首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Effective therapy was not available for treatment of acute stroke until 1995, when tissue plasminogen activator (tPA) was shown to improve neurological and functional outcome in stroke patients who were treated within 3 hours of symptom onset. SUMMARY OF REVIEW: Currently, many patients do not qualify for tPA therapy because they present for evaluation beyond 3 hours after stroke onset. Attempts to expand the treatment window to 6 hours, using CT to select patients, have failed. Use of early MR imaging may provide significant advantages over CT for identification of patients who are likely to benefit from thrombolytic therapy because (1) the early perfusion-weighted imaging (PWI) lesion estimates the region of acute dysfunctional brain tissue, whereas the acute diffusion-weighted imaging (DWI) lesion appears to correspond to the core of the early infarction; (2) the mismatch between the acute PWI lesion and the smaller DWI lesion represents potentially salvageable brain tissue (an estimate of the ischemic penumbra); and (3) in patients with a PWI/DWI mismatch, early reperfusion is often associated with substantial clinical improvement and reversal or reduction of DWI lesion growth. CONCLUSIONS: Clinical trials that use new MRI techniques to screen patients may be able to identify a subset of acute stroke patients who are ideal candidates for thrombolytic therapy even beyond 3 hours after stroke onset.  相似文献   

2.
BACKGROUND: Acute diffusion-weighted (DWI) and perfusion-weighted (PWI) magnetic resonance imaging (MRI) findings may correlate with secondary hemorrhagic transformation (HT) risk in patients with stroke. This information could be of value, particularly in individuals being considered for thrombolytic therapy. OBJECTIVE: To determine the relationship between DWI and PWI findings and the risk of secondary HT in patients with acute stroke. DESIGN: Retrospective case series. SETTING: Academic medical center. PATIENTS: Twenty-seven patients with acute stroke capable of being evaluated with DWI/PWI 8 hours or less after symptom onset. MAIN OUTCOME MEASURES: Apparent diffusion coefficient values, perfusion delay measurements, and subsequent MRI or computed tomographic scans detected HT. RESULTS: The mean +/- SD apparent diffusion coefficient of ischemic regions that experienced HT was significantly lower than the overall mean +/- SD apparent diffusion coefficient of all ischemic areas analyzed (0.510 +/- 0.140 x 10(-3) mm(2)/s vs 623 +/- 0.113 x 10(-3) mm(2)/s; P =.004). This difference remained significant when comparing the HT-destined ischemic areas with the non-HT-destined areas within the same ischemic lesion (P =.02). Patients receiving recombinant tissue-type plasminogen activator (rt-PA) experienced HT significantly earlier than patients not receiving rt-PA (P =.002). Moreover, a persistent perfusion deficit in the area of subsequent hemorrhage at 3 to 6 hours after the initial MRI scan was identified in significantly more patients who experienced HT than in those who did not (83% vs 30%; P =.03). CONCLUSION: Both DWI and PWI scans detect abnormalities that are associated with HT. These findings support a role for MRI in identifying patients who are at increased risk for secondary HT following acute ischemic stroke.  相似文献   

3.
BACKGROUND: Current guidelines for the treatment of acute ischemic stroke exclude patients with seizure at stroke onset from consideration for thrombolytic therapy. It may be difficult to differentiate an ischemic stroke from postictal Todd's paralysis by clinical examination and noncontrast CT scan. Magnetic resonance imaging (MRI) with diffusion- (DWI) and perfusion-weighted images (PWI) and angiography (MRA) can be used to confirm the diagnosis of an acute ischemic process in the presence of concurrent seizures. METHODS: A case report of a patient who presented with seizures, in whom the combination of DWI/PWI MRI and MRA confirmed the diagnosis of an embolic ischemic stroke. The patient was treated with intravenous recombinant tissue plasminogen activator with clinical and radiological improvement. CONCLUSIONS: Treatment decisions with regard to thrombolysis in acute stroke patients should be based on parameters of cerebral perfusion, assessment of collateral blood flow and presence of potentially salvageable tissue. Modern neuroimaging techniques that can rapidly assess these variables, such as DWI/PWI MRI and MRA, can improve the current selection of patients who are likely to benefit from thrombolysis and extend its benefit to patients who would otherwise be excluded, such as those with seizures at stroke onset.  相似文献   

