首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The fragile X syndrome, the leading cause of inherited mental retardation, is due to the inactivation of the fragile mental retardation 1 gene (FMR1) and the subsequent absence of its gene product FMRP. This RNA-binding protein is thought to control mRNA translation and its absence in fragile X cells leads to alteration in protein synthesis. In neurons, FMRP is thought to repress specific mRNAs during their transport as silent ribonucleoparticles (mRNPs) from the cell body to the distant synapses which are the sites of local synthesis of neuro-specific proteins. The mechanism by which FMRP sorts out its different mRNAs targets might be tuned by the intervention of different proteins. Using a yeast two-hybrid system, we identified MicroSpherule Protein 58 (MSP58) as a novel FMRP-cellular partner. In cell cultures, we found that MSP58 is predominantly present in the nucleus where it interacts with the nuclear isoform of FMRP. However, in neurons but not in glial cells, MSP58 is also present in the cytoplasmic compartment, as well as in neurites, where it co-localizes with FMRP. Biochemical evidence is given that MSP58 is associated with polyribosomal poly(A)+ mRNPs. We also show that MSP58, similar to FMRP, is present on polyribosomes prepared from synaptoneurosomes and that it behaves as an RNA-binding protein with a high affinity to the G-quartet structure. We propose that this novel cellular partner for FMRP escorts FMRP-containing mRNP from the nucleus and nucleolus to the somato-dendritic compartment where it might participate in neuronal translation regulation.  相似文献   

3.
Chen L  Yun SW  Seto J  Liu W  Toth M 《Neuroscience》2003,120(4):1005-1017
Fragile X syndrome is a common form of inherited mental retardation caused by the absence of the fragile X mental retardation protein (FMRP). It has been hypothesized that FMRP is involved in the processing and/or translation of mRNAs. Human and mouse target-mRNAs, containing purine quartets, have previously been identified. By using cDNA-SELEX (systematic evolution of ligands by exponential enrichment), we identified another class of human target-mRNAs which contain U rich sequences. This technique, in contrast to oligonucleotide-based SELEX, allows the identification of FMRP targets directly from mRNA pools. Many of the proteins encoded by the identified FMRP targets have been implicated in neuroplasticity. Steady state levels of target-mRNAs were unchanged in the brain of fragile X mice. However, levels of two target-encoded proteins, an L-type calcium channel subunit and MAP1B, were downregulated in specific brain regions suggesting a defect in the expression of target-encoded proteins in fragile X syndrome.  相似文献   

4.
目的 探讨脆性X智力低下蛋白(FMRP)的克隆表达与纯化条件.方法 用分子克隆的方法构建重组质粒pET22b( )-FMR1,并将其转入原核表达菌株E.coli BL21(DE3)中诱导表达;用固化Ni2 吸收色谱纯化重组FMRP,Western-blot鉴定并将纯化得到的蛋白与已知的RNA片段进行结合反应.结果 成功构建了重组表达质粒pET22b( )-FMR1,在E.coli BL21(DE)中表达出相对分子质量约79 000的蛋白;该蛋白为FMRP,且可与特定RNA相互作用.结论 在原核系统中表达得到了纯度和活性都较为理想的FMRP蛋白,为相关功能性研究奠定了基础.  相似文献   

5.
Fragile X mental retardation is caused by the absence of the FMRP (fragile X mental retardation protein) a RNA-binding protein encoded by the Fmr1 gene. Despite the large number of studies about this syndrome, it is still unclear how the absence of FMRP affects the physiology of the nervous system. It has been reported however that the brain of the Fmr1-KO mouse shows altered membrane protein and lipid oxidation. There is also indirect evidence that FMRP may be involved in a negative feedback mechanism with metabotropic glutamate receptors (mGluRs). In this article, we will discuss several lines of evidences which tend to prove that the lipoxygenase pathway might be the missing link between FMRP and mGluRs.  相似文献   

6.
Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior.  相似文献   

7.
FMRP is an RNA binding protein whose absence produces pathological manifestations of the fragile-X syndrome. FMRP is a component of mRNP complexes found in association with actively translating polyribosomes, RNA complexes trafficking in neurites, RNA granules in cytoplasm and, in Drosophila, with the RNAi machinery. We report here the identification and characterization of a novel FMRP-interacting protein associated to polyribosomes as a component of mRNP complexes containing FMRP. We named this protein 82-FIP (82-kD FMRP Interacting Protein). FMRP interacts with 82-FIP through a novel interaction motif located in its N-terminal region. The distribution of 82-FIP in different areas of the brain is very similar to that of FMRP. However, unlike FMRP, 82-FIP is found in both nucleus and cytoplasm in some neurons, while it appears only cytoplasmic in others. Subcellular distribution of 82-FIP is cell cycle-dependent in cultured cells, suggesting that the composition of some FMRP-containing RNP complexes may be cell cycle-modulated.  相似文献   

