首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Puil  P.L. Carlen 《Neuroscience》1984,11(2):389-398
The effects of intracellular applications of QX 222, a quaternary analogue of lidocaine, were investigated in CA1 neurons of in vitro hippocampal slices of guinea-pig brain. QX 222 produced a strong depression of spontaneous, electrically- (by current injection) or orthodromically-evoked action potentials. These dose-dependent effects were characterized by a reduction in the rate of rise and amplitude of spikes, presumed to be mediated by a Na+-conductance. Although resting membrane conductance tended to diminish with prolonged applications of QX 222, marked changes in resting potential generally were not observed. The threshold for eliciting spikes by intracellular injection of depolarizing current was increased greatly by QX 222, reflecting the impairment of Na+ -electrogenesis of spikes. The reduction of action potential amplitude by QX 222 may be partly attributable to enhanced inactivation of Na+-channels because brief depolarizing pulses preceded by strong tonic hyperpolarization, elicited spikes at a lower threshold and of considerably larger amplitude than in the absence of such tonic hyperpolarization. These observations on recovery are compatible with a removal of sodium inactivation. However, this experimental paradigm of current injection also might be expected to remove QX 222 molecules from their blocking sites at the inner end of Na+-channels. When spikes were abolished by QX 222, the depolarization evoked with application of S-glutamate by pressure ejection from an extracellular micropipette positioned close to the neuron was attenuated. This reversible blockade was reproducible in the 14 neurons where the interactions of QX 222 and glutamate were examined systematically. Excitatory postsynaptic potentials, evoked by stimulation of strata oriens or radiatum, were reduced in a similar manner by internal QX 222.These data confirm previous observations that voltage-dependent Na+-channels mediating spike genesis in CA1 neurons can be blocked by internal QX 222. However, QX 222 also apparently interferes with the functions of Na+ -channels activated by glutamate-receptor interaction or by receptor interactions with neurotransmitter(s) associated with certain excitatory postsynaptic potentials in CA1 neurons.  相似文献   

2.
Using behavioral and electrophysiological techniques, evidence was obtained that somatostatin (SOM) has an excitatory role in spinal sensory and reflex mechanisms of the rat. Intrathecal (i.t.) SOM (1 and 10 micrograms) induced a dose-dependent caudally directed scratching behavior lasting about 20 min. In decerebrated, spinalized, unanesthetized rats, small doses of i.t. SOM (10 ng-1 micrograms) increased the excitability of the hamstring flexion reflex. Similar effects on the reflex may be seen after conditioning afferent C-fiber activation. The results indicate that during C-afferent activity SOM may be released and may increase spinal cord excitability.  相似文献   

3.
The responses of 155 neurones and 91 glial cells to the electrical stimulation of the cortex were recorded in the suprasylvian gyrus of 20 cats under pentobarbital anaesthesia. Glial cells were identified by electrophysiological criteria: absence of action potentials and postsynaptic potentials; high membrane potential; slow depolarization during the electrical stimulation of the cortex. 50 glial cells showed membrane potentials between 80 and 100 mV. Stimuli of low intensity which evoked only excitatory postsynaptic potentials of apical dendrites, the so-called dendritic potentials, failed to evoke glial depolarization. However, glial depolarization could be elicited at high-frequency stimulation. Stimuli, which evoked not only the dendritic potential but also subsequent slow negativity, could usually bring about glial depolarization too. The amplitude of glial depolarization in response to one stimulus did not exceed 2 mV, the latency being 3–5 ms. A phenomenon of decrementai summation of glial depolarization was observed. The stronger and more frequent the stimulation, the larger was glial depolarization. However, at frequencies over 50/s glial depolarization decay was observed already during the stimulation and in some cases, membrane potential was drastically reduced to zero. After cessation of stimulation, glial depolarization decayed exponentially in 3–4 s; in some cases the decay was prolonged up to 10s and slow irregular fluctuations of the membrane potential were recorded; at the same time, spikes of the neighbouring neurone could be recorded from the glial cell. With a decrease of the membrane potential glial depolarization was attenuated, but it could be elicited even at membrane potential below 20 mV.The results are interpreted in relation to the potassium ion hypothesis. It is suggested that glial depolarization is determined by release of K+, which is associated with excitation of non-myelinated fibres and with excitatory postsynaptic potentials generated in the cortical neuropile. Significant increases in the concentration of extracellular potassium ions could provoke actual movement of glial cells. It is supposed that glial depolarization of small magnitude which is recorded occasionally at the membrane potential below 30 mV is the result of electronic spread of glial depolarization from the neighbouring glial cells.  相似文献   

