首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.  相似文献   

2.
Over recent decades, the Norwegian cereal industry has had major practical and financial challenges associated with the occurrence of Fusarium head blight (FHB) pathogens and their associated mycotoxins in cereal grains. Deoxynivalenol (DON) is one of the most common Fusarium-mycotoxins in Norwegian oats, however T-2 toxin (T2) and HT-2 toxin (HT2) are also commonly detected. The aim of our study was to rank Nordic spring oat varieties and breeding lines by content of the most commonly occurring Fusarium mycotoxins (DON and HT2 + T2) as well as by the DNA content of their respective producers. We analyzed the content of mycotoxins and DNA of seven fungal species belonging to the FHB disease complex in grains of Nordic oat varieties and breeding lines harvested from oat field trials located in the main cereal cultivating district in South-East Norway in the years 2011–2020. Oat grains harvested from varieties with a high FHB resistance contained on average half the levels of mycotoxins compared with the most susceptible varieties, which implies that choice of variety may indeed impact on mycotoxin risk. The ranking of oat varieties according to HT2 + T2 levels corresponded with the ranking according to the DNA levels of Fusarium langsethiae, but differed from the ranking according to DON and Fusarium graminearum DNA. Separate tests are therefore necessary to determine the resistance towards HT2 + T2 and DON producers in oats. This creates practical challenges for the screening of FHB resistance in oats as today’s screening focuses on resistance to F. graminearum and DON. We identified oat varieties with generally low levels of both mycotoxins and FHB pathogens which should be preferred to mitigate mycotoxin risk in Norwegian oats.  相似文献   

3.
A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.  相似文献   

4.
Stephen N. Wegulo 《Toxins》2012,4(11):1157-1180
Deoxynivalenol (DON) is a mycotoxin produced by the plant pathogenic fungi Fusarium graminearum and F. culmorum. These and other closely related fungi cause a disease known as Fusarium head blight (FHB) in small grain cereals. Other mycotoxins produced by FHB-causing fungi include nivalenol, T-2 toxin, and zearalenone. Ingestion of mycotoxin-contaminated food and feed can lead to toxicosis in humans and animals, respectively. DON is the predominant and most economically important of these mycotoxins in the majority of small grain-producing regions of the world. This review examines the factors that influence DON accumulation in small grain cereals from an agricultural perspective. The occurrence and economic importance of FHB and DON in small grain cereals, epidemiological factors and cereal production practices that favor FHB development and DON accumulation in grain under field conditions, and regulatory/advisory standards for DON in food and feed are discussed. This information can be used to develop strategies that reduce DON accumulation in grain before harvest and to mitigate the human and animal health risks associated with DON contamination of food and feed.  相似文献   

5.
Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%–100% or by 75%–80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety “Apogee” was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides.  相似文献   

6.
Food mycotoxin deoxynivalenol (vomitoxin, DON) produced by Fusarium graminearum and F. culmorum can induce rapid diminution of lymphoid tissues and lymphopenia in the growing chickens and mammals. We first investigated the direct acute effects of DON on the chick immune-related embryo tissues such as embryonic liver and spleen. Direct DON administration into the embryonic eggs caused toxin accumulation in liver in a time-dependent manner. Electron microscopic observation showed a notable accumulation of fat droplet in the liver tissue and the re-exposed hatched chicken showed more distinguishing enlarged fat globules, so-called fatty cysts like human steatosis. Regarding effects of deoxynivalenol on the chick embryonic spleen, fatty change was also observed in splenocytes. Functionally, mitogen-stimulated cellular and humoral lympho-proliferations were suppressed in the DON-treated embryo. Conclusively, acute direct exposure to deoxynivalenol in the chick embryo caused toxic histological alterations in the liver and spleen and suppressed in vitro lymphoblastogenesis.  相似文献   

7.
The Fusarium graminearum species complex (FGSC) is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB) of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1-α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP) analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB.  相似文献   

8.
Fusarium head blight (FHB) causes wheat yield loss and mycotoxin (deoxynivalenol, DON) accumulation in wheat kernel. Developing wheat cultivars with overall resistance to both FHB spread within a spike and DON accumulation in kernels is crucial for ensuring food security and food safety. Here, two relatively novel inoculation methods, bilateral floret inoculation (BFI) and basal rachis internode injection (BRII), were simultaneously employed to evaluate disease severity and DON content in kernels in a segregating population of recombinant inbred lines (RILs) developed from Ning 7840 (carrying Fhb1) and Clark (without Fhb1). Under both inoculation methods, four contrasting combinations of disease severity and DON content were identified: high severity/high DON (HSHD), high severity/low DON (HSLD), low severity/high DON (LSHD) and low severity/low DON (LSLD). Unexpectedly, the BRII method clearly indicated that disease severity was not necessarily relevant to DON concentration. The effects of Fhb1 on disease severity, and on DON concentrations, agreed very well across the two methods. Several lines carrying Fhb1 showed extremely higher severity and (or) DON content under both inoculation methods. The “Mahalanobis distance” (MD) method was used to rate overall resistance of a line by inclusion of both disease severity and DON content over both methods to select LSLD lines.  相似文献   

