups. There is a positive correlation between the level of arachidonic acid (AA) in plasma phospholipids (PL) in the normal population and cardiovascular disease mortality in Nordic countries. The level of AA in plasma PL is significantly higher in patients with CHD than in normal subjects. Dietary intake of fish or fish oil lowers cellular levels of AA and favorably influences eicosanoid metabolism in platelets and leukocytes. The roles of n-6 and n-3 fatty acids in heart muscle are less well understood. Rats fed diets containing either 10% butter, corn oil or cod liver oil showed markedly different fatty acid composition of individual phospholipids in sarcolemma. Dietary cod liver oil lowered the AA level in sarcolemmal phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) by 50% compared to butter or corn oil fed rats, replacing AA with docosahexaenoic acid (DHA). Adaptation to moderate to severe stress induced by repeated administration of catecholamines for 15 days resulted in marked but reversible alterations in the fatty acid profile of cardiac phospholipids. During severe stress the level of AA increased by 50% in PC replacing linoleic acid (LA), whereas in PE the DHA increased markedly replacing LA. Aging was accompanied by similar alterations in cardiac phospholipids, increased levels of AA in PC and increased DHA in PE. The incidence of ventricular fibrillation (VF) and sudden cardiac death induced by isoproterenol in adult rats fed different dietary fat was lowest in rats fed cod liver oil, with a low ratio of AA/DHA in cardiac phospholipids. Mortality due to VF was highest in rats fed corn oil with the highest ratio of AA/DHA. Sudden cardiac death in man was frequently associated with a higher ratio of AA/DHA than observed in people of the same age who died in accidents. The balance between n-6 and n-3 fatty acids in cellular phospholipids seems to play an important role in stress tolerance and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号