首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
目的研究不同脑区大麻素CB1、CB2受体分布的细胞类型,探索大麻素受体在中枢神经系统中的可能作用。方法运用免疫荧光单标、双标的方法研究2种大麻素受体在成年大鼠不同脑区、不同类型细胞中的表达分布情况。结果成年大鼠不同脑区的神经元中有CB1、CB2受体的表达,海马、大脑皮层、脑干以及小脑的浦肯野细胞层的神经元有较高表达,且2种大麻素受体的表达差异较小,基底神经节区有中等表达,而胼胝体区未发现有神经元表达。少突胶质细胞及星型胶质细胞中发现CB1、CB2受体的表达。结论大麻素受体CB1、CB2在中枢神经系统多种类型的细胞中均有分布,可能通过多种途径参与神经系统功能调节。  相似文献   

6.
7.
8.
In situ hybridization was used to study the distribution of corticoliberin receptors of subtypes 1 and 2 (CL-R1 and CL-R2 respectively) in different structures of the rat brain. Levels of CL-R1 mRNA in the brain were significantly greater than levels of CL-R2 mRNA, and the most intense expression of the CL-R1 gene was seen in forebrain structures, especially various neocortical, archicortical, and paleocortical regions in the cerebellar cortex. In addition, significant levels of CL-R1 mRNA expression were noted in the red nucleus and the reticular nucleus of the tegmentum. Intense expression of CL-R2 mRNA was observed in structures of the olfactory system, corticomedial parts of the amygdala, fields CA1–CA4 of the hippocampus, the ventromedial hypothalamus, and several brain stem nuclei. Moderate levels of CL-R2 mRNA were seen in the dorsolateral neostriatum. These results provide evidence that corticoliberin receptors of both subtypes are widespread in the brain. The different patterns of expression of CL-R1 and CL-R2 in the brain probably provide the basis for the functional specificity of action of corticoliberin in brain structures.  相似文献   

9.
Changes of synapsin I messenger RNA expression during rat brain development   总被引:2,自引:0,他引:2  
Synapsin I is a synaptic phosphoprotein that is involved in the short-term regulation of neurotransmitter release. In this report we present the first extensive study of the developmental expression of its corresponding messenger ribonucleic acid (mRNA) by in situ hybridization and northern blot analysis in rat brain. Synapsin I mRNA showed pronounced differences in expression in different brain regions during postnatal development. The early expression of synapsin I mRNA in ontogenetically older regions such as the thalamus, the piriform cortex and the hippocampus coincides with the earlier maturation of these regions, in contrast to its later expression in ontogenetically younger areas such as the cerebellum and the neocortex. An intriguing expression pattern was found in the hippocampus. In all hippocampal subregions synapsin I mRNA expression increased from postnatal day (PND) 1 to 17. After PND 17, however, there was a marked dissociation between persisting high expression levels in CA3 and the dentate gyrus and a strong decline in synapsin I mRNA expression in CA1. The persistence of synapsin I in some adult rat brain regions indicates that it plays a part in synapse formation during plastic adaption in neuronal connectivities.  相似文献   

10.
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system. Its effects on, for example, cognition, memory and motor functions are thought to be mediated mainly via its interactions with the NPY Y1 and Y2 receptor subtypes. We had previously described the neuroanatomical organization of the Y1 and Y2 mRNA expression in humans. However, in view of the lack of information regarding the overall detailed distribution of NPY mRNA expression in the human brain, a complete picture of the anatomical organization of the NPY-related genes was still missing. Thus, in the present study, the regional distribution of NPY mRNA-expressing cells was analyzed in the post-mortem human brain. In addition, double labeling in situ hybridization was performed to characterize the NPY neuronal populations in relation to the Y1 and/or Y2 receptor mRNA localization in the human cerebral cortex, striatum, and amygdala. NPY mRNA was found to be abundant in layers II and VI of the neocortex, polymorphic layer of the dentate gyrus, basal ganglia, and amygdala. Double labeling in situ hybridization showed the co-expression of NPY mRNA with the Y2, but not with the Y1, mRNA in the human cerebral cortex, hippocampus, amygdala, striatum, and nucleus accumbens, and the existence of co-expression of the Y1 and Y2 mRNAs in the cerebral cortex and amygdala. Overall, these results suggest a role for the Y2, but not Y1, as an autoreceptor in the NPY neuronal populations of the human brain.  相似文献   

11.
12.
mKirre, a mammalian homolog of the Drosophila kirre, is expressed in bone marrow stromal cells and the brain. Although mKirre has been shown to support the hematopoietic stem cells, little is known about the function of mKirre in the brain. In the present study, to gain insights into the function of mKirre, we investigated the expression pattern of mKirre gene in the developing and adult mouse brain using in situ hybridization. In the adult brain, mKirre mRNA was highly expressed in the olfactory bulb, the piriform cortex, the cochlear nucleus, and the cerebellum. At embryonic day (E) 11.5, we could observe mKirre mRNA in the differentiating zones of various regions, such as the caudate-putamen, the geniculate body, the thalamus, the amygdala, and the brainstem. Its gene expression in these regions at E11.5 also persisted to the adult, in which its expression levels were much less prominent. After birth, we could first observe high expression of mKirre mRNA in the glomerular and mitral layers of the olfactory bulb, the cortical plate of the neocortex, the cochlear nucleus, and the molecular and granule cell layers of the cerebellum. In the hippocampus, its gene expression was first observed in the dentate gyrus at postnatal day 7. The spatiotemporal expression pattern of mKirre mRNA suggests important roles of mKirre in later developmental processes, especially the synapse formation.  相似文献   