4.
Zhang Z  Yu YQ  Liu CH  Chan YS  He J 《Neuroscience》2008,151(1):293-302
We investigated the firing pattern and frequency tuning properties of medial geniculate body (MGB) neurons, through in vivo intracellular recordings in anesthetized guinea pigs. Twenty-two of the 25 physiological characterized neurons were anatomically identified. Ten neurons were located in the ventral division of the medial geniculate body (MGv) (seven in pars ovoidea (OV) and three in the pars lateralis (LV)). Eight were located in the dorsal division (MGd), and four in the medial division (MGm). OV neurons showed a uniform, phasic ON response with high frequency selectivity. Functionally, they are interpreted as relaying spectral information with high reliability. LV neurons exhibited various patterns: phasic, tonic and excitatory postsynaptic potentials (EPSP) with a spike train. These high magnitude EPSPs are proposed to convey temporal information of the auditory signals with more encoding power. MGd neurons had relatively low best frequencies while MGm neurons had high intensity threshold, broader frequency selectivity, and a tonic response pattern. Tonic firing is likely to impose a strong impact onto wide cortical area and amygdala. When hyperpolarized with current injection, MGB neurons evoked low-threshold calcium spikes. Distinct change in these spike numbers was observed among MGv and MGd neurons as compared with MGm neurons, implying their differential roles. MGm neurons are more modulatory in nature, while the long lasting bursts of low-threshold calcium spikes observed in MGv and MGd neurons probably participate in propagating the sleep oscillations.  相似文献   

5.
Zhang Z  Yu YQ  Liu CH  Chan YS  He J 《Neuroscience》2008,154(1):273-282
We investigated the firing pattern and frequency tuning properties of medial geniculate body (MGB) neurons, through in vivo intracellular recordings in anesthetized guinea pigs. Twenty-two of the 25 physiological characterized neurons were anatomically identified. Ten neurons were located in the ventral division of the medial geniculate body (MGv) (seven in pars ovoidea (OV) and three in the pars lateralis (LV)). Eight were located in the dorsal division (MGd), and four in the medial division (MGm). OV neurons showed a uniform, phasic ON response with high frequency selectivity. Functionally, they are interpreted as relaying spectral information with high reliability. LV neurons exhibited various patterns: phasic, tonic and excitatory postsynaptic potentials (EPSP) with a spike train. These high magnitude EPSPs are proposed to convey temporal information of the auditory signals with more encoding power. MGd neurons had relatively low best frequencies while MGm neurons had high intensity threshold, broader frequency selectivity, and a tonic response pattern. Tonic firing is likely to impose a strong impact onto wide cortical area and amygdala. When hyperpolarized with current injection, MGB neurons evoked low-threshold calcium spikes. Distinct change in these spike numbers was observed among MGv and MGd neurons as compared with MGm neurons, implying their differential roles. MGm neurons are more modulatory in nature, while the long lasting bursts of low-threshold calcium spikes observed in MGv and MGd neurons probably participate in propagating the sleep oscillations.  相似文献   

6.
The spinothalamic tract (STT) neurons in the spinal dorsal horn play an important role in transmission and processing of nociceptive sensory information. Although transient receptor potential vanilloid type 1 (TRPV1) receptors are present in the spinal cord dorsal horn, their physiological function is not fully elucidated. In this study, we examined the role of TRPV1 in modulating neuronal activity of the STT neurons through excitatory and inhibitory synaptic inputs. Whole-cell patch-clamp recordings were performed on STT neurons labeled by a retrograde fluorescent tracer injected into the ventral posterior lateral (VPL) nucleus of the thalamus. Capsaicin (1 μM) increased the frequency of miniature excitatory postsynaptic currents (mEPSC) without changing the amplitude or decay time constant of mEPSC. In contrast, capsaicin had no distinct effect on GABAergic miniature inhibitory postsynaptic currents (mIPSC). Capsazepine (10 μM), a TRPV1 receptor antagonist, abolished the effect of capsaicin on mEPSCs. Capsazepine itself did not affect the baseline amplitude and frequency of mEPSC. The effect of capsaicin on mEPSC was also abolished by removal of external Ca2+, but not by treatment with Cd2+. Furthermore, capsaicin increased the firing activity of the STT neurons and this increase in neuronal activity by capsaicin was abolished in the presence of non–N-methyl-d-aspartic acid (NMDA) and NMDA receptor antagonists, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and (R)-amino-5-phosphonovaleric acid (APV). These data suggest that activation of TRPV1 potentiates the glutamate release from excitatory terminals of primary afferent fibers and subsequently increases the neural activity of STT neurons of the rat spinal cord deep dorsal horn.  相似文献   