8.
Silenced expression of the FMR1 gene is responsible for the fragile X syndrome. The FMR1 gene codes for an RNA binding protein (FMRP), which can shuttle between the nucleus and the cytoplasm and is found associated to polysomes in the cytoplasm. By two-hybrid assay in yeast, we identified a novel protein interacting with FMRP: nuclear FMRP interacting protein (NUFIP). NUFIP mRNA expression is strikingly similar to that of the FMR1 gene in neurones of cortex, hippocampus and cerebellum. At the subcellular level, NUFIP colocalizes with nuclear isoforms of FMRP in a dot-like pattern. NUFIP presents a C2H2 zinc finger motif and a nuclear localization signal, but has no homology to known proteins and shows RNA binding activity in vitro. NUFIP does not interact with the FMRP homologues encoded by the FXR1 and FXR2 genes. Thus, these results indicate a specific nuclear role for FMRP.  相似文献   

9.
Fragile X mental retardation 1 protein (FMRP) is an RNA-binding protein whose absence results in the fragile X syndrome, the most common inherited form of mental retardation. FMRP contains multiple domains with apparently differential affinity to mRNA and interacts also with protein partners present in ribonucleoprotein complexes called RNA granules. In neurons, these particles travel along dendrites and axons to translocate mRNAs to specific destinations in spines and growth cones, where local synthesis of neuro-specific proteins is taking place. However, the molecular mechanisms of how RNA granules are translocated to dendrites remained unknown. We report here the identification and characterization of the motor protein KIF3C as a novel FMRP-interacting protein. In addition, using time-lapse videomicroscopy, we studied the dynamics and kinetics of FMRP-containing RNA granules in dendrites and show that a KIF3C dominant-negative impedes their distal transport. We therefore propose that, in addition to modulate the translation of its mRNA targets, FMRP acts also as a molecular adaptor between RNA granules and the neurospecific kinesin KIF3C that powers their transport along neuronal microtubules.  相似文献   

10.
11.
Effect of X inactivation on fragile X frequency and mental retardation   总被引:1,自引:0,他引:1  
The probability of a heterozygote being affected was estimated from the distribution of frequencies of early-replicating fragile X [fra(X)] chromosome in normal and mentally retarded heterozygotes, taking into account the prior probabilities of 0.35 for mental retardation and 0.65 for normality. The estimated probability of a heterozygote with 100% early-replicating fra(X) being mentally retarded was 78%, which coincides with the value of penetrance in males. Therefore, the manifestation of retardation in females seems to differ from that in males due solely to X inactivation. The frequencies of early-replicating fra(X) were significantly increased among the heterozygotes with the highest frequencies of fra(X) both in the normal group and in the mentally retarded. The mean frequencies of early-replicating fra(X) were 0.42 and 0.68 for normal and mentally retarded heterozygotes, respectively. Considering the overall frequency of retarded heterozygotes as 0.35, the mean frequency of early-replicating fra(X) obtained for all heterozygotes was 0.51, which is in accordance with the hypothesis of random X inactivation. Thus the fragile site appears to have equal chances of being detected when located either on the early- or on the late-replicating X. This leads to the conclusion that the frequency of the fragile site is a consequence of the proportion of cells with the active Martin-Bell syndrome (MBS) gene and not the result of a better visualization of the site on the early-replicating X.  相似文献   

12.
The effects of a fragile X disorder on executive function impairment were assessed in 144 extended families, which included individuals with fragile X premutation and full mutation and their relatives without fragile X. A modification of the maximum-likelihood estimators for pedigree data, as well as ordinal logistic regression, were used in data analysis. The most outstanding deficit, occurring especially in males, involved impaired capacity to use an intention to regulate purposeful behavior. This deficit occurred independently of general cognitive impairment but was related to depletion of fragile X mental retardation 1 gene protein product. The other executive function deficits were accounted for by the general cognitive impairment. Possible mechanisms of the effect of fragile X premutation on impairments of executive functioning are considered.  相似文献   