4.
BACKGROUND AND PURPOSE: Diffusion-and perfusion-weighted magnetic resonance imaging (DWI and PWI) are useful tools for the assessment of brain ischemia. Discrepancies between the extent of DWI and PWI abnormalities are thought to depend pre dominantly on time from symptom onset to magnetic resonance imaging (MRI) examination. However, underlying ischemic stroke etiology can also be important. A mismatch may indicate the presence of tissue at risk for infarction, whereas the relevance of other DWI/PWI patterns is uncertain. The authors therefore investigated the etiology of brain ischemia in patients with different DWI/PWI patterns. METHODS: Retrospective study of 130 patients with acute brain ischemia and detailed stroke workup, including MRI within a week after symptom onset (40 +/- 39 hours). Patients were divided into the following groups: mis-match (PWI > DWI), reverse mismatch (DWI > PWI), and match (<25% difference between PWI and DWI). RESULTS: Mismatch occurred in 49% of patients, whereas 22% had reverse mis-match and 29% matched lesions. Time from symptom onset to MRI examination was similar between the 3 groups. Largeartery atherosclerosis increased by almost 4-fold the odds of mismatch (odds ratio: 3.89, 95% confidence interval: 1.72-8.78; P < .001), whereas patients with reverse mismatch were likely to have cryptogenic stroke. Patients with matched lesions were similarly distributed among different stroke subtypes. CONCLUSIONS: Ischemic stroke etiology appears to influence the development of specific DWI/PWI patterns. Prospective studies are needed to confirm these observations.  相似文献   

5.
OBJECTIVE: To study the pathophysiology of early CT signs. BACKGROUND: Early CT signs, due to an increase in tissue water content, are commonly attributed to cytotoxic edema and development of irreversible injury. This may have important implications for thrombolysis. METHODS: In patients with acute ischemic stroke in the middle cerebral artery territory, the areas of early CT signs and diffusion weighted imaging (DWI) hypersignal were independently assessed and drawn on a standardized atlas. Then, patients were classified into three groups (early CT signs larger than, similar to or smaller than DWI hypersignal) and compared with perfusion weighted imaging (PWI). RESULTS: Of 16 patients, CT scanning was performed with a median time of 3 h after onset and early CT scan signs were recorded in 10/16 patients (62.5%). DWI signal hyperintensity was present in 15/16 (94%) patients. In 7/16 (43%) patients, the area with early CT scan signs was larger than the DWI lesion ('CT-larger group'). Only in 2/16 (12%) patients were the areas matching ('matching group'). In 7/16 (43%) the DWI lesion was larger than the early CT scan signs area ('DWI-larger group'). When compared with PWI, the areas of early CT signs were larger than DWI hypersignal and were matching with PWI abnormalities (rMTT) in 2 cases, suggesting that they may represent a reversible process. CONCLUSIONS: Early CT signs might have a potential dual fate: infarction or reversibility. Other techniques of recognizing reversible ischemic damage, such as DWI-PWI, are needed to improve acute stroke diagnosis and management.  相似文献   

6.
Röther J 《Thrombosis research》2001,103(Z1):S125-S133
Thrombolysis is an effective but potential deleterious therapy and should therefore be limited to patients with acute intracerebral vessel occlusion and salvageable tissue. MRI currently develops towards the new diagnostic standard for the selection of stroke patients eligible for acute thrombolytic treatment and acute stroke studies. Diffusion- and perfusion-weighed MRI provides diagnostic information not available from the neurological assessments or from CCT and conventional spin-echo MRI. As high-speed DWI and PWI protocols become standardized, a 15-minute integrated stroke protocol of employing echo-planar imaging (EPI) can be outinely performed in the setting of acute clinical stroke. The combination of these MR techniques is suitable to define tissue at risk of infarction that is potentially salvageable brain tissue (an estimate of the ischemic penumbra) and may respond to early recanalization even beyond 3 hours after stroke onset. The extension of the therapeutic window for thrombolytic therapy towards 6 hours in a subpopulation of acute stroke patients might open the way for the successful reperfusion therapy in more stroke patients.  相似文献   