7.
Types of nerves in the enteric nervous system   总被引:11,自引:0,他引:11  
The enteric nervous system is one of the three divisions of the autonomic nervous system, the others being the sympathetic and parasympathetic. In contrast to the other divisions, it can perform many functions independently of the central nervous system. It consists of ganglionated plexuses, their connections with each other, and nerve fibres which arise from the plexuses and supply the muscle, blood vessels and mucosa of the gastrointestinal tract. The enteric nervous system contains a large number of neurons, approximately 107 to 108. About ten or more distinct types of enteric neurons have been distinguished on electrical, pharmacological, histochemical, biochemical and ultrastructural grounds as well as on the basis of their modes of action. Both excitatory and inhibitory nerves supply the muscle and there are inhibitory and excitatory interneurons within the enteric plexuses. There are also enteric nerves which supply intestinal glands and blood vessels, but these receive less emphasis in this commentary.Correlations between groups of neurons defined on different criteria are poor and in many cases the physiological roles of the nerves are not known. The functions of noradrenergic nerves which are of extrinsic origin are reasonably well understood, but cholinergic nerves in the intestine are the only intrinsic nerves for which both the transmitter and to some extent the functions are known. In the case of non-cholinergic, non-noradrenergic enteric inhibitory nerves, the functions are understood but the transmitter is yet to be determined, both adenosine 5′-triphosphate and vasoactive intestinal polypeptide having been proposed. Other nerves have been defined pharmacologically (non-cholinergic excitatory nerves to neurons and muscle, intrinsic inhibitory inputs to neurons, and enteric, non-cholinergic vasodilator nerves) and histochemically (intrinsic amine-handling neurons and separate neurons containing peptides: substance P, somatostatin, enkephalins, vasoactive intestinal polypeptide, gastrin cholecystokinin tetrapeptide, bombesin, neurotensin and probably other peptides). Little is known of the functions of these nerves, although a number of proposals which have been made are discussed.  相似文献   

8.
Synaptic effects of superior colliculus stimulation on medial rectus motoneurons were studied in encéphale isolé cats. Excitatory postsynaptic potentials were observed in all medial rectus motoneurons located on the side of stimulation, whereas contralateral motoneurons received mainly inhibition. The latencies of stimulus-locked excitatory and inhibitory postsynaptic potentials were in the ranges of 1.3–2.6 and 2.0–3.5 ms. respectively, i.e. on the average longer than in abducens motoneurons. Acute lesions of paramedian structures at bulbar levels did not affect the excitatory responses. Pontine transection at the level of the abducens nucleus reduced the mass response of medial rectus motoneurons, but failed to abolish short latency excitatory potentials in motoneurons studied intracellularly.The present data suggest that the shortest excitatory pathway from the superior colliculus to medial rectus motoneurons is disynaptic. The inhibitory pathway appears to contain at least one additional interneuron. The reciprocal pattern of synaptic action on antagonistic (left and right) medial rectus motoneurons indicates that collicular stimulation activated connections responsible for conjugate contraversive eye movements. According to the results of transection experiments. bulbar structures cannot be regarded as the main relay site of tectofugal effects on ocular motoneurons. Although the exact location of relay neurons could not he at present established. the observed timing of synaptic events is not inconsistent with the idea that tectal influences on medial rectus and abducens motoneurons are mediated by common internuncial cells in the parabducens region.  相似文献   

9.
Experiments were performed on male Wistar rats. The specimens with an active strategy of behavior were exposed to unavoidable water-immersion stress. Surviving slices of the olfactory cortex were obtained 10 days after stress. The neurohormone had a strong inhibitory effect in 40% slices from active rats. The activity of glutamate receptors decreased, while the function of GABA receptors increased in 60% slices. Our results indicate that the depressive state of behaviorally active animals due to exposure to unavoidable stress is not necessarily mediated by the corticoliberinergic mechanisms in cortical structures. Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 147, No. 3, pp. 244-248, March, 2009  相似文献   