13.
14.
Loss of FMR1 gene function results in fragile X syndrome, the most common heritable form of intellectual disability. The protein encoded by this locus (FMRP) is an RNA-binding protein that is thought to primarily act as a translational regulator; however, recent studies have implicated FMRP in other mechanisms of gene regulation. We found that the Drosophila fragile X homolog (dFMR1) biochemically interacted with the adenosine-to-inosine RNA-editing enzyme dADAR. Adar and Fmr1 mutant larvae exhibited distinct morphological neuromuscular junction (NMJ) defects. Epistasis experiments based on these phenotypic differences revealed that Adar acts downstream of Fmr1 and that dFMR1 modulates dADAR activity. Furthermore, sequence analyses revealed that a loss or overexpression of dFMR1 affects editing efficiency on certain dADAR targets with defined roles in synaptic transmission. These results link dFMR1 with the RNA-editing pathway and suggest that proper NMJ synaptic architecture requires modulation of dADAR activity by dFMR1.  相似文献   

15.
The erythrocyte osmotic fragility was evaluated on 19 unmedicated subjects with Huntington's disease and 42 individuals at 50% risk, 27 children at 25% risk, and a group of 60 hematologically normal control persons. Five older subjects at 50% risk for Huntington's disease as well as 6 Alzheimer's disease individuals were also evaluated for comparison. The osmotic fragility of fresh and 24-hour incubated red cells was analyzed and a fragility index calculated for each individual. The fragility index for the Huntington's disease group was statistically lower than that of the control group (P < .001) suggesting that the Huntington's disease erythrocytes had a reduced osmotic fragility. In the 50% risk group, 45% of the subjects demonstrated decreased osmotic fragility and 55% had normal fragility. For those subjects in the 25% risk group, 22.2% had decreased fragility and 77.8% had normal fragility. Twenty-seven offspring were evaluated of the 14 persons at 50% risk for Huntington's disease with children; eight of the 14 individuals at 50% risk showed normal fragility and all 16 of their children showed fragility indices with the normal range. The remaining six persons at 50% risk for Huntington's disease had increased erythrocyte fragility and out of their 11 children, five showed normal fragility and six had decreased fragility. These data support the hypothesis of reduced erythrocyte osmotic fragility in individuals affected with and at risk for Huntington disease, and demonstrate the need of further study of the erythrocyte in this complex behavioral genetic disease.  相似文献   

16.
Fragile X syndrome is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, mRNA ligands associated with FMRP have been identified. However, the mechanism by which FMRP regulates the translation of its mRNA ligands remains unclear. MicroRNAs are small noncoding RNAs involved in translational control. Here we show that in vivo mammalian FMRP interacts with microRNAs and the components of the microRNA pathways including Dicer and the mammalian ortholog of Argonaute 1 (AGO1). Using two different Drosophila melanogaster models, we show that AGO1 is critical for FMRP function in neural development and synaptogenesis. Our results suggest that FMRP may regulate neuronal translation via microRNAs and links microRNAs with human disease.  相似文献   

17.
18.
Fragile X syndrome is the most common form of inherited mental retardation and is caused by the absence of expression of the FMR1 gene. The protein encoded by this gene, Fmrp, is an RNA-binding protein that binds a subset of mRNAs and regulates their translation, leading to normal cognitive function. Although the association with RNAs is well established, it is still unknown how Fmrp finds and assembles with its RNA cargoes and how these activities are regulated. We show here that Fmrp is post-translationally methylated, primarily on its arginine-glycine-glycine box. We identify the four arginines that are methylated and show that cellular Fmrp is monomethylated and asymmetrically dimethylated. We also show that the autosomal paralog Fxr1 and the Drosophila ortholog dFmr1 are methylated post-translationally. Recombinant protein arginine methyl transferase 1 (PRMT1) methylates Fmrp on the same arginines in vitro as in cells. In vitro methylation of Fmrp results in reduced binding to the minimal RNA sequence sc1, which encodes a stem loop G-quartet structure. Our data identify an additional mechanism, arginine methylation, for modifying Fmrp function and suggest that methylation occurs to limit or modulate RNA binding by Fmrp.  相似文献   

19.
20.
In order to obtain a quantitative estimate of the degree of association between presence of fragile X chromosome (fra(X)) and mental retardation (MR), existing data from nonretarded males were analyzed. Clearly, fra(X) occurs less frequently among nonretarded compared to MR males. However, incidence estimates for fra(X) based upon existing data hold open the possibility that there may be significant numbers of nonretarded males with fra(X). Additional analyses of data from families with a pattern of fra(X) linked MR showed: (a) the probability that nonretarded male offspring will have fra(X) is very small, and (b) the probability that MR male offspring will have fra(X) is very large. Thus, accurate prognostic decisions can be based upon prenatal diagnosis of fra(X) presence, especially in families with a pattern of fra(X) linked MR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号