9.
Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination inhibition methods to determine the inhibitory effect of quinofumelin against F. graminearum in vitro. The results indicated that quinofumelin excellently inhibited mycelial growth and spore germination of F. graminearum, with the average EC50 values of 0.019 ± 0.007 μg/mL and 0.087 ± 0.024 μg/mL, respectively. In addition, we found that quinofumelin could significantly decrease deoxynivalenol (DON) production and inhibit the expression of DON-related gene TRI5 in F. graminearum. Furthermore, we found that quinofumelin could disrupt the formation of Fusarium toxisome, a structure for producing DON. Western blot analysis demonstrated that the translation level of TRI1, a marker gene for Fusarium toxisome, was suppressed by quinofumelin. The protective and curative assays indicated that quinofumelin had an excellent control efficiency against F. graminearum on wheat coleoptiles. Taken together, quinofumelin exhibits not only an excellent antifungal activity on mycelial growth and spore germination, but also could inhibit DON biosynthesis in F. graminearum. The findings provide a novel candidate for controlling FHB caused by F. graminearum.  相似文献   

10.
Chehri K  Jahromi ST  Reddy KR  Abbasi S  Salleh B 《Toxins》2010,2(12):2816-2823
Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F.verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15-155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12-86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13-64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg).  相似文献   

11.
Jianbo Qiu  Jianrong Shi 《Toxins》2014,6(8):2291-2309
Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture.  相似文献   

12.
Magan N  Aldred D  Hope R  Mitchell D 《Toxins》2010,2(3):353-366
Mycotoxigenic fungi colonizing food matrices are inevitably competing with a wide range of other resident fungi. The outcomes of these interactions are influenced by the prevailing environmental conditions and the competing species. We have evaluated the competitiveness of F. culmorum and A. carbonarius in the grain and grape food chain for their in vitro and in situ dominance in the presence of other fungi, and the effect that such interactions have on colony interactions, growth and deoxynivalenol (DON) and ochratoxin A (OTA) production. The Index of Dominance shows that changes in water activity (a(w)) and temperature affect the competitiveness of F. culmorum and A. carbonarius against up to nine different fungi. Growth of both mycotoxigenic species was sometimes inhibited by the presence of other competing fungi. For example, A. niger uniseriate and biseriate species decreased growth of A. carbonarius, while Aureobasidium pullulans and Cladosporium species stimulated growth. Similar changes were observed when F. graminearum was interacting with other grain fungi such as Alternaria alternata, Cladopsorium herbarum and Epicoccum nigrum. The impact on DON and OTA production was very different. For F. culmorum, the presence of other species often inhibited DON production over a range of environmental conditions. For A. carbonarius, on a grape-based medium, the presence of certain species resulted in a significant stimulation of OTA production. However, this was influenced by both temperature and a(w) level. This suggests that the final mycotoxin concentrations observed in food matrices may be due to complex interactions between species and the environmental history of the samples analyzed.  相似文献   

13.
Fusarium graminearum and Fusarium verticillioides are fungal pathogens that cause diseases in cereal crops, such as Fusarium head blight (FHB), seedling blight, and stalk rot. They also produce a variety of mycotoxins that reduce crop yields and threaten human and animal health. Several strategies for controlling these diseases have been developed. However, due to a lack of resistant cultivars and the hazards of chemical fungicides, efforts are now focused on the biocontrol of plant diseases, which is a more sustainable and environmentally friendly approach. In the present study, the lipopeptide mycosubtilin purified from Bacillus subtilis ATCC6633 significantly suppressed the growth of F. graminearum PH-1 and F. verticillioides 7600 in vitro. Mycosubtilin caused the destruction and deformation of plasma membranes and cell walls in F. graminearum hyphae. Additionally, mycosubtilin inhibited conidial spore formation and germination of both fungi in a dose-dependent manner. In planta experiments demonstrated the ability of mycosubtilin to control the adverse effects caused by F. graminearum and F. verticillioides on wheat heads and maize kernels, respectively. Mycosubtilin significantly decreased the production of deoxynivalenol (DON) and B-series fumonisins (FB1, FB2 and FB3) in infected grains, with inhibition rates of 48.92, 48.48, 52.42, and 59.44%, respectively. The qRT-PCR analysis showed that mycosubtilin significantly downregulated genes involved in mycotoxin biosynthesis. In conclusion, mycosubtilin produced by B. subtilis ATCC6633 was shown to have potential as a biological agent to control plant diseases and Fusarium toxin contamination caused by F. graminearum and F. verticillioides.  相似文献   