10.
S Mihara  Y Katayama  S Nishi 《Neuroscience》1985,16(4):1057-1068
Intracellular recordings of membrane potential and membrane currents were made from neurones in the submucous plexus of the guinea-pig caecum in vitro. Fast and slow excitatory postsynaptic potentials and slow inhibitory postsynaptic potentials were recorded from the majority of neurones following focal stimulation of presynaptic fibres in the plexus. The slow inhibitory postsynaptic potential was associated with an increase in membrane conductance and reversed its polarity at -90 mV; it was reversibly blocked by yohimbine. The slow excitatory postsynaptic potential and its underlying current was associated with a decrease in membrane conductance. Two kinds of voltage-dependence both of the slow excitatory postsynaptic potential and current were observed; in 80% of cells, the excitatory postsynaptic potential and current became smaller with membrane hyperpolarization and reversed polarity at -90 mV (reversing type) but in 20% of cells both the excitatory postsynaptic potential and current simply disappeared when the membrane potential reached -70 mV (non-reversing type). The effects of acetylcholine, adenosine 5'-triphosphate, bombesin, 5-hydroxytryptamine, neurotensin, noradrenaline, substance P and vasoactive intestinal polypeptide were examined. The only substance which mimicked the slow inhibitory postsynaptic potential was noradrenaline; brief applications of noradrenaline caused hyperpolarizations which had the same time-course, reversal potential and sensitivity to yohimbine as the slow inhibitory postsynaptic potential. The non-reversing type of slow excitatory postsynaptic potential was mimicked only by adenosine 5'-triphosphate. The reversing type of slow excitatory postsynaptic potential was mimicked by bombesin, neurotensin, substance P and vasoactive intestinal polypeptide. 5-Hydroxytryptamine and vasoactive intestinal polypeptide (in some neurones) caused a depolarization with an increase in membrane conductance. All three synaptic potentials were reversibly depressed by superfusion of noradrenaline but noradrenaline did not affect the potential changes evoked by brief application of exogenous acetylcholine or substance P. It is concluded that, in guinea-pig submucous plexus neurones, the slow inhibitory postsynaptic potential is mediated by noradrenaline and results from a potassium conductance increase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
P L Carlen  D Durand 《Neuroscience》1981,6(5):839-846
Tonic conductance changes, synaptically or drug-mediated, can occur near the soma, in one or more distal dendrites, or diffusely. Using simple analogue passive neuronal models, means of localizing tonic conductance changes from intrasomatic recordings were explored. The input resistance measured from the soma was more influenced by perisomatic than distal conductance changes. The membrane time constant, τ0, was quite sensitive to shunt magnitude, but not to shunt location. Semilogarithmic plots of the voltage response to a short constant current pulse showed that proximal shunts caused a faster earlier decay than distal shunts. Combining these data it is often possible to estimate the location of a tonic conductance change in a neuron from intrasomatic recordings.  相似文献   

12.
L S Benardo  D A Prince 《Neuroscience》1982,7(7):1703-1712
Responses of CAl pyramidal cells to cholinergic compounds were recorded with intracellular microelectrodes in guinea-pig hippocampal slices. Perfusion of slices with medium containing the muscarinic antagonists atropine or scopolamine (10(-7)-10(-6)M) blocked all actions of acetylcholine. Properties of control neurons and those from separate populations of neurons impaled in slices exposed to muscarinic blocking agents were compared. 1-2 h of perfusion with atropine-containing media significantly decreased membrane input resistance from 37.6 +/- 8.7 (S.D.) M omega (n = 74) to 21.9 +/- 7.7 (S.D.) M omega (n = 24) without producing significant changes in membrane potential. Muscarinic antagonists also reduced or eliminated the anomalous inward rectification normally seen in hippocampal pyramidal neurons. Exposure of slices to 10(-5)-10(-6)M eserine for about 1 h produced changes in neuronal membrane input resistance and potential and slow after hyperpolarizations similar to those elicited by application of acetylcholine. Bethanechol mimicked the actions of acetylcholine but was effective at lower concentrations and had longer lasting effects on afterhyperpolarizations. Nicotine produced an excitatory response in only one of 7 neurons. These experiments demonstrate that the actions of acetylcholine on hippocampal CAl neurons result from interaction with muscarinic receptors. Acetylcholine has modulatory effects on cell membrane properties which may be mediated through tonic release mechanisms.  相似文献   