13.
NCBE (SLC4A10) is a member of the SLC4 family of bicarbonate transporters, several of which play important roles in intracellular-pH regulation and transepithelial HCO(3)(-) transport. Here we characterize a new antibody that was generated in rabbit against a fusion protein consisting of maltose-binding protein and the first 135 amino acids (aa) of the N-terminus of human NCBE. Western blotting--both of purified peptides representing the initial approximately 120 aa of the transporters and of full-length transporters expressed in Xenopus oocytes--demonstrated that the antibody is specific for NCBE versus the two most closely related proteins, NDCBE (SLC4A8) and NBCn1 (SLC4A7). Western blotting of tissue in four regions of adult mouse brain indicates that NCBE is expressed most abundantly in cerebral cortex (CX), cerebellum (CB) and hippocampus (HC), and less so in subcortex (SCX). NCBE protein was present in CX, CB, and HC microdissected to avoid choroid plexus. Immunocytochemistry shows that NCBE is present at the basolateral membrane of embryonic day 18 (E18) fetal and adult choroid plexus. NCBE protein is present by Western blot and immunocytochemistry in cultured and freshly dissociated HC neurons but not astrocytes. By Western blot, nearly all NCBE in mouse and rat brain is highly N-glycosylated (approximately 150 kDa). PNGase F reduces the molecular weight (MW) of natural NCBE in mouse brain or human NCBE expressed in oocytes to approximately the predicted MW of the unglycosylated protein. In oocytes, mutating any one of the three consensus N-glycosylation sites reduces glycosylation of the other two, and the triple mutant exhibits negligible functional expression.  相似文献   

14.
15.
16.
17.
Jiang Y  Yang W  Zhou Y  Ma L 《Neuroscience letters》2003,352(3):216-220
Repeated administration of addictive drugs induces neuronal apoptosis and the underlying mechanisms are not clear. Our present study investigated the effects of treatments with different addictive drugs on gene expression of murine double minute clone 2 (MDM2), a key negative regulator of p53 and an important mediator in cell apoptosis. The level of MDM2 gene expression in rat brain was assessed using in situ hybridization histochemistry. In normal adult rat brain, MDM2 expression was at a very low level but MDM2 mRNA-positive cells were detected in various regions including cortex, hippocampus, thalamus, amygdala, periaqueductal gray and locus ceruleus. After a single morphine injection, MDM2 gene expression increased significantly in hippocampus, amygdala and cortex; however, such up-regulation of MDM2 gene expression was significantly reduced after repeated morphine administration. Moreover, 24 h after cessation of chronic morphine exposure, MDM2 mRNA increased again to a level comparable to that of the acute morphine group. Acute heroin or cocaine administration also significantly increased MDM2 gene expression in hippocampus, but not in cortex. In thalamus, no change was detected after acute or chronic treatment with morphine, heroin, or cocaine. Thus we demonstrated for the first time that the administration of addictive drugs regulate MDM2 gene expression in distinct rat brain regions and these data suggest that MDM2 may play an important role in the development of drug addiction.  相似文献   

18.
W Y Ong  K Mackie 《Neuroscience》1999,92(4):1177-1191
The immunohistochemical distribution and subcellular localization of the cannabinoid CB1 receptor was determined in the adult monkey using a polyclonal antiserum raised against the amino terminus of the rat CB1 receptor. At the level of light microscopy, our results generally parallel earlier studies investigating CB1 distribution in rodent brain with a few differences. In particular, high levels of receptor were found in the cortex, hippocampus, amygdala, cerebellum. However significant differences were also noted. The most striking differences were high levels of CB1 receptor in the monkey substantia nigra pars compacta, cerebellar Purkinje cells, and the principal cells of the hippocampus, while few receptors were found in the globus pallidus or substantia nigra pars reticulata. In contrast, in a previous study investigating the rat, using the same antibody, the opposite staining pattern was observed. At the electron microscopic level CB1 receptor was restricted to neurons. Here it was found both pre- and postsynaptically, particularly on dendritic spines and axon terminals. The CB1 receptor is widely distributed in higher brain regions in the monkey. While its distribution is similar to that in the rat, there are major differences, some of which may be significant when extrapolating the behavioral effects of cannabinoids observed in rodents to primates (e.g., humans). The ultrastructural localization of the CB1 receptor suggests that it modulates neuronal excitability by both pre- and postsynaptic mechanisms.  相似文献   

19.
The calmodulin superfamily includes the calmodulins, calcium-binding proteins, and related genes. Herein, we describe the cloning and characterization of human calneuron 1 (CALN1). CALN1 encodes a novel neuron-specific protein that maps to chromosome 7q11. CALN1 spans a large genomic region (>360 kb). Sequence comparison shows significant similarity with the calmodulin superfamily of genes, especially in the two conserved EF-hand motifs. The mouse orthologous gene (Caln1) shows little prenatal expression, with highest expression at Postnatal Day 21. In situ hybridization to adult mouse brain shows high expression in the cerebellum, hippocampus, and cortex. The high expression of this gene exclusively in brain, the developmental changes in expression levels, the high homology with calmodulin which indicates a potential role in signal transduction, and the cellular localization of the mRNA suggest that CALN1 has a significant role in the physiology of neurons and is potentially important in memory and learning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号