14.
The effect that dietary exposure to the naturally-occurring Fusarium graminearum toxins deoxynivalenol (DON) and zearalenone (ZEA) may have on immune function was assessed in the B6C3F1 mouse. Dietary DON depressed the plaque-forming response to sheep red blood cells, the delayed hypersensitivity response to keyhole limpet haemocyanin and the ability to resist Listeria monocytogenes. Listerial resistance was similarly decreased in control mice fed restricted diets comparable to the dietary restriction caused by DON-induced feed refusal, whereas equivalent food restriction did not decrease the plaque or delayed hypersensitivity responses. ZEA ingestion decreased resistance to L. monocytogenes but did not affect splenic plaque-forming or delayed hypersensitivity responses. Resistance to Listeria was reduced to a greater extent by co-administration of DON and ZEA than by DON alone, whereas the ability of DON to inhibit the delayed hypersensitivity response was significantly lessened in the presence of ZEA. While effects on resistance to Listeria and delayed hypersensitivity were detectable in mice ingesting the mycotoxins for 2-3 wk, these effects disappeared upon extension of the feeding period to 8 wk. In contrast, some effect on the plaque-forming response was detectable with both the 2- and the 8-wk period of mycotoxin ingestion. Immunosuppression can thus result from ingestion of F. graminearum-infected agricultural staples, the suppression being attributable to interactions between direct immunotoxic effects of DON and ZEA and nutritional effects associated with DON-induced food refusal.  相似文献   

15.
Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous ripening), also the accumulation of significant quantities of DON-3-glucoside (DON-3G), a product of DON glycosylation, was detected, with decreasing levels in straw, crown, stems and kernels. The presence of DON and DON-3G in heads and kernels without the occurrence of F. graminearum may be explained by their water solubility that could facilitate their translocation from stem to heads and kernels. The presence of DON-3G at levels 23 times higher than DON in the heads at milk stage without the occurrence of F. graminearum may indicate that an active glycosylation of DON also occurs in the head tissues. Finally, the high levels of DON accumulated in straws are worrisome since they represent additional sources of mycotoxin for livestock.  相似文献   

16.
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)—a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg−1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg−1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.  相似文献   

17.
Crop diseases caused by Fusarium graminearum threaten crop production in both commercial and smallholder farming. F. graminearum produces deoxynivalenol mycotoxin, which is stable during food and feed processing. Therefore, the best way to prevent the sporulation of pathogens is to develop new prevention strategies. Plant-based pesticides, i.e., natural fungicides, have recently gained interest in crop protection as alternatives to synthetic fungicides. Herein we show that treatment with the methanolic extract of medicinal plant Zanthoxylum bungeanum (M20 extract), decreased F. graminearum growth and abrogated DON production. The F. graminearum DNA levels were monitored by a quantitative TaqMan real-time PCR, while DON accumulation was assessed by HPLC quantification. This M20 extract was mainly composed of four flavonoids: quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The in vitro bioassay, which measured the percent inhibition of fungal growth, showed that co-inoculation of four F. graminearum strains with the M20 extract inhibited the fungal growth up to 48.5%. After biocontrol treatments, F. graminearum DNA level was reduced up to 85.5% compared to that of wheat heads, which received F. graminearum mixture only. Moreover, DON production was decreased in wheat heads by 73% after biocontrol treatment; meanwhile in wheat heads inoculated with F. graminearum conidia, an average of 2.263 ± 0.8 mg/kg DON was detected. Overall, this study is a successful case from in vitro research to in planta, giving useful information for wheat protection against F. graminearum responsible for Fusarium Head Blight and DON accumulation in grains. Further studies are needed to study the mechanism by which M20 extract inhibited the DON production and what changes happened to the DON biosynthetic pathway genes.  相似文献   

18.
Fusarium head blight (FHB) is one of the most serious diseases of small-grain cereals worldwide, resulting in yield reduction and an accumulation of the mycotoxin deoxynivalenol (DON) in grain. Weather conditions are known to have a significant effect on the ability of fusaria to infect cereals and produce toxins. In the past 10 years, severe outbreaks of FHB, and grain DON contamination exceeding the EU health safety limits, have occurred in countries in the Baltic Sea region. In this study, extensive data from field trials in Sweden, Poland and Lithuania were analysed to identify the most crucial weather variables for the ability of Fusarium to produce DON. Models were developed for the prediction of DON contamination levels in harvested grain exceeding 200 µg kg−1 for oats, spring barley and spring wheat in Sweden and winter wheat in Poland, and 1250 µg kg−1 for spring wheat in Lithuania. These models were able to predict high DON levels with an accuracy of 70–81%. Relative humidity (RH) and precipitation (PREC) were identified as the weather factors with the greatest influence on DON accumulation in grain, with high RH and PREC around flowering and later in grain development and ripening correlated with high DON levels. High temperatures during grain development and senescence reduced the risk of DON accumulation. The performance of the models, based only on weather variables, was relatively accurate. In future studies, it might be of interest to determine whether inclusion of variables such as pre-crop, agronomic factors and crop resistance to FHB could further improve the performance of the models.  相似文献   

19.
Fusarium head blight (FHB) is a major disease in wheat causing severe economic losses globally by reducing yield and contaminating grain with mycotoxins. In Canada, Fusarium graminearum is the principal etiological agent of FHB in wheat, producing mainly the trichothecene mycotoxin, deoxynivalenol (DON) and its acetyl derivatives (15-acetyl deoxynivalenol (15ADON) and 3-acetyl deoxynivalenol (3ADON)). Understanding the population biology of F. graminearum such as the genetic variability, as well as mycotoxin chemotype diversity among isolates is important in developing sustainable disease management tools. In this study, 570 F. graminearum isolates collected from commercial wheat crops in five geographic regions in three provinces in Canada in 2018 and 2019 were analyzed for population diversity and structure using 10 variable number of tandem repeats (VNTR) markers. A subset of isolates collected from the north-eastern United States was also included for comparative analysis. About 75% of the isolates collected in the Canadian provinces of Saskatchewan and Manitoba were 3ADON indicating a 6-fold increase in Saskatchewan and a 2.5-fold increase in Manitoba within the past 15 years. All isolates from Ontario and those collected from the United States were 15ADON and isolates had a similar population structure. There was high gene diversity (H = 0.803–0.893) in the F. graminearum populations in all regions. Gene flow was high between Saskatchewan and Manitoba (Nm = 4.971–21.750), indicating no genetic differentiation between these regions. In contrast, less gene flow was observed among the western provinces and Ontario (Nm = 3.829–9.756) and USA isolates ((Nm = 2.803–6.150). However, Bayesian clustering model analyses of trichothecene chemotype subpopulations divided the populations into two clusters, which was correlated with trichothecene types. Additionally, population cluster analysis revealed there was more admixture of isolates among isolates of the 3ADON chemotypes than among the 15ADON chemotype, an observation that could play a role in the increased virulence of F. graminearum. Understanding the population genetic structure and mycotoxin chemotype variations of the pathogen will assist in developing FHB resistant wheat cultivars and in mycotoxin risk assessment in Canada.  相似文献   

20.
The disease severity and mycotoxin DON content in grains caused by fusarium head blight (FHB) have been two prioritized economical traits in wheat. Reliable phenotyping is a prerequisite for genetically improving wheat resistances to these two traits. In this study, three inoculation methods: upper bilateral floret injection (UBFI), basal bilateral floret injection (BBFI), and basal rachis internode injection (BRII), were applied in a panel of 22 near-isogenic lines (NILs) contrasting in Fhb1 alleles. The results showed that inoculation methods had significant influence on both disease severity and mycotoxin accumulation in grains, and the relationship between them. UBFI method caused chronic FHB symptom characterized as slow progress of the pathogen downward from the inoculation site, which minimized the difference in disease severity of the NILs, but, unexpectedly, maximized the difference in DON content between them. The BBFI method usually caused an acute FHB symptom in susceptible lines characterized as premature spike death (PSD), which maximized the difference in disease severity, but minimized the difference in DON content in grains between resistant and susceptible lines. The BRII method occasionally caused acute FHB symptoms for susceptible lines and had relatively balanced characteristics of disease severity and DON content in grains. Therefore, two or more inoculation methods are recommended for precise and reliable evaluation of the overall resistance to FHB, including resistances to both disease spread within a spike and DON accumulation in grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号