13.
Chronic neuropathic pain remains an unmet clinical problem because it is often resistant to conventional analgesics. Metabotropic glutamate receptors (mGluRs) are involved in nociceptive processing at the spinal level, but their functions in neuropathic pain are not fully known. In this study, we investigated the role of group III mGluRs in the control of spinal excitatory and inhibitory synaptic transmission in a rat model of neuropathic pain induced by L5/L6 spinal nerve ligation. Whole-cell recording of lamina II neurons was performed in spinal cord slices from control and nerve-ligated rats. The baseline amplitude of glutamatergic EPSCs evoked from primary afferents was significantly larger in nerve-injured rats than in control rats. However, the baseline frequency of GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) was much lower in nerve-injured rats than in control rats. The group III mGluR agonist l(+)-2-amino-4-phosphonbutyric acid (l-AP4) produced a greater inhibition of the amplitude of monosynaptic and polysynaptic evoked EPSCs in nerve-injured rats than in control rats. l-AP4 inhibited the frequency of miniature EPSCs in 66.7% of neurons in control rats but its inhibitory effect was observed in all neurons tested in nerve-injured rats. Furthermore, l-AP4 similarly inhibited the frequency of GABAergic and glycinergic IPSCs in control and nerve-injured rats. Our study suggests that spinal nerve injury augments glutamatergic input from primary afferents but decreases GABAergic and glycinergic input to spinal dorsal horn neurons. Activation of group III mGluRs attenuates glutamatergic input from primary afferents in nerve-injured rats, which could explain the antinociceptive effect of group III mGluR agonists on neuropathic pain.  相似文献   

14.
Electrophysiology of the enteric nervous system   总被引:11,自引:0,他引:11  
R A North 《Neuroscience》1982,7(2):315-325
  相似文献   

15.
16.
A Fourment  J C Hirsch  M E Marc 《Neuroscience》1985,14(4):1061-1075
Intracellular recordings of 31 lateral geniculate nucleus relay neurons were performed in darkness in behaving cats in order to analyse electrical postsynaptic events which appeared during slow-wave sleep. A specific pattern characterized slow-wave sleep: a rapid depolarizing potential arising from baseline initiated a slow depolarization lasting for 40-60 ms which in turn most often elicited delayed fast spikes. This pattern recurred at a frequency of 6-12/s. The slow depolarizations were voltage dependent, usually not separated by any obvious phasic hyperpolarization and showed refractoriness. Other rapid depolarizing potentials occurring during the time course or at the end of a slow depolarization could have generated spike(s) but were followed by a rapid decay. Slow depolarizations were not observed during arousal or paradoxical sleep when the neurons tonically depolarized and displayed either rapid depolarizing potentials with a fast decay or repetitive firing and long high frequency bursts. In five of the studied neurons, decreases in frequency of the spontaneous rapid depolarizing potentials occurred during slow-wave sleep for 3-30 s oscillatory periods without any change in the behavioural state. During these periods all of the few remaining rapid depolarizing potentials arose from a flat baseline, had a higher amplitude and initiated a slow depolarization which always elicited a spike or burst of spikes after a brief delay. The slow-wave sleep rhythm decreased to 1-5/s. Simultaneously the baseline membrane potential hyperpolarized by a few millivolts and reached a level for reversal of inhibitory postsynaptic potentials. Imposed hyperpolarization of the membrane during wakefulness did not reveal any slow depolarization. But strong synaptic excitatory inputs and direct excitation (a break of the current pulse) from a hyperpolarized membrane did evoke the slow depolarization and eventually the fast spike(s) in both control and oscillatory neurons. A rhythm similar to that of slow-wave sleep was elicited during wakefulness by optic tract stimulation and was enhanced by membrane hyperpolarization. But under these conditions the rhythm was initiated by a phasic hyperpolarization and was composed of an alternating hyperpolarization-depolarization. Spontaneously and synaptically evoked rapid depolarizing potentials arising from baseline had a similar rising slope. The spontaneous ones initiated a slow depolarization leading to fast spike(s) during slow-wave sleep and could directly generate fast spike(s) during wakefulness.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Vasoactive intestinal polypeptide nerve processes and cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the inner circular smooth muscle coat and mainly in the mucosa, but were absent in the longitudinal muscle layer. Submucosal blood vessels were often surrounded by immunoreactive vasoactive intestinal polypeptide positive nerves, in close associations (distance less than 40 mn) to blood vessel basement membranes and to smooth muscle cells. In the ganglia of the myenteric and submucous plexuses, labeled fibers surrounded unstained neural cell bodies. The synaptic vesicles of vasoactive intestinal polypeptide positive terminals were 35-40 nm in diameter and some dense core vesicles (80-120 nm in diameter) were also observed in the same profiles. These observations suggest that vasoactive intestinal polypeptide nerves may participate in regulating smooth muscle activity and local blood flow in the small intestine.  相似文献   