7.
BACKGROUND: In acute stroke, a magnetic resonance (MR) perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) mismatch (PWI>DWI mismatch) may indicate tissue at risk for infarction and poor prognosis. However, different to early enthusiasm about this surrogate marker, its validity has shown several drawbacks in individual patients. Rather than relying on imaging, we evaluated motor evoked potentials (MEP) as a measure of cerebral function in the acute stroke setting. METHODS: Thirteen patients with acute hemiparetic stroke underwent time to peak PWI and DWI within 6 h after onset as well as recordings of early MEP of first dorsal interosseous muscles. Outcome was assessed by the Unified Neurological Stroke Scale and Barthel Index at day 42. RESULTS: Of 8 patients with PWI>DWI mismatch, 4 patients with normal MEP had a good clinical outcome and 4 patients with absent or pathological MEP had an unfavourable outcome (p < 0.05, Fisher's exact test). In all patients without PWI>DWI mismatch, MEP findings predicted clinical outcome. Normal MEP at day 0--but not PWI/DWI findings--significantly correlated with a good clinical outcome. CONCLUSIONS: Early MEP recordings in acute stroke patients provide valid prognostic information; they may become more useful for specific treatment decisions than presently available MRI surrogate parameters.  相似文献   

8.
BACKGROUND AND PURPOSE: More effective imaging methods are needed to overcome the limitations of CT in the investigation of treatments for acute ischemic stroke. Diffusion-weighted MRI (DWI) is sensitive in detecting infarcted brain tissue, whereas perfusion-weighted MRI (PWI) can detect brain perfusion in the same imaging session. Combining these methods may help in identifying the ischemic penumbra, which is an important concept in the hemodynamics of acute stroke. The purpose of this study was to determine whether combined DWI and PWI in acute (<24 hours) ischemic stroke can predict infarct growth and final size. METHODS: Forty-six patients with acute ischemic stroke underwent DWI and PWI on days 1, 2, and 8. No patient received thrombolysis. Twenty-three patients underwent single-photon emission CT in the acute phase. Lesion volumes were measured from DWI, SPECT, and maps of relative cerebral blood flow calculated from PWI. RESULTS: The mean volume of infarcted tissue detected by DWI increased from 46.1 to 75.6 cm(3) between days 1 and 2 (P<0.001; n=46) and to 78.5 cm(3) after 1 week (P<0.001; n=42). The perfusion-diffusion mismatch correlated with infarct growth (r=0. 699, P<0.001). The volume of hypoperfusion on the initial PWI correlated with final infarct size (r=0.827, P<0.001). The hypoperfusion volumes detected by PWI and SPECT correlated significantly (r=0.824, P<0.001). CONCLUSIONS: Combined DWI and PWI can predict infarct enlargement in acute stroke. PWI can detect hypoperfused brain tissue in good agreement with SPECT in acute stroke.  相似文献   

9.
OBJECTIVE: To evaluate clinical, biological, and pretreatment imaging variables for predictors of tissue plasminogen activator (tPA) related intracerebral haemorrhage (ICH) in stroke patients. METHODS: 48 consecutive patients with hemispheric stroke were given intravenous tPA within seven hours of symptom onset, after computed tomography (CT) and magnetic resonance imaging (MRI) of the brain. Baseline diffusion weighted (DWI) and perfusion weighted (PWI) imaging volumes, time to peak, mean transit time, regional cerebral blood flow index, and regional cerebral blood volume were evaluated. The distribution of apparent diffusion coefficient (ADC) values was determined within each DWI lesion. RESULTS: The symptomatic ICH rate was 8.3% (four of 48); the rate for any ICH was 43.8% (21 of 48). Univariate analysis showed that age, weight, history of hyperlipidaemia, baseline NIHSS score, glucose level, red blood cell count, and lacunar state on MRI were associated with ICH. However, mean 24 hour systolic blood pressure and a hyperdense artery sign on pretreatment CT were the only independent predictors of ICH. Patients with a hyperdense artery sign had larger pretreatment PWI and DWI lesion volumes and a higher NIHSS score. Analysis of the distribution of ADC values within DWI lesions showed that a greater percentage of pixels had lower ADCs (< 400 x 10(-6) mm(2)/s) in patients who experienced ICH than in those who did not. CONCLUSION: Key clinical and biological variables, pretreatment CT signs, and MRI indices are associated with tPA related intracerebral haemorrhage.  相似文献   

10.
BACKGROUND: Diffusion-weighted MRI (DWI) and perfusion-weighted MRI (PWI) are new techniques that can be used for the evaluation of acute ischemic stroke. However, their potential role in the management of patients treated with recombinant tissue plasminogen activator (rtPA) has yet to be determined. CASE DESCRIPTION: The authors present the case of a 73-year-old man who was treated with intra-arterial rtPA, and they compare findings on DWI and PWI scans with angiography. PWI revealed decreased cerebral perfusion corresponding to an area that was not successfully recanalized, but revealed no abnormality in regions in which blood flow was restored. DWI was unremarkable in the region that was reperfused early (3 hours) but revealed hyperintensity in an area that was reperfused 3. 5 hours after symptom onset and in the area that was not reperfused. CONCLUSIONS: Findings on PWI correlated well with angiography, and DWI detected injured tissue in the hyperacute stage, whereas conventional MRI findings were negative. This suggests that these techniques may be useful to noninvasively evaluate the success of thrombolytic therapy.  相似文献   

11.
Relationship between severity of MR perfusion deficit and DWI lesion evolution   总被引:10,自引:0,他引:10  
OBJECTIVE: To assess whether a quantitative analysis of the severity of the early perfusion deficit on MRI in acute ischemic stroke predicts the evolution of the perfusion/diffusion mismatch and to determine thresholds of hypoperfusion that can distinguish between critical and noncritical hypoperfusion. METHODS: Patients with acute ischemic stroke were studied in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI MRI) were performed within 7 hours of symptom onset and again after 4 to 7 days. Patients with early important decreases in points on the NIH Stroke Scale were excluded. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were created. These hemodynamic parameters were correlated with the degree of recruitment of the baseline PWI lesion by the DWI lesion. RESULTS: Twelve patients had an initial PWI > DWI mismatch of >20%. A linear relationship was observed between the initial MTT and the degree of recruitment of the baseline PWI lesion by the DWI lesion at follow-up (R(2) = 0.9, p < 0.001). Higher CBV values were associated with higher degrees of recruitment (rho = 0.732, p < 0.007). The volume of MTT of >4 (R(2) = 0.86, p < 0.001) or >6 seconds (R(2) = 0.85, p < 0.001) predicted final infarct size. CONCLUSION: Among patients who have had an acute stroke with PWI > DWI, who do not have dramatic early clinical improvement, the degree of expansion of the initial DWI lesion correlates with the severity of the initial perfusion deficit as measured by the mean transit time and the cerebral blood volume.  相似文献   

12.
目的评价弥散成像(DWI)、血流灌注成像(PWI)磁共振对急性缺血性脑血管病的诊断价值。方法用DWI、PWI诊断急性脑缺血,并与常规MRI结果比较。结果经MRI检查证实的急性缺血性脑血管病患者共22例。其中发病后90分钟至6小时检查者11例,其CT及常规MRI未见异常,3例短暂性脑缺血发作(TIA)患者的DWI、PWI正常;其余8例脑梗死患者经DWI、PWI检查,均发现相对应的病灶,且6例灌注减低体积(PWIv)>弥散异常体积(DWIv),2例PWIv=DWIv。起病在6-12小时5例,4例行PWI检查,3例PWIv>DWIv,1例PWIv=DWIv。起病在12-48小时6例,2例行PWI检查,PWIv=DWIv。8例陈旧病灶在DWI上表现为低信号,所有新病灶在DWI上均为高信号。结论DWI、PWI可超早期诊断脑梗死,并可帮助了解缺血半暗带。T2加权像和DWI结合可以鉴别新旧梗死灶。  相似文献   

13.
BACKGROUND: Methods for determining cerebral blood flow (CBF) using bolus-tracking magnetic resonance imaging (MRI) have recently become available. Reduced apparent diffusion coefficient (ADC) values of brain tissue are associated with reductions in regional CBF in animal stroke models. OBJECTIVES: To determine the clinical and radiological features of patients with severe reductions in CBF on MRI and to analyze the relationship between reduced CBF and ADCs in acute ischemic stroke. DESIGN: Case series. SETTING: Referral center. METHODS: We studied 17 patients with nonlacunar acute ischemic stroke in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) were performed within 7 hours of symptom onset. A PWI-DWI mismatch of more than 20% was required. We compared patients with ischemic lesions that had CBF of less than 50% relative to the contralateral hemisphere with patients with lesions that had relative CBF greater than 50%. Characteristics analyzed included age, time to MRI, baseline National Institutes of Health Stroke Scale score, mean ADC, DWI and PWI lesion volumes, and 1-month Barthel Index score. RESULTS: Patients with low CBF (n = 5) had lower ADC values (median, 430 x 10 (-6) mm(2)/s vs. 506 x 10 (-6) mm(2)/s; P =.04), larger DWI volumes (median, 41.8 cm(3) vs. 14.5 cm(3); P =.001) and larger PWI lesions as defined by the mean transit time volume (median, 194.6 cm(3) vs. 69.3 cm(3); P =.01), and more severe baseline National Institutes of Health Stroke Scale scores (median, 15 vs. 9; P =.02). CONCLUSION: Ischemic lesions with severe CBF reductions, measured using bolus-tracking MRI, are associated with lower mean ADCs, larger DWI and PWI volumes, and higher National Institutes of Health Stroke Scale scores.  相似文献   

14.
BACKGROUND: Abnormalities in diffusion-weighted (DWI) and perfusion-weighted (PWI) magnetic resonance imaging (MRI) are thought to reflect the presence of brain tissue at risk for ischemic stroke. Many patients with acute ischemic stroke have a mismatch pattern in which the PWI volume is larger than the DWI lesion. This mismatch typically resolves over 24-48 hours. Little is known about the presence of DWI-PWI mismatch in later stages of stroke. METHODS: This is a retrospective study of 122 patients admitted with a diagnosis of acute ischemic stroke who had DWI and PWI abnormalities on studies performed within 7 days of onset of symptoms. Patients were divided into two groups: those with MRI performed <48 hours and those with MRI performed >or=48 hours from onset of symptoms. RESULTS: Among 42 patients with MRI performed >or=48 hours after onset of stroke symptoms, 15 of 42 (36%) showed a mismatch pattern, compared to 45 of 80 (56%) in the <48 hours group (P < 0.05). Most of the patients in the >or=48 hours group with mismatch had large artery occlusive disease and many had neurological fluctuations. A subset of these patients were treated with induced hypertension and showed clinical improvement. CONCLUSIONS: Some patients have persistent DWI-PWI mismatch up to several days after stroke onset. Further studies are needed to determine if these patients should be candidates for reperfusion therapy.  相似文献   

15.
BACKGROUND AND PURPOSE: Diagnostic imaging in hyperacute ischemic stroke has been revolutionized by the introduction of diffusion- and perfusion-weighted MRI (DWI and PWI). CT, however, is still needed to exclude intracerebral hemorrhage (ICH). The purpose of our study was to determine the diagnostic accuracy of a standardized, multimodal MRI (mMRI) stroke protocol in the qualitative and quantitative assessment of hyperacute ICH (<6 hours). METHODS: We investigated 9 patients with hyperacute ICH with CT followed immediately by a standardized mMRI stroke protocol (DWI, PWI [T2*-WI], FLAIR, T2-WI, and MRA). The time interval between MRI and symptom onset ranged from 3 hours to 5 hours 45 minutes. We analyzed and compared the size of the hematoma on CT and all mMRI images by semiautomatic volumetry. RESULTS: ICH was unambiguously identified on the basis of all mMRI sequences. With increasing susceptibility effect (T2*-WI), the ICH, appearing as an area of hyperintensity with central signal loss, became qualitatively most evident. Regarding quantitation, T2*-WI overestimated (median and mean difference, 18.9%/17.8%; SD final sigma=24.4%) and DWI correlated best (median and mean difference, 3.97%/-4.36%; SD final sigma=37. 42%) with hematoma size on CT. CONCLUSIONS: Multimodal stroke MRI is as reliable as CT in the assessment of hyperacute ICH. Therefore, additional CT is no longer necessary to rule out ICH in hyperacute stroke. The use of mMRI alone in the diagnostic workup of a hyperacute stroke patient saves time and costs while rendering all the critical information needed to initiate an optimal treatment.  相似文献   

16.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) are relatively new MR techniques increasingly used in acute stroke. During the first hours of stroke evolution, the regions with abnormal perfusion are typically larger than the DWI lesions, and this mismatch region has been suggested to be "tissue at risk." The aim of this study was to evaluate the PWI/DWI mismatch region in acute stroke patients and find parameters indicative of both infarct progression and functional impairment. METHODS: Twenty patients with nonlacunar ischemic stroke were imaged with DWI, PWI, and conventional MRI within 24 hours of symptom onset and after 1 week; in addition, the European Stroke Scale (ESS) score was recorded. With PWI, the volumes of regions with "time-to-peak" (TTP) delays of >/=2, 4, 6, 8, and 10 seconds were measured; these volumes were compared with the acute DWI lesion volumes, final infarct size, and ESS score. RESULTS: In 80% of patients the acute DWI lesion was surrounded by regions with abnormal TTP delays (PWI>DWI lesion). A TTP delay of >/=6 s in the mismatch region was found to be associated with lesion enlargement between the initial and follow-up MRI scans. Lesions increased in 9 of 12 patients (75%) in whom the area with TTP delay >/=6 s was larger than the DWI lesion, but they increased in only 1 of 8 (12.5%) of the remaining patients, in whom the area with a TTP delay >/=6 s was smaller than the DWI lesion. The volume of the regions with TTP delays of >/=4 s correlated better with ESS (r=-0.88, P<0.001) than other PWI (or DWI) volumes, which indicated that a TTP delay of approximately 4 s might be the threshold for functional impairment of brain tissue. CONCLUSIONS: Only patients with severe perfusion deficits in the PWI/DWI mismatch (TTP delays of >/=6 s) are at high risk of lesion enlargement. Functionally, more moderate perfusion deficits (TTP delays >/=4 and <6 s) appear to also contribute to the acute clinical deficit.  相似文献   

17.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) have been used increasingly in recent years to evaluate acute stroke in the emergency setting. In the present study, we compared DWI and PWI findings in acute stroke patients with and without severe extracranial internal carotid artery (ICA) disease. METHODS: Twenty-seven patients with nonlacunar ischemic stroke were selected for this analysis. DWI, PWI, and conventional MRI were performed in all patients within 24 hours of symptom onset and after 1 week. To exclude patients with partial or complete reperfusion, we included only patients with a PWI deficit larger than the DWI lesion. Severe ICA disease (>70% stenosis) was present unilaterally in 9 and bilaterally in 2 patients. Acute DWI lesion volume, the size of the acute PWI/DWI mismatch, and final infarct size (on T2-weighted images) were determined. RESULTS: The PWI/DWI mismatch was significantly larger in patients with severe ICA disease than in patients without extracranial carotid stenosis, both when time-to-peak and mean transit time maps (P<0.01) were used to calculate the mismatch. Quantitative analysis of the time-to-peak delay in the mismatch indicated that a relatively smaller fraction of the total mismatch was critically ischemic in patients with carotid stenosis than in those without. Average lesion volume increased less in the stenosis group (P=0.14), despite the larger PWI/DWI mismatch, and final infarct size was smaller in the stenosis group (P<0.05). In the 2 patients with bilateral ICA disease, variable hemodynamic involvement of the contralateral hemisphere was found in addition to the ipsilateral PWI deficit. CONCLUSIONS: In most acute stroke patients with severe ICA stenosis, a considerably smaller fraction of the total PWI/DWI mismatch is at risk than in patients without carotid disease.  相似文献   

18.
OBJECTIVE: We used combined diffusion-weighted (DWI) and perfusion-weighted (PWI) MRI to characterize hyperacute infarctions within 6 h of symptom onset with special reference to subcortical infarctions, and investigated the relation between perfusion-diffusion mismatch volume and functional outcome. MATERIAL AND METHODS: Twenty-two patients presenting with symptoms of acute stroke underwent DWI and PWI within 6 h of symptom onset, and follow-up MRI 30 days later. Twelve of these had a subcortical infarction on acute DWI. Lesion volumes were measured by acute DWI and PWI as well as chronic T(2)-weighted MRI (T2WI). Clinical severity was measured by the Scandinavian Stroke Scale (SSS) and the Barthel Index (BI). RESULTS: In the 12 patients with subcortical infarctions, PWI and especially DWI correlated strongly with acute and chronic neurological SSS score, as well as with final infarct volume. Furthermore, a hyperacute PWI/DWI mismatch in this subgroup predicted lesion growth. There was a weaker correlation between acute DWI/PWI and neurological score among all 22 patients, and patients with a PWI/DWI mismatch larger than 100 ml had a significantly larger lesion growth and a poorer outcome than patients with a smaller mismatch. CONCLUSIONS: Subcortical infarctions may represent a sizeable subgroup of acute stroke patients. Also subcortical infarctions may have a PWI/DWI mismatch and therefore may respond to neuroprotective/thrombolytic therapy. Hyperacute DWI may reflect the acute clinical status and predict the outcome in patients with subcortical infarction.  相似文献   

19.
Conventional neuroradiological techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), make a fundamental contribution in both the acute and chronic phases of stroke. Recent years have witnessed the development of new imaging modalities, which include diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), CT-angiography (CTA), MR-angiography (MRA), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and functional MRI (fMRI). While CTA, MRA, DWI and PWI are commonly used for clinical purposes, DTI, MRS and fMRI are becoming increasingly important in the field of experimental research of cerebrovascular diseases, but are still far from becoming of primary usefulness in the everyday clinical setting.  相似文献   

20.
Diffusion-weighted and perfusion-weighted magnetic resonance imaging (DWI, PWI) are useful in detecting early cerebral ischemic lesions. Intra-arterial thrombolysis is an effective treatment for some patients with acute thromboembolic occlusion. We evaluated the efficacy of acute thrombolytic therapy by using DWI and PWI in 3 patients who presented with internal carotid artery or middle cerebral artery occlusion. On the initial magnetic resonance imaging scans, the abnormal areas shown by PWI were bigger than those shown by DWI. All patients received thrombolytic therapy within 6 hours after stroke onset. In 1 patient, the hyperintensity area detected by initial DWI scanning diminished after thrombolysis. DWI and PWI may be useful to monitor the effectiveness of intra-arterial thrombolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号