18.
In order to test for the contribution of intracellular potassium activity to the link of sodium/potassium-ATPase activity and potassium conductance, studies with conventional and potassium selective microelectrodes were performed on proximal tubules of the isolated perfused frog kidney. The peritubular transference number for potassium (t k), i.e., the contribution of peritubular slope potassium conductance to the slope conductance of the cell membranes (luminal and peritubular), was estimated from the influence of peritubular potassium concentration on the potential difference across the peritubular cell membrane (PD pt). During control conditions,PD pt is –65±1 mV, intracellular potassium activity (K i) 57±2 mmol/l andt k 0.41±0.05. The resistance in parallel of the luminal and peritubular cell membranes (R m) is 44±4 kcm, the resistance of the cellular cable (R c) 137±13 M/cm. When the cells are exposed 10 min to potassium free perfusates (series I),PD pt increases by –28±3 mV within 2 min and then decreases gradually to approach the control value within 10 min.K i decreases by 22±3 mmol/l andR c increases by 35±10%. After a transient decrease,R m increases by 36±9%. Readdition of peritubular potassium leads to a transient increase ofPD pt, a gradual decrease ofR m andR c as well as a gradual increase ofK i t k recovers only slowly to approach 65±8% of control value within 3 and 79±10% within 6 min. When the cells are exposed 10 min to potassium free perfusates containing 1 mmol/l barium (series II),PD pt depolarizes by +28±4 mV andK i decreases by 7±1 mmol/l within 10 min. Within 2 min of reexposure to control perfusatesPD pt approaches the control value.t k recovers significantly faster than in series I and approaches 92±8% of control value within 3 min and 107±8% within 6 min reexposure to control perfusates. In conclusion, the effect of potassium free perfusates on peritubular potassium conductance depends on the degree of potassium depletion of the cell.  相似文献   

19.
Synaptic potentials were examined in the second- and third-order auditory neurons of nucleus magnocellularis and nucleus laminaris in the chick. Brain stems of mature chick embryos were explanted and maintained in vitro for 4 to 8 h. Field potentials, extracellular spike potentials and intracellular potentials evoked by 8th-nerve stimulation were examined. Eighth-nerve stimulation reliability elicited four identifiable field potentials which could be attributed to: (i) the afferent volley of the 8th-nerve axons, (ii) postsynaptic responses of n. magnocellularis neurons, and (iii) ipsilaterally and, (iv) contralaterally-evoked n. laminaris postsynaptic responses. Intracellular-recorded postsynaptic potentials were characterized by a rapid rise time and short duration. They were apparently monosynaptic with a synaptic delay of 0.4 ms. In each n. magnocellularis neuron the 'fast' excitatory postsynaptic potentials were composed of 1 to 3 all-or-none components. 'Slow' excitatory postsynaptic potentials were characterized by a longer latency, a longer duration and graded amplitude variation in proportion to the intensity of 8th-nerve stimulation. Both 'fast' and 'slow' excitatory postsynaptic potentials had similar reversal potentials. Since the 8th nerve makes monosynaptic connection with n. magnocellularis neurons, it is likely that at this synapse the 'fast' excitatory postsynaptic potentials were produced, while the 'slow' potential may be attributable to the convergence of many boutonal synapses of unknown origin. Intracellular injections of horseradish peroxidase into n. magnocellularis revealed that its efferents bifurcate below the nucleus and send one axon to the contralateral n. laminaris while the other axon forms a highly divergent projection to the ipsilateral laminar nucleus. The intracellular records obtained from n. laminaris are consistent with this anatomical finding in that graded excitatory postsynaptic potentials were elicited by 8th-nerve stimulation.  相似文献   

20.
Two major types of different synaptic vesicles were isolated by centrifugation from the brain homogenate of guinea-pigs. The size and shape of vesicles in each type are different. The one type is spheroid and the other is flattened. The former is larger than the latter. These two types are equivalent to the S-type and F-type vesicles in tissue sample. Sedimentation coefficients of S-type and F-type are 64s and 59s respectively. Amino acid composition of vesicles in each type is almost similar, but the content of amino acids in the S-type is larger than in the F-type except for